高考数学知识点总复习教案直线方程和两直线的位置关系
高三数学第一轮复习:直线方程与两直线的位置关系知识精讲

高三数学第一轮复习:直线方程与两直线的位置关系【本讲主要内容】直线方程与两直线的位置关系直线斜率的概念、直线方程的几种形式、两条直线的位置关系、两条相交直线的夹角和到角公式、点到直线距离公式。
【知识掌握】 【知识点精析】1. 直线斜率的概念:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线和x 轴平行或重合时,规定直线的倾斜角为0º。
所以,直线的倾斜角α的取值范围是0º≤α<180º。
(2)直线的斜率:倾斜角α≠90º的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即k=tan α(α≠90º)。
(3)直线的方向向量:设F 1(x 1,y 1)、F 2(x 2,y 2)是直线上不同的两点,则向量21F F =( x2- x 1,y 2- y 1)称为直线的方向向量。
向量21121F F x x -=(1,1212x x y y --)=(1,k)也是该直线的方向向量,k 是直线的斜率。
(4)求直线斜率的方法:①定义法:已知直线的倾斜角为α,且α≠90º,则斜率k=tan α ②公式法:已知直线过两点P 1(x 1,y 1)、P 2(x 2,y 2),且x 1≠x 2,则斜率k=1212x x y y --③方向向量法:若a =(m ,n)为直线的方向向量,则直线的斜率为k=mn 说明:平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率。
斜率的图象如图:2. 直线方程的几种形式:(1)点斜式:)(11x x k y y -=-,其特例是:b kx y +=(斜截式); (2)两点式:121121x x x x y y y y --=--,其特例是:1=+bya x (截距式);(3)一般式:0=++C By Ax (A 、B 不同时为0)说明:使用直线方程时,要注意限制条件。
2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系

2024年高考数学总复习第九章《平面解析几何》§9.2两条直线的位置关系最新考纲1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组1x +B 1y +C 1=0,2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.概念方法微思考1.若两条直线l 1与l 2垂直,则它们的斜率有什么关系?提示当两条直线l 1与l 2的斜率都存在时,12l l k k ⋅=-1;当两条直线中一条直线的斜率为0,另一条直线的斜率不存在时,l 1与l 2也垂直.2.应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示(1)将方程化为最简的一般形式.(2)利用两平行线之间的距离公式时,应使两平行线方程中x ,y 的系数分别对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×)(2)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.(√)题组二教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于()A.2B .2-2 C.2-1D.2+1答案C 解析由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.答案1解析由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.4.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案-9解析=2x ,+y =3,=1,=2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.题组三易错自纠5.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于()A .2B .-3C .2或-3D .-2或-3答案C解析直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2m =2或-3.故选C.6.直线2x +2y +1=0,x +y +2=0之间的距离是______.答案324解析先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.7.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.答案0或1解析由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一两条直线的平行与垂直例1已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.解(1)方法一当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2-a2=11-a ,3≠-(a +1),解得a =-1,综上可知,当a=-1时,l1∥l2,a≠-1时,l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2(a-1)-1×2=0,(a2-1)-1×6≠0,2-a-2=0,(a2-1)≠6,可得a=-1,故当a=-1时,l1∥l2.a≠-1时,l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),·11-a=-1,得a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0,可得a=23.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练1(1)(2018·潍坊模拟)直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由题意,当直线l1∥l2时,满足3+m2=45+m≠5-3m8,解得m=-7,所以“m=-1或m=-7”是“l1∥l2”的必要不充分条件,故选B.(2)(2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.①l1⊥l2,且直线l1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.解①∵l 1⊥l 2,∴a (a -1)-b =0,又∵直线l 1过点(-3,-1),∴-3a +b +4=0.故a =2,b =2.②∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在.∴k 1=k 2,即ab=1-a .又∵坐标原点到这两条直线的距离相等,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.题型二两直线的交点与距离问题1.(2018·西宁调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是()A .-23 B.23C .-32D.32答案A解析由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得1,又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295答案C解析因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.3.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.答案-16,解析方法一=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴又∵交点位于第一象限,,,解得-16<k <12.方法二如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB .∵k P A =-16,k PB =12.∴-16<k <12.4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P点坐标为________________.答案(1,-4)解析设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②a =1,b =-4a =277,b =-87.∴所求点P 的坐标为(1,-4)277,-87思维升华(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三对称问题命题点1点关于点中心对称例2过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案x +4y -4=0解析设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.命题点2点关于直线对称例3如图,已知A (4,0),B(0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .33B .6C .210D .25答案C解析直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3直线关于直线的对称问题例4直线2x -y +3=0关于直线x -y +2=0对称的直线方程是______________.答案x -2y +3=0解析设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),-y +y 02+2=0,(y -y 0),0=y -2,0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.思维升华解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有1,B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.跟踪训练2已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解(1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②′=-4x +3y -95,③′=3x +4y +35.④把x =4,y =5代入③④得x ′=-2,y ′=7,∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3),关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.妙用直线系求直线方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过直线交点的直线系.一、平行直线系例1求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.解由题意,设所求直线方程为3x +4y +c =0(c ≠1),又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11.因此,所求直线方程为3x +4y -11=0.二、垂直直线系例2求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C =0,又直线过点A (2,1),所以有2-2×1+C =0,解得C =0,即所求直线方程为x -2y =0.三、过直线交点的直线系例3求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解方法一-2y +4=0,+y -2=0,得P (0,2).∵l 3的斜率为34,且l ⊥l 3,∴直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是()A .平行B .垂直C .相交但不垂直D .不能确定答案C解析直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C.2.已知直线l 1:x +my +7=0和l 2:(m -2)x +3y +2m =0互相平行,则实数m 等于()A .-1或3B .-1C .-3D .1或-3答案A解析当m =0时,显然不符合题意;当m ≠0时,由题意得,m -21=3m ≠2m7,解得m =-1或m =3,故选A.3.已知过点A (-2,m )和B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为()A .-10B .-2C .0D .8答案A解析因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.4.过点M (-3,2),且与直线x +2y -9=0平行的直线方程是()A .2x -y +8=0B .x -2y +7=0C .x +2y +4=0D .x +2y -1=0答案D 解析方法一因为直线x +2y -9=0的斜率为-12,所以与直线x +2y -9=0平行的直线的斜率为-12,又所求直线过M (-3,2),所以所求直线的点斜式方程为y -2=-12(x +3),化为一般式得x +2y -1=0.故选D.方法二由题意,设所求直线方程为x +2y +c =0,将M (-3,2)代入,解得c =-1,所以所求直线为x +2y -1=0.故选D.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为()A.423B .42 C.823D .22答案C解析∵l 1∥l 2,∴a ≠2且a ≠0,∴1a -2=a 3≠62a,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=823.6.已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为()A.1 2B.-12C.2D.-2答案A解析直线y=2x+3与y=-x的交点为A(-1,1),而直线y=2x+3上的点(0,3)关于y=-x的对称点为B(-3,0),而A,B两点都在l2上,所以kl2=1-0-1-(-3)=12.7.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=________,此时点P的坐标为________.答案1(3,3)解析∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,即a=1+y-6=0,-y=0,易得x=3,y=3,∴P(3,3).8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.答案34 5解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,2×7+m2-3,=-12,=35,=315,故m+n=34 5 .9.直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为______________.答案x-2y=0解析=2x+3,=x+1,解得直线l1与l的交点坐标为(-2,-1),所以可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1,l2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),所以直线l 2的方程为x -2y =0.10.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为______________.答案6x -y -6=0解析设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,=-1,-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于42.(1)解显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,x -y -6=0,-y -4=0,=2,=-2,故直线经过的定点为M (2,-2).(2)证明过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =7510,所以|a +12|5=7510,即|a +12|=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12|c +12|5,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,0=-3,0=12,(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,=19,0=3718.所以存在点P 13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C的坐标为()A.(-2,4)B.(-2,-4) C.(2,4)D.(2,-4)答案C解析设A(-4,2)关于直线y=2x的对称点为(x,y),则2=-1,2×-4+x2,解得=4,=-2,∴BC所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),∴AC所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0.x+y-10=0,-3y+10=0,=2,=4,则C(2,4).故选C.14.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为()A.5B.6C.23D.25答案A解析=2x,+y=3,解得x=1,y=2.把(1,2)代入mx+ny+5=0可得,m+2n+5=0.∴m=-5-2n.∴点(m,n)到原点的距离d=m2+n2=(5+2n)2+n2=5(n+2)2+5≥5,当n=-2,m=-1时取等号.∴点(m,n)到原点的距离的最小值为 5.15.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为()A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0答案B解析因为AC =BC ,所以欧拉线为AB 的中垂线,又A (1,0),B (0,2),故AB k AB =-2,故AB 的中垂线方程为y -1即2x -4y +3=0.16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,4)对称,求直线l 的方程.解由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点,b P 关于点(2,4)-m ,8-b ∴8-b -3m 4=34(4-m )+b +114,解得b =98.∴直线l 的方程是y =34x +98,即6x -8y +9=0.。
高考数学复习知识点讲解教案第48讲 两直线的位置关系

所以是的既不充分也不必要条件.故选D.
(2)
[2023·北京东城区二模] 已知三条直线1 : − 2 + 2 = 0,2 : − 2 = 0,
3 : + = 0将平面分为六个部分,则满足条件的的值共有(
A.1个
B.2个
C.3个
C
)
D.无数个
− 2 + 2 = 0,
解:当 = −6时,直线1 的方程为−3 + 5 = 23,2 的方程为 = 4,
显然两直线相交;当 ≠
+3
−6时,由
2
≠
5
,解得
+6
综上,当 ≠ −1且 ≠ −8时,直线1 与2 相交.
≠ −1, ≠ −8.
(2)
平行;
解: 由(1)知当 = −6时,直线1 与2 相交.
直线1 : = 1 + 1 ,2 : = 2 + 2 ,3 :1 + 1 + 1 = 0,
4 :2 + 2 + 2 = 0的位置关系如下表:
位置关系
1 ,2 满足的条件
3 ,4 满足的条件
1 2 − 2 1 = 0且1 2 − 2 1 ,
高考数学复习知识点讲解教案
第48讲 两直线的位置关系
课前基础巩固
课堂考点探究 教师备用习题
作业手册
1.能根据斜率判定两条直线平行或垂直.
2.能用解方程组的方法求两条直线的交点坐标.
3.探索并掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线
间的距离.
◆ 知识聚焦 ◆
1.两条直线的位置关系
能表示2 )表示过1 和2 的交点的直线系方程.
高三数学第一轮复习:直线的方程、两条直线的位置关系人教版

高三数学第一轮复习:直线的方程、两条直线的位置关系人教版【本讲教育信息】一. 教学内容:直线的方程、两条直线的位置关系二. 教学重、难点:1. 理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
2. 掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。
【典型例题】[例1] 已知点P 到两个定点M (0,1-),N (1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程。
解:设点P 的坐标为(x ,y )由题设有2=PNPM 即2222)1(2)1(y x y x +-=++∴ 01622=+-+x y x ① ∵ N 到PM 的距离为1,2=MN ∴ ︒=∠30PMN ∴ PM 的方程为:)1(33+±=x y ② ②代入①:0142=+-x x ∴ 32±=x∴ P (31,32++)或(31,32+--);)31,32(--+或)31,32(-- ∴ PN 的方程为1-=x y 或1+-=x y[例2] 已知ABC ∆的顶点A (3,4),B (6,0),C (2,5--),求A ∠的内角平分线AT 所在的直线方程。
解:方法一:∵ 直线AC 到AT 的角等于AT 到AB 的角又 ∵ 43)5(3)2(4=----=AC k ,346304-=--=AB k设AT 的斜率为34(-<k k 或)43>k ,则k k k k )34(13443143-+--=+-化简得074872=--k k ,解之,得7=k 或71-=k (舍去)∴ 直线AT 的方程为)3(74-=-x y 即所求的方程为0177=--y x方法二:设直线AT 上的动点P (x ,y )则P 点到AC 、AB 的距离相等∵ 43)5(3)2(4,346304=----=-=--=AC AB k k ∴ 直线AB 的方程为)3(344--=-x y ,即02434=-+y x直线AC 的方程为)3(434-=-x y即0743=+-y x 那么574352434+-=-+y x y x即0177=--y x 或0317=-+y x结合图形分析知0317=-+y x 是ABC ∆的角A 外角的平分线,故舍去。
高考数学文一轮复习考案直线方程与两直线的位置关系课件

4 b
=b,
④
联立③④解得
a b
2, 2
或
a 2 , 3 b 2.
【点评】研究直线的平行与垂直问题,通常需要讨论直线的斜率是 否存在.
变式训练3 已知两直线l1:mx+8y+n=0和l2:2x+my-1=0.试确定m、n的 值,使: (1)l1与l2相交于点P(m,-1); (2)l1∥l2; (3)l1⊥l2,且l1在y轴上的截距为-1.
已知条件 P1(x1,y1),k k,b P1(x1,y1), P2(x2,y2) a,b
一般式
A、B、C ∈R
直线方程 y-y1=k(x-x1) y=kx+b
y y1 x x1
y2 y1 = x2 x1
xy
a + b =1
Ax+By+C=0
适用范围 k存在 k存在 x1≠x2,y1≠y2
a≠0且b≠0
3.两条直线是否相交的判断
两条直线是否有交点,就要看这两条直线方程所组成的方程组:
A1x A2 x
B1y C1 0, B2 y C2 0
是否有唯一解.
四、距离公式
| Ax0 By0 C |
1.点P(x0,y0)到直线l:Ax+By+C=0的距离为:d= A2 B2 .
2.已知两条平行直线l1和l2的一般式方程为l1:Ax+By+C1=0,l2:Ax+By+
§7.1 直线方程与两直线的位置关系
考点
考纲解读
1 直线的倾斜角和斜率 理解直线的倾斜角和斜率的概念,掌握过两点的直线 斜率的计算公式.
2 两条直线平行或垂直 能根据两条直线的斜率判定这两条直线平行或垂直.
《两条直线的位置关系》教案

《两条直线的位置关系》教案教学目标1、熟练掌握两条直线垂直的条件,能够根据直线的方程判断两条直线的位置关系.2、通过研究两直线垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力.3、通过对两直线垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣. 教学重难点重点:两条直线平行、垂直的条件难点:理解平行和垂直条件的思路教学过程一、情景导入问题:已知两条直线的方程l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则这两条直线相交、平行、重合的条件是怎样的?二、交流展示1、在直角坐标系中,怎样根据直线方程的特征判断两条直线的位置关系?三、合作探究探究一:两条直线相交和平行与重合条件教师:给出两条直线的方程为l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0,让同学们用已有的知识自主探究,相互讨论相交的条件是A 1B 2-A 2B 1≠0;或A 1A 2 B 1B 2学生:解两条直线所在方程构成的方程组可得:(A 1B 2-A 2B 1)x +B 2C 1-B 1C 2=0因此可得x=B 1C 2-C 1B 2 A 1B 2-A 2B 1 ,y=A 2C 1-A 1C 2 A 1B 2-A 2B 1 ,当A 1B 2-A 2B 1≠0时,方程有唯一解.让学生自主探究,互相讨论,探究知识之间的内在联系.教师对学生在知识上进行适当的补遗,思维上的启迪,方法上点拨,鼓励学生积极、主动的探究.讨论结果:l 1,l 2相交的条件是A 1B 2-A 2B 1≠0;或A 1A 2 ≠ B 1B 2l 1,l 2平行的条件是A 1B 2-A 2B 1=0且B 2C 1-B 1C 2=0;或A 1A 2 =B 1B 2 ≠ C 1C 2l 1,l 2重合的条件是A 1=λA 2,B 1=λB 2,C 1=λC 2,或A 1A 2 =B 1B 2 =C 1C 2探究二:两条直线垂直的条件教师:根据两条直线方程的系数,我们能判断出两直线是否相交、平行、重合,那么能否利用两直线方程的系数来判断两直线是否垂直呢?学生:已知两条直线的方程为l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1、l 2垂直的条件是A 1A 2+B 1B 2=0;若l 1的斜率是k 1=-A 1B 1 ,l 2的斜率为k 2=-A 2B 2,即当l 1、l 2的斜率都存在时,直线l 1与l 2垂直的条件是k 1·k 2=-1即A 1A 2+B 1B 2=0时,当两条直线垂直时,这两条直线的倾斜角的差为90°.例1:已知直线l 1:3x +6y +10=0,l 2:x =-2y +5,求证:l 1//l 2.解:把l 2的方程写成一般式x +2y -5=0,因为A 1B 2-A 2B 1=0,B 1C 2-B 2C 1≠0,所以l 1//l 2.四、课堂小结两直线相交的条件是A 1B 2-A 2B 1≠0;或A 1A 2 B 1B 2两直线平行的条件是A 1B 2-A 2B 1=0且B 2C 1-B 1C 2=0;或A 1A 2 =B 1B 2 C 1C 2两直线重合的条件是A 1=λA 2,B 1=λB 2,C 1=λC 2,或A 1A 2 =B 1B 2 =C 1C 2两直线垂直的条件是A 1A 2+B 1B 2=0或k 1·k 2=-1五、巩固练习已知直线l 1:3x +6y +10=0,l 2:x =-2y +5,求证:l 1//l 2.六、布置作业课后练习84页 练习A 第二题87页 练习A 第二题 练习B 第一题。
第一讲直线方程与两直线的位置关系

第一讲 直线方程与两直线的位置关系一、复习目标:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法;掌握直线方程的点斜式、两点式和一般式直线方程,确定一条直线需要两个独立的条件,并能根据条件熟练地求出直线的方程或用待定系数法求出直线方程中的未知量。
2.掌握两条直线平行与垂直的条件,能够根据直线方程判定两条直线的位置关系. 3.会求两条相交直线的夹角和交点;掌握点到直线的距离公式.4.善于将对两条直线位置关系的讨论转化为对表示它们的两个二元一次方程的讨论,并注意运用数形结合的思想. 二.基础知识: 1.直线有关的概念(1)倾斜角:在平面直角坐标系中,把x 轴绕直线L 与x 轴的交点按逆时针方向旋转到和直线重合时所转的最小正角。
当直线和x 轴平行或重合时,我们规定直线的倾斜角为00。
故倾斜角的范围是[0,π)。
(2)斜率:不是900的倾斜角的正切值叫做直线的斜率,即k=tanα。
(3)过两点P(x 1,y 1),P(x 2,y 2),(x 1≠x 2)的直线的斜率公式——k=tanα=1212x x y y --2.直线与直线的位置关系:(1) 有斜率的两直线l 1:y=k 1x+b 1;l 2:y=k 2x+b 2; 有:①l 1∥l 2⇔k 1=k 2且b 1≠b 2; ②l 1⊥l 2⇔k 1·k 2=-1;③l 1与l 2相交⇔ k 1≠k 2 ④l 1与l 2重合⇔k 1=k 2 且b 1=b 2。
(2) 一般式的直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0有:①l 1∥l 2⇔A 1B 2-A 2B 1=0;B 1C 2-B 2C 1≠0 ②l 1⊥l 2⇔A 1A 2+B 1B 2=0③l 1与l 2相交⇔ A 1B 2-A 2B 1≠0 ④l 1与l 2重合⇔ A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0。
高中数学《直线方程与两直线的位置关系》复习和习题课件PPT

1 − 2
2
+ 1 − 2 2 .
2.点到直线的距离公式
点p 0 , 0 到直线Ax+By+C=0的距离 =
0 +B0 +C
2 +2
.
知识清单
知识点七 距离公式
3.平行线间的距离公式
若两条平行直线的方程分别为1 : 1
+ 1 + 1 = 0, 2 : 2 +
(1)方程组有唯一解⟺ 1 , 2 相交,交点坐标就是方程组的解.
(2)方程组无解⟺ 1 ∥ 2 .
(3)方程组有无数解⟺ 1 , 2 重合.
知识清单
知识点七 距离公式
1.两点间的距离公式
在平面直角坐标系中,若两点坐标分别为1 1 , 1 、2 2 , 2 则1 、2 两点
2 + 2 = 0 , 1 ≠ 2 ,则1 与2 的距离为 =
0ሻ
1 −2
2 +2
ሺ2 + 2 ≠
典例精析
例
典例精析
例
典例精析
例
典例精析
例
典例精析
例
典例精析
例
典精析
例
典例精析
例
典例精析
例
典例精析
例
典例精析
例
典例精析
例
巩固练习
过关练习
巩固练习
高中
数学
§第一节 直线方程与两直线的位置关系
(复习+习题练习)
解析几何
真题在线
(2019年·河南对口升学)直线2x+3y+6=0在y轴上的截距是
___.
【专家详解】令x=0,则3y+6=0,解得y=-2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九篇解析几何第1讲 直线方程和两直线的位置关系A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.直线2x -my +1-3m =0,当m 变化时,所有直线都过定点 ( ). A.⎝ ⎛⎭⎪⎫-12,3 B.⎝ ⎛⎭⎪⎫12,3 C.⎝ ⎛⎭⎪⎫12,-3D.⎝ ⎛⎭⎪⎫-12,-3 解析 原方程可化为(2x +1)-m (y +3)=0,令⎩⎨⎧2x +1=0,y +3=0,解得x =-12,y=-3,故所有直线都过定点⎝ ⎛⎭⎪⎫-12,-3.答案 D2.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ).A.⎣⎢⎡⎭⎪⎫π6,π3 B.⎝ ⎛⎭⎪⎫π6,π2 C.⎝ ⎛⎭⎪⎫π3,π2D.⎣⎢⎡⎦⎥⎤π6,π2解析 如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),∴k P A =33,则直线P A 的倾斜角为π6,满足条件的直线l的倾斜角的范围是⎝⎛⎭⎪⎫π6,π2.答案 B3.(2013·泰安一模)过点A(2,3)且垂直于直线2x+y-5=0的直线方程为().A.x-2y+4=0 B.2x+y-7=0C.x-2y+3=0 D.x-2y+5=0解析由题意可设所求直线方程为:x-2y+m=0,将A(2,3)代入上式得2-2×3+m=0,即m=4,所以所求直线方程为x-2y+4=0.答案 A4.(2013·江西八所重点高中联考)“a=0”是“直线l1:(a+1)x+a2y-3=0与直线l2:2x+ay-2a-1=0平行”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析当a=0时,l1:x-3=0,l2:2x-1=0,此时l1∥l2,所以“a=0”是“直线l1与l2平行”的充分条件;当l1∥l2时,a(a+1)-2a2=0,解得a=0或a=1.当a=1时,l1:2x+y-3=0,l2:2x+y-3=0,此时l1与l2重合,所以a=1不满足题意,即a=0.所以“a=0”是“直线l1∥l2”的必要条件.答案 C二、填空题(每小题5分,共10分)5.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析设所求直线的方程为xa+yb=1,∵A(-2,2)在直线上,∴-2a+2b=1. ①又因直线与坐标轴围成的三角形面积为1,∴12|a|·|b|=1. ②由①②可得(1)⎩⎨⎧ a -b =1,ab =2或(2)⎩⎨⎧a -b =-1,ab =-2. 由(1)解得⎩⎨⎧ a =2,b =1或⎩⎨⎧a =-1,b =-2,方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0为所求直线的方程. 答案 x +2y -2=0或2x +y +2=06.(2012·东北三校二模)已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________.解析 由两直线垂直的条件得2a +3(a -1)=0,解得a =35. 答案 35 三、解答题(共25分)7.(12分)已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解 (1)∵l 1⊥l 2,∴a (a -1)-b =0.又∵直线l 1过点(-3,-1),∴-3a +b +4=0. 故a =2,b =2.(2)∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在. ∴k 1=k 2,即ab =1-a .又∵坐标原点到这两条直线的距离相等, ∴l 1,l 2在y 轴上的截距互为相反数,即4b =b . 故a =2,b =-2或a =23,b =2.8.(13分)已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.解 (1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,∴|10+5λ-5|(2+λ)2+(1-2λ)2=3.解得λ=2或λ=12.∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎨⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离, 则d ≤|P A |(当l ⊥P A 时等号成立). ∴d max =|P A |=10.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =( ).A .4B .6C.345D.365解析 由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315.故m +n =345.答案 C2.(2013·长沙模拟)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( ).A .3 2B .2 2C .3 3D .4 2解析 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离,设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 答案 A二、填空题(每小题5分,共10分)3.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析 由题意得,36=-2a ≠-1c ,∴a =-4且c ≠-2, 则6x +ay +c =0可化为3x -2y +c2=0, 由两平行线间的距离,得21313=⎪⎪⎪⎪⎪⎪c 2+113,解得c =2或c =-6,所以c +2a =±1. 答案 ±14.(2013·盐城检测)已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.解析 直线方程可化为x2+y =1,故直线与x 轴的交点为A (2,0),与y 轴的交点为B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1,且a +2b =2,从而a =2-2b ,故ab =(2-2b )b =-2b 2+2b =-2⎝ ⎛⎭⎪⎫b -122+12,由于0≤b ≤1,故当b =12时,ab 取得最大值12.答案1 2三、解答题(共25分)5.(12分)已知直线l过点P(2,3),且被两条平行直线l1:3x+4y-7=0,l2:3x +4y+8=0截得的线段长为d.(1)求d的最小值;(2)当直线l与x轴平行,试求d的值.解(1)因为3×2+4×3-7>0,3×2+4×3+8>0,所以点P在两条平行直线l1,l2外.过P点作直线l,使l⊥l1,则l⊥l2,设垂足分别为G,H,则|GH|就是所求的d的最小值.由两平行线间的距离公式,得d的最小值为|GH|=|8-(-7)|32+42=3.(2)当直线l与x轴平行时,l的方程为y=3,设直线l与直线l1,l2分别交于点A(x1,3),B(x2,3),则3x1+12-7=0,3x2+12+8=0,所以3(x1-x2)=15,即x1-x2=5,所以d=|AB|=|x1-x2|=5.6.(13分)已知直线l1:x-y+3=0,直线l:x-y-1=0.若直线l1关于直线l的对称直线为l2,求直线l2的方程.解法一因为l1∥l,所以l2∥l,设直线l2:x-y+m=0(m≠3,m≠-1).直线l1,l2关于直线l对称,所以l1与l,l2与l间的距离相等.由两平行直线间的距离公式得|3-(-1)|2=|m-(-1)|2,解得m=-5或m=3(舍去).所以直线l2的方程为x-y-5=0.法二由题意知l1∥l2,设直线l2:x-y+m=0(m≠3,m≠-1).在直线l1上取点M(0,3),设点M关于直线l的对称点为M′(a,b),于是有⎩⎪⎨⎪⎧b -3a ×1=-1,a +02-b +32-1=0,解得⎩⎨⎧a =4,b =-1,即M ′(4,-1).把点M ′(4,-1)代入l 2的方程,得m =-5, 所以直线l 2的方程为x -y -5=0.。