2013届高考数学知识点复习测试题13

合集下载

山西省2013高考数学一轮单元复习测试:数系的扩充与复数的引入

山西省2013高考数学一轮单元复习测试:数系的扩充与复数的引入

山西省2013届高考数学一轮单元复习测试:数系的扩充与复数的引入本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数5i1-2i =( )A .2-iB .1-2iC .-2+i D .-1+2i【答案】C 2.设复数7sin ,34iz i i θ+=-+其中i 为虚数单位,⎥⎦⎤⎢⎣⎡-∈65,6ππθ,则z 的取值范围是( ) A .⎡⎣B . ⎡⎣C . ⎥⎦⎤⎢⎣⎡5,213 D . ⎥⎦⎤⎢⎣⎡5,25【答案】D 3. 设复数z=15a ++(a 2+2a-15)i 为实数,则实数a 的值是 ( )A .3B .-5C .3或-5D .-3或5【答案】A4.如果复数(m 2+i )(1+m i )是实数,则实数m = ( ) A .1 B .-1 C . 2 D .- 2【答案】B5.若(x -i)i =y +2i ,x 、y ∈R ,则复数x +y i =( )A .-2+iB .2+iC .1-2iD .1+2i 【答案】B 6.复数131i Z i-=+的实部是 ( )A .2B .1-C .1D .4-【答案】B7.设集合M ={y |y =|cos 2x -sin 2x |,x ∈R},N ={x ||x -1i|<2,i 为虚数单位,x ∈R},则M ∩N 为( )A .(0,1)B .(0,1]C .[0,1)D .[0,1] 【答案】C8. 若i 是虚数单位,且复数z=(a-i)·(1+2i)为实数,则实数a 等于 ( )A .-12B .-2C .12D .2【答案】C9.复数z =a +b i(a ,b ∈R)的虚部记作Im(z )=b ,则Im(12+i)=( )A .13B .25C.-3D.-5【答案】D10.设复数z满足(1+i)z=2,其中i为虚数单位,则z=( ) A.1+i B.1-iC.2+2i D.2-2i【答案】B11.复数z=1+i,为z的共轭复数,则z-z-1=( ) A.-2i B.-iC.i D.2i【答案】B12.在复平面内,复数1+ii对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.复数z=a2-b2+(a+|a|)i(a,b∈R)为实数的充要条件是________.【答案】a≤014.已知复数3-5i、1-i和-2+ai在复平面上对应的点在同一条直线上,则实数a的值为 . 【答案】515.如果复数(m2+i)(1+m i)是实数,则实数m=________.【答案】-116.满足等式|z+4|+|z-3i|=5的复数z在复平面内所对应的点的轨迹是________________.【答案】线段三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知复数z =x +y i ,且|z -2|=3,求y x的最大值.【答案】 由|z -2|=3可得,|z -2|2=(x -2)2+y 2=3.设y x=k ,即得直线方程为kx -y =0, ∴圆(x -2)2+y 2=3的圆心(2,0)到直线kx -y =0的距离d =2|k |k 2+1≤3,解得k ∈[-3,3],即得y x的最大值为3.18.已知虚数z 满足条件|z |=1,z 2+2z +1z<0,求虚数z .【答案】设z =x +y i(y ≠0,x ,y ∈R ),∵|z |=1,∴x 2+y 2=1,①则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i=(x 2-y 2+3x )+y (2x +1)i.又y ≠0,∴⎩⎪⎨⎪⎧2x +1=0, ②x 2-y 2+3x <0.③由①②③得⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.19. m 为何实数时,复数z =(2+i)m 2-3(i +1)m -2(1-i)是 (1)实数;(2)虚数;(3)纯虚数?【答案】∵z =(2+i)m 2-3(i +1)m -2(1-i)=2m 2+m 2i -3m i -3m -2+2i=(2m 2-3m -2)+(m 2-3m +2)i.∴(1)由m 2-3m +2=0得m =1或m =2, 即m =1或m =2时z 为实数.(2)由m 2-3m +2≠0,即m ≠1且m ≠2, 即m ≠1且m ≠2时,z 为虚数.(3)由⎩⎪⎨⎪⎧2m 2-3m -2=0m 2-3m +2≠0,得m =-12.即m =-12时,z 为纯虚数.20. 若z (1+i)=2,求z 的虚部.【答案】由z (1+i)=2得z =21+i =2(1-i)(1+i)(1-i)=2(1-i)2=1-i.故其虚部为-1.21. 已知复数x 2-6x +5+(x -2)i 在复平面内对应的点在第三象限,求实数x 的取值范围.【答案】∵x 为实数,∴x 2-6x +5和x -2都是实数.由题意,得⎩⎪⎨⎪⎧x 2-6x +5<0,x -2<0,解得⎩⎪⎨⎪⎧1<x <5,x <2,即1<x <2.故x 的取值范围是(1,2).22.已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2i ,其中i 为虚数单位,a ∈R ,若|z 1-z 2|<|z 1|,则a 的取值范围是多少?【答案】由题意得z 1=-1+5i1+i=2+3i ,于是|z1-z2|=|2+3i-a-2i|=2-a2+1,|z1|=13,所以2-a2+1<13,化简得a2-4a-8<0,解得2-23<a<2+23.。

山西省2013高考数学一轮单元复习测试:三角函数

山西省2013高考数学一轮单元复习测试:三角函数

山西省2013届高考数学一轮单元复习测试:三角函数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角2α的顶点在原点,始边与x 轴的非负半轴重合,终边经过点⎝ ⎛⎭⎪⎫-12,32,且2α∈[0,2π),则tan α等于( ) A .- 3 B . 3 C .-33 D .33【答案】B 2. 已知tan()34πα-=, 则1sin cos αα=( )A .52B .75C .52-D .75-【答案】C 3.若1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+ ⎪⎝⎭=( )A .78-B .14-C .14D .78【答案】A4.将函数cos()3y x π=-的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位,所得函数图象的一条对称轴是 ( ) A .9x π=B . 8x π=C .x π=D . 2x π=【答案】D5.函数)4(sin )4(cos 22ππ+-+=x x y 是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数 【答案】A6.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置p(x ,y).若初始位置为P 0(23,21),当秒针从P 0 (注此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为( ) A .)630sin(ππ+=t yB .)660sin(ππ--=t y C .)630sin(ππ+-=t yD .)330sin(--=t y【答案】C7.已知函数()y Asinx B =ω+ϕ+的一部分如下图所示。

如果A >0,0,2πωϕ><,则( )A .A=4B .B=4C .1ω=D .6πϕ= 【答案】D8. 若将函数2sin()y x ϕ=+的图像上每个点的横坐标缩短为原来的13倍(纵坐标不变), 再向右平移4π个单位后得到的图像关于点(,0)3π对称,则ϕ的最小值是( ) A .4π B .3π C .2π D .34π【答案】A 9.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( )A .2,2πB .1,2πC .,1D .,2【答案】C 10.已知31)tan(,41tan =-=βαα,则=βtan ( ) A .117 B .711- C .131-D .131【答案】C11.已知ABC ∆的三个内角满足:B C A cos sin sin ⋅= ,则ABC ∆的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】B 12.已知tan()34πα-=, 则1sin cos αα= ( )A .52B .75C .52-D .75-【答案】C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.给出下列六种图象变换方法:(1)图象上所有点的纵坐标不变,横坐标缩短到原来的12; (2)图象上所有点的纵坐标不变, 横坐标伸长到原来的2倍;(3)图象向右平移3π个单位; (4)图象向左平移3π个单位;(5)图象向右平移23π个单位;(6)图象向左平移23π个单位.请用上述变换中的两种变换,将函数y =sinx 的图象变换到函数y =sin(x 2+ 3π)的图象,那么这两种变换正确的标号是______(要求按变换先后顺序填上一种你认为正确的标号即可).【答案】(4)(2)或(2)(6) 14.已知21cos sin =-αα,且0,2π⎛⎫α∈ ⎪⎝⎭,则cos 2sin 4πα⎛⎫α- ⎪⎝⎭的值为 .【答案】214-15.如果21)4tan(,43)tan(=-=+παβα,那么)4tan(πβ+= . 【答案】11216.若ABC ∆的面积为3,O 60,2==C BC ,则边长AB 的长度等于 . 【答案】2三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (1)求cos B 的值; (2)若2=⋅BC BA ,且22=b,求c a 和的值.【答案】(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B(II )由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以.6==c a18.在ABC ∆中,角,,A B C 所对的边分别为,,a b c .已知sin sin sin ()A C p B p R +=∈且214ac b =. (1)当5,14p b ==时,求,a c 的值;(2)若角B 为锐角,求p 的取值范围;【答案】由题设并利用正弦定理,得5414a c ac ⎧+=⎪⎪⎨⎪=⎪⎩解得1,1,4a c =⎧⎪⎨=⎪⎩或1,41.a c ⎧=⎪⎨⎪=⎩ (Ⅱ)解:由余弦定理,2222cos b a c ac B =+-2()22cos a c ac ac B =+--2222cos ,22p b b b B =--即231cos ,22p B =+因为0cos 1B <<,得23(,2)2p ∈,由题设知0p >p <<19.已知函数f(x)=cos(-x 2)+cos(4k 1x22+π-),k ∈Z ,x ∈R . (1)求f(x)的最小正周期; (2)求f(x)在[0,π)上的减区间; (3)若f(α)=5,α∈(0, 2π),求tan(2α+ 4π)的值.【答案】(1)f(x)=cos(-x 2)+cos(4k 1x22+π-) =cos x 2+cos(2k π+ x 22π-)=sin x 2+cos x 2=x 2+4π),所以,f(x)的最小正周期T=2412π=π.(2)由2π+2k π≤x 32k 242π+≤π+π,k ∈Z得54k x 4k ,k Z 22π+π≤≤π+π∈. 令k=0,得5x 22π≤≤π;令k=-1,得73x .22π-≤≤-π 又x ∈[0,π),∴f(x)在[0,π)上的减区间是[2π,π). (3)由f(α)=5,得sin cos 225αα+=,∴1+sin α85=,∴sin α=35,又α∈(0, )2π, ∴cos α45==,∴232sin 32tan 244tan tan29cos 41tan 7116⨯ααα==∴α===α-α-,, ∴241tan2tan3174tan(2).244171tan2tan 147π+α+πα+===-π-α-20.已知向量()().cos 2,1,sin ,cos22x n x x m ==(I )若n m ⊥且0<x <π,试求x 的值; (II )设(),n m x f ⋅=试求()x f 的对称轴方程和对称中心.【答案】(I )∵.n m ⊥∴x x x n m cos sin 2cos 22+=⋅,0142sin 212sin 2cos =+⎪⎭⎫ ⎝⎛+=++=πx x x 即2242sin -=⎪⎭⎫⎝⎛+πx ∵,0π<x<∴,49,442⎪⎭⎫ ⎝⎛∈+πππx ∴,x 474542πππ或=+∴.432ππ或=x (II )().142sin 2+⎪⎭⎫ ⎝⎛+=πx x f令.,82,242Z k k x Z k k x ∈+=∈+=+πππππ可得 ∴对称轴方程为.,82Z k k x ∈+=ππ 令Z k k x ∈=+,42ππ可得,,82Z k k x ∈-=ππ ∴对称中心为.,1,82Z k ∈⎪⎭⎫⎝⎛-ππ21.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos 25A =,3AB AC ⋅=. (1)求ABC ∆的面积;(2) 若6b c +=,求a 的值.【答案】(1)因为cos25A =,所以53cos =A , 又π<<A 0,所以54sin =A . 由3AB AC ⋅=,得cos 3,bc A =所以5=bc故2sin 21==∆A bc S ABC . (2)由5bc =,且6b c +=,解得⎩⎨⎧==,1,5c b 或⎩⎨⎧==.5,1c b 由余弦定理得2222cos 20a b c bc A =+-=, 故52=a22.如图,某园林绿化单位准备在一直角ABC 内的空地上植造一块“绿地△ABD ”,规划在△ABD 的内接正方形BEFG 内种花,其余地方种草,若AB=a ,θ=∠DAB ,种草的面积为1S ,种花的面积为2S ,比值12S S 称为“规划和谐度”。

2013年高考数学理知识与能力测试题

2013年高考数学理知识与能力测试题

OF
即有
DF
EF
,又根据相交弦定理 DF· EF= BF· AF
PF
可推出 BF OB 2 ,从而 PF PB 1
PF AP 6
PF
3
∴ PF= 3
ab
ab
( 2) ∵ PF QF,
∴c a2
c
1 ∴ a b,e 2
a2
cc
c
c
(3) 略。
三、 15.解: (1) 依题知,
得 f (x) m? n
3 sin x cos x cos2 x
2 )
3
当t
13 ln 时, 0
et
2 , P2 P1 0 , P2
P1 ;
2
3
当 t 1 ln 3 时, e t 2 , P2 P1 0 , P2 P1 ;
2
3
当t
13 ln 时, e
t

2 , P2 P1 0 , P2
P1 ;
2
3
13
故当 t
ln 时,飞机 A 安全;
2
当t
13 ln 时,飞机 A 与飞机 B 一样安全;
2
2
设 m (x1, y1 , z1 ) 是平面 C ' EF 的一个法向量,则
2
A. 1
B. 1
3
3
C.
1
1
D.
2
6
2
6
11
-2
2
4
6
8
10
12
O 2 -1
x
3 -2
3
-3
-4
6.某工厂生产产品, 用传送带将产品放入下一工序, 质检人员每隔 t 分钟在传进带上某一固定位置取一件检验, 这种抽样方法是

2013年高考数学试题及答案word版

2013年高考数学试题及答案word版

2013年高考数学试题及答案word版一、选择题(每题5分,共50分)1. 函数f(x) = 2x^3 - 3x^2 + 1在区间[0,1]上的最大值是:A. 0B. 1C. 2D. 3答案:C2. 已知向量a = (3, -1),b = (2, 4),向量a与向量b的夹角的余弦值为:A. 1/5B. 3/5C. -1/5D. -3/5答案:B3. 圆x^2 + y^2 - 6x - 8y + 25 = 0的圆心坐标为:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)答案:A4. 已知等比数列{an}的首项为1,公比为2,求前5项的和S5:A. 31B. 15C. 33D. 63答案:A5. 函数y = ln(x+√(x^2+1))的导数为:A. 1/(x+√(x^2+1))B. 1/(x-√(x^2+1))C. 1/(x+1)D. 1/(x-1)答案:A6. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为2,求a和b的关系:A. a = 2bB. a = b/2C. b = 2aD. b = a/2答案:C7. 已知三角形ABC的内角A、B、C满足A+B=2C,且sinA+sinB=sinC,求角C的大小:A. π/3B. π/4C. π/6D. π/2答案:A8. 已知函数f(x) = x^2 - 4x + m在区间[2, +∞)上单调递增,求m的取值范围:A. m ≥ -4B. m > -4C. m ≤ -4D. m < -4答案:A9. 已知等差数列{an}的前n项和为Sn,若S5 = 40,S10 - S5 = 40,求S15 - S10的值:A. 60B. 40C. 20D. 0答案:A10. 已知函数f(x) = ax^3 + bx^2 + cx + d,其中a、b、c、d均为实数,且f(0) = 0,f'(0) = 0,f''(0) = 0,求f(1)的值:A. 1B. 2C. 3D. 4答案:A二、填空题(每题5分,共30分)11. 已知直线l的方程为y = 2x + 3,求直线l与x轴的交点坐标。

2013高考数学试卷及答案

2013高考数学试卷及答案

2013高考数学试卷及答案一、选择题1.若函数 $f(x)=\\frac{\\sqrt{1-x^2}}{\\sqrt{1+x^2}}$,则f(−1)+f(0)+f(1)的值为A. 0B. 1C. 2D. 3答案: C. 22.已知函数 $y=\\log_2{x}$,则 $y^2-4y-5 \\leq 0$ 的解集为A. (-∞, -1] ∪ [5, +∞)B. [-1, 5]C. [-1, 1]D. (1, 5)答案: B. [-1, 5]3.如图所示,在ΔABC 中,$AD \\perp BC$,则 $\\frac{BD}{CD} =$imageimageA. $\\frac{2}{3}$B. $\\frac{3}{7}$C. $\\frac{5}{3}$D. $\\frac{3}{2}$答案: A. $\\frac{2}{3}$二、填空题4.设a1=3,$a_2=\\frac{7}{4}$,a n+2=2a n+1+a n,则a10=答案: $\\frac{535}{64}$5.设 $f(x)=\\sin^3{x}-\\cos^3{x}$,则 $f(\\frac{\\pi}{6})=$答案: $\\frac{1}{4}$三、解答题1. 计算题6.已知数列 $\\{a_n\\}$,a1=2,$a_{n+1}=2a_n+3(n\\geq1)$,求a n 的通项公式。

解答:首先我们观察数列的前几项,可以发现:a1=2 $a_2 = 2 \\cdot 2 + 3 \\cdot 1 = 7$ $a_3 = 2 \\cdot 7 + 3 \\cdot 2 = 20$定义数列 $\\{b_n\\}$,$b_n = a_n + \\frac{3}{2} \\cdot n$,我们来观察数列 $\\{b_n\\}$: $b_1 = 2 + \\frac{3}{2} \\cdot 1 = \\frac{7}{2}$ $b_2 = 7 + \\frac{3}{2} \\cdot 2 = 12$ $b_3 = 20 + \\frac{3}{2} \\cdot 3 =\\frac{29}{2}$我们可以发现数列 $\\{b_n\\}$ 是一个等差数列,公差为$\\frac{3}{2}$。

【专项冲击波】2013年高考数学 讲练测系列 专题13 选择题与填空题解答策略(学生版)

【专项冲击波】2013年高考数学 讲练测系列 专题13 选择题与填空题解答策略(学生版)

【专项冲击波】2013年高考数学讲练测系列专题13 选择题与填空题解答策略(学生版)【考纲解读】1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系.【考点预测】1.近几年来高考数学试题中选择题稳定在14~15道题,分值65分,占总分的43.3%。

高考选择题注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向;使作为中低档题的选择题成为具备较佳区分度的基本题型.2.填空题是一种传统的题型,也是高考试卷中又一常见题型。

近几年高考,都有一定数量的填空题,且稳定了4个小题左右,每题4分,共16分,越占全卷总分的11%.【要点梳理】1.准确是解答选择题的先决条件。

选择题不设中间分,一步失误,造成错选,全题无分。

所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

迅速是赢得时间获取高分的必要条件。

高考中考生不适应能力型的考试,致使“超时失分”是造成低分的一大因素。

对于选择题的答题时间,应该控制在不超过50分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。

2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面,是否达到《考试说明》中的“了解、理解、掌握”三个层次的要求。

历年高考的选择题都采用的是“四选一”型,即选择项中只有一个是正确的。

它包括两个部分:题干,由一个不完整的陈述句或疑问句构成;备选答案,通常由四个选项A、B、C、D组成。

3.一般地,解答选择题的策略是:①熟练掌握各种基本题型的一般解法。

②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。

③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。

2013年高考数学试题及答案

2013年高考数学试题及答案

高考试题回顾1. 设全集为R ,函数()f x M , 则C M R 为 ( )(A) [-1,1] (B) (-1,1)(C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞- 2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为((A) 25 (B) 30 (C) 31 (D) 61 3. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的() (A) 充分不必要条件 (B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( ) (A) 11(B) 12(C) 13(D) 145. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( ) (A)14π-(B)12π-(C) 22π-(D)4π6. 设z 1, z 2是复数, 则下列命题中的假命题是 ( ) (A) 若12||0z z -=, 则12z z = (B) 若12z z =, 则12z z =(C) 若12||z z =, 则2112··z z z z = (D) 若12||z z =, 则2122z z =7. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 ( )(A) 锐角三角形(B) 直角三角形(C) 钝角三角形(D) 不确定8. 设函数41,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为( ) (A) -20 (B) 20 (C) -15 (D) 1519. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是( ) (A) [15,20] (B) [12,25] (C) [10,30](D) [20,30]10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有( ) (A) [-x ] = -[x ] (B) [2x ] = 2[x ](C) [x +y ]≤[x ]+[y ](D) [x -y ]≤[x ]-[y ]11. 双曲线22116x y m-=的离心率为54, 则m 等于 .12. 某几何体的三视图如图所示, 则其体积为 .13. 若点(x , y )位于曲线|1|y x =-与y =2所围成的封闭区域, 则2x -y 的最小值为 .14. 观察下列等式: 211= 22123-=- 2221263+-=2222124310-+-=-…照此规律, 第n 个等式可为 .15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A. (不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为 .B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE = .xC. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为 .16. (本小题满分12分)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.17. (本小题满分12分) 设{}n a 是公比为q 的等比数列. (Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.18. (本小题满分12分) 在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手. (Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和, 求X 的分布列和数学期望.19. (本小题满分13分)已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.(Ⅰ) 求动圆圆心的轨迹C的方程;(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是∠的角平分线, 证明直线l过定点.PBQ23. (本小题满分13分)已知动点M(x,y)到直线l:x = 4的距离是它到点N(1,0)的距离的2倍.(Ⅰ) 求动点M的轨迹C的方程;(Ⅱ) 过点P(0,3)的直线m与轨迹C交于A, B两点. 若A是PB的中点, 求直线m的斜率.。

2013高考数学试题及答案

2013高考数学试题及答案

2013高考数学试题及答案一、选择题(本题共10小题,每小题5分,共50分)1. 若函数f(x) = 2x^2 - 4x + 3,求f(1)的值。

A. 1B. 2C. 3D. 4答案:B2. 已知集合A={1,2,3},集合B={2,3,4},求A∩B。

A. {1,2}B. {2,3}C. {3,4}D. {1,4}答案:B3. 若直线l的方程为y=2x+1,求直线l的斜率。

A. 1B. 2C. -2D. -1答案:B4. 计算三角函数sin(π/6)的值。

A. 1/2B. √3/2C. 1D. 0答案:A5. 在等差数列{an}中,若a3 + a7 = 10,且公差d=2,求a5的值。

A. 2B. 4C. 6D. 8答案:C6. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,若a=3,b=2,求双曲线的焦点坐标。

A. (±√13, 0)B. (±√5, 0)C. (0, ±√13)D. (0, ±√5)答案:A7. 计算定积分∫(0 to 1) x^2 dx的值。

A. 1/3B. 1/2C. 1D. 0答案:A8. 若复数z满足|z|=1,且z的实部为1/2,求z的虚部。

A. √3/2B. -√3/2C. 1/2D. -1/2答案:B9. 已知向量a=(3, -4),向量b=(2, 1),求向量a与向量b的数量积。

A. -2B. 2C. -10D. 10答案:C10. 计算二项式(1+x)^5的展开式中x^3的系数。

A. 10B. 20C. 30D. 40答案:B二、填空题(本题共5小题,每小题5分,共25分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)。

答案:3x^2 - 6x12. 若矩阵A为2x2矩阵,且|A|=4,求矩阵A的逆矩阵的行列式。

答案:1/413. 已知等比数列{bn}中,b1=2,公比q=3,求b4的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 算法的概念与程序框图
★知识梳理★
1.算法:可以用计算机来解决的某一类问题的程序或步骤.
2.算法中的程序和步骤必须是明确和有效的,而且能够在有限步之内完成.
3.算法具有概括性(能解决一类问题),确切性(每一步操作的内容和顺序必须是明确的),有穷性(必须在有限步内结束并返回一个结果),不唯一性(一个问题可以有多个算法,算法有优劣之分),普遍性(很多具体的问题,都可以设计合理的算法去解决).
4.程序框图又称流程图,是一种用规定的图形,指向线及文字说明来准确地、直观地表示算法的图形;
5.算法的基本逻辑结构(顺序结构、条件结构和循环结构) ①顺序结构表示语句和语句之间,框与框之间是按顺序进行的;
②条件结构是需要先根据条件作出判断,再决定执行哪一种操作的结构;
③循环结构是需要反复执行某一处理步骤的结构,分为当型(WHILE 型)和直到型(UNTIL 型),当型(WHILE 型)循环是指在每次执行循环体前对控制循环条件进行判断,当条件满足时执行循环体,不满足时停止,直到型(UNTIL 型)循环是先执行一次循环体,然后对控制循环条件进行判断,当条件不满足时执行循环体,满足则停止.
★重难点突破★
1.重点:理解程序框图的三种基本逻辑结构,掌握三种逻辑结构在程序框图中的体现和特点.
2.难点:绘制简单实际问题的流程图,正确理解各种算法语句的实际意义.
3.重难点:设计算法时要综合考虑问题中可能涉及的各种情况:必须能解决一类问题,并且能重复使用;算法过程要一步一步执行,每一步执行的操作,必须确切,不能含糊不清,而且在有限步后得出结果.条件结构主要用在一些需要依据条件进行判断的算法中,如分段函数的求值、参数的讨论等.循环结构主要用在一些有规律的重复计算的算法中,如累加求和、累乘求积等.
★热点考点题型探析★
考点一 算法与程序框图 题型1 对算法阅读能力的考查
【例1】一个算法如下: 第一步:计算2
44ac b m a
-=

第二步:若0>a ,输出最小值m ; 第三步:若0<a ,输出最大值m .
已知3,2,1===c b a ,则运行以上步骤输出的结果为
【解题思路】只要按照算法的含义有步骤地描述解决的过程,便可得到该题的结果. 【解析】本题算法用于求二次函数2
(0)y ax bx c a =++≠
故输出最小值2.
【名师指引】把解决该问题的步骤进行呈现就是算法的思想.
题型2 对程序框图阅读能力的考查
【例2】写出图⑴的程序框图的运行结果.=
S .
【解题思路】只要按照程序框图的箭头有步骤地计算,可得该题的结果. 【解析】本题程序框图用于求.2
52
44
2=
+
=
S ∴.25=
S
【名师指引】正确理解程序框图及算法是解题的关键.
题型3 算法和程序框图的设计
【例3】试写出寻找满足条件1000321>++++n 的最小正整数 n 的算法,并画出相应的算法程序框图.
【解题思路】由于1000
结构设计算法
【解析】算法如下:
第一步:p 取值0; 第二步:i 取值0;
第三步:用1+i 的值代替p ;
第四步:用i p +的结果代替i ;
第五步:如果1000>p ,则输出i ;否则执行第六步 第六步:回到第三步,重新执行第三步,第四步,第五步.
相应的算法程序框图如图⑵所示.
【名师指引】把解决该问题的步骤进行呈现,设计算法,按要求画出 相应的程序框图.
【新题导练】 1.一个算法如下:
第一步:S 取值i ,0取值1;
第二步:若i 不大于10,则执行下一步;否则执行第六步; 第三步:计算i S +且将结果代替i ; 第四步:用2+i 结果代替i ; 第五步:转去执行第二步;
第六步:输出.S 则运行以上步骤输出的结果为 . 【解析】25.此算法用于计算.2597531=++++ 2.写出图⑶的程序框图的运行结果:若8=R ,则=a .
图(2)
【解析】.422,24,8=⨯===
=a b R ∴.4=a
3.某工厂2008年的生产总值100万元,技术革新后预计以后每年的生产总值比上一年增加5%,问最早需要哪一年年生产总值超过200万元.写出计算的一个算法并画出相应的程序框图.
【解析】依题意知第n 年后生产总值的计算公式为n
a )05.01(200+=,此时为)2008(n +年. 算法如下:
第一步:05.0,100,0===r a n ; 第二步:ar T =(计算年增量); 第三步: T a a +=(计算年产值);
第四步:如果200≤a ,那么1+=n n ,重复执行第二步; 第五步:n N +=2008;
第六步:输出N . 程序框图如图⑷所示.
考点2 基本逻辑结构的运用 题型1 条件分支结构的运用
【例4】已知⎪⎩

⎨⎧<=>-=0,20,00,2x x x y ,写出该函数函数值的算法及程序框图.
【解题思路】求分段函数的函数值问题,可用条件分支结构.
【解析】算法如下:第一步:输入x ; 第二步:如果0>x ,那么使2-=y ,如果0<x ,那么使2=y ; 第三步:输出函数值y .程序框图如图(5)所示:
【名师指引】条件分支结构的运用与数学中的分类讨论有关.设计算法时,哪一步要分类讨论,哪一
步就需要用条件分支结构.
题型2 循环结构的运用
【例5】已知1)(3
-=x x f ,将区间[]10,010等分,画出求各等分点及端点函数值的程序框图.
【解题思路】将区间[]10,010等分,得11个数:.10,9,8,7,6,5,4,3,2,1,0引入变量i ,从0开始,每算一个函数值,i 的值就增加1,直到10=i 为止.故可用循环结构设计算法. 【解析】程序框图如图⑹所示:
【名师指引】对于这种有规律的计算问题,一般可采用循环结构设计算法.
(5)
题型3 顺序结构的运用
【例6】阅读如图⑺流程图,则输出的结果是 .
【解题思路】顺序结构表示语句和语句之间,框与框之间是按顺序进行的. 【解析】2215y =⨯+=,35213b =⨯-=,∴结果是.13
【名师指引】对于这种顺序结构的计算问题,算法过程要一步一步按顺序执行. 【新题导练】
4.阅读图8的流程图,若输入的c b a ,,分别是75,32,21, 则输出的c b a ,,分别是
【解析】21,75,32,21x a c b ====
5.阅读如图⑼流程图,若输入8=x ,则输出的结果是 . 【解析】.333,38log
2
=⨯===p y ∴结果是.3
6.如图⑽的程序框图,则输出的数是 .
【解析】49(298)
249824502
sum ⨯+=+++==
(8)
★ 抢 分 频 道 ★
基础巩固训练
1.下列结论正确的是( )
A .一个程序的算法步骤是可逆的
B .一个算法可以无止境地运算下去
C .完成一件事情的算法有且只有一种
D .设计算法要本着简单方便的原则 【解析】D .
2.下面对算法描述正确的一项是( )
A .算法只能用自然语言来描述
B .算法只能用图形方式来表示
C .同一问题可以有不同的算法
D .同一问题的算法不同,结果必然不同 【解析】C .算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性 3.下列说法不正确的是( ) A .任何一个算法一定含有顺序结构
B .任何一个算法都可能由顺序结构、条件结构、循环结构构成
C .循环结构中一定包含条件结构
D .条件结构中一定包含循环结构 【解析】D .
4.计算下列各式中的S 值,能设计算法求解的是( ) ①30321++++= S ; ② +++++=30321S ; ③)(321+∈++++=N n n S .
A .①②
B .①③
C .②③
D .①②③ 【解析】B . ②为求无限项的和,而算法要求必须在有限步之内完成. 5. 程序框图5中,若3=y 时,输出的结果为 .
【解析】2
6.已知6)(-=x x f ,以下程序框图6表示的是给定x 的值,求其函数值的算法.请将该程序框图补充完整.其中①处应填 ,②处应填 . 【解析】?6≤x
综合拔高训练
7.设计算法求
50
4914
313
212
11⨯+
+⨯+
⨯+
⨯ 的值,要求画出程序框图.
【解析】这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构 实现这一算法.程序框图如图7所示:
8.设计一个计算100个数的平均数的算法的程序框图.
【解析】解法一:用当型循环(如图8):解法二:用直到型(如图9):
图9 图8。

相关文档
最新文档