直线与方程复习课
人教版必修二第三单元直线的方程复习课课件

所以直线方程为y=-x-1.
变式训练1.已知直线l1:y=-ax-2(a∈R).若直线l1的倾斜角为120°,则实数a的 值为_______;若直线l1在x轴上的截距为2,则实数a的值为_______.
【解析】由题意可得tan 120°= -a,解得a= ;3
令y=0,可得x= 2 ,
a
即直线l1在x轴上的截距为
(3)经过点C(0,5)且与x轴平行.
【解析】(1)y+1= 2(x+3). (2)倾斜角为120°,则斜率为- ,3所以该直线方程为y-1=- (x3- ). 2
(3)因为直线与x轴平行,故斜率为0,因此点斜式方程为y-5=0(x-0).
2.过点P(2 3 ,3)且倾斜角为30°的直线方程为( )
【解析】(1)因为两直线y=(a+1)x-2与y=(a-1)x+1互相垂直,
所以(a+1)(a-1)=-1,即a=0.
(2)因为两直线y=-x+4a与y=(a2-2)x+4互相平行.
所以
a
2
2
即a1=,-1.
4a 4,
(四)直线方程的两点式
视察如图所示的直线l,思考下列问题:
1.直线l经过点P1(x1,y1),P2(x2,y2)(其中x1≠x2)两点,那么直线l的点斜
(k2A)D由=-题23 意.故知直,线kBACD=26的方02程为.因32y为+4A=D23-⊥(BxC-1,).所以直线AD的斜率存在,且
变式训练1.已知在△ABC中,A(1,-1),B(2,2),C(3,0),则AB边上的
高线所在直线方程为__________.
【解析】kAB=2 1=3,
【解析】(1)因为A(0,4),C(-8,0),所以直线AC的截距式方程为 x y 1,
直线与方程复习 优秀教案

【课题】:《直线与方程》小结与复习【教学目标】:(1)知识与技能:通过小结与复习,帮助学生梳理本章知识内容,掌握本章的基础知识,强化知识间的内在联系;通过例题讲解和进一步的训练,提高学生灵活运用本章知识解决问题的能力.(2)过程与方法:在问题探究的过程中,让学生体会用代数的表达式来研究几何的思想方法,加深对本章知识的理解,培养学生分析问题解决问题的能力。
(3)情感态度与价值观:通过精心设计适宜的教学情境,让学生在师生和谐、互动的氛围中,轻松地、主动地掌握基本知识和基本技能;在问题探究的过程中,培养学生积极进行数学交流、勇于探索的科学精神。
【教学重点】:本章知识内容的梳理以及知识、方法的运用【教学难点】:本章知识的灵活运用【课前准备】:Powerpoint或投影片【教学过程设计】:PB 的倾斜角最大,PC 的倾斜角次之,PA 的倾斜角最小.这点可用三角形的外角性质去帮助理解.设PA 的倾斜角为α1,PC 的倾斜角为α,PB 的倾斜角为α2,α1<α<α2,12,,2παααπ<<,正切函数为增函数。
12tan tan tan ααα<<,∴152k -≤≤-解法二:可以实实在在地去求解,再来判断k 的取值范围.过A 、B 两点的直线为30x y --=,若要使直线y=kx +k +2与线段AB有交点,则方程组302x y y kx k --=⎧⎨=++⎩在[][]0,33,0x y ∈∈-或上有解,得5031k x k --≤=≤-,∴152k -≤≤-【思考】为什么只考虑[]0,3x ∈,是否还应当去考虑[]3,0y ∈-呢?例2.设△ABC 的顶点A(1,3),边AB 、AC 上的中线所在直线的方程分别为210x y -+=,y=1,求△ABC 中AB 、AC 各边所在直线的方程.【讲评】为了搞清△ABC 中各有关元素的位置状况,我们首先根据已知条件,画出单图,帮助思考问题.设AC 的中点为F ,AC 边上的中线BF :y=1.AB 边的中点为E ,AB 边上中线CE :210x y -+=.设C 点坐标为(m ,n).在A 、C 、F 三点中,A 点已知,C 点未知,F 虽为未知但其在中线BF 上,满足y=1这一条件.则12132FFm x n n y+⎧=⎪⎪⇒=-⎨+⎪=⎪⎩∵C 点在中线CE 上,应当满足CE 的方程,则m -2n +1=0.∴m=-3. ∴C 点为(-3,-1).用同样的思路去求B 点:设B 点为(a ,b),显然b=1.又B 点、A 点、E 点中,E 为中点,C 点为(a ,1),131(,)22a E ++即1(,2)2aE +,E 在CE 上,∴1+a4102-+=解得5a =,∴B 点为(5,1). 下面由两点式,就很容易的得到AB ,AC 所在直线的方程 :20,:270AC x y AB x y -+=+-=.〖评析〗这题思路较为复杂,做完后应当从中领悟到两点: (1)中点公式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这观念必须牢牢地树立起来.四、拓展训练1.已知点A(1,1)和点B(3,3),则在x 轴上必存在一点P ,使得从A 出发的入射光线经过点P 反射后经过点B ,点P 的坐标为__________. 2.已知点M (4,2)与N (2,4)关于直线l 对称,则直线l 的方程为对学生运用知识解决问题的能力进行训练,提倡学生进练习与测试1.如果直线0=++C By Ax 的倾斜角为45,则有关系式( )A.B A = B.0=+B A C.1=AB D.以上均不可能 2.直线,031=-+-k y kx 当k 变动时,所有直线都过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)3.过点(1,3)且与原点距离为1的直线有( )A.3条B. 2条C. 1条D. 0条4.设直线0123201832,06232=+-=+-=++y mx y m x y x 和围成直角三角形,则m 的取值是( )A .01或±B .或094-C .941,0或--D .941-或- 5.如果0<ac 且0<bc ,那么直线0=++c by ax 不通过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6.直线l 与直线0632=-+y x 关于点)1,1(-对称,则直线l 的方程是( )A 、0223=+-y xB 、0732=++y xC 、01223=--y xD 、0832=++y x7.与两平行直线:1l :;093=+-y x l 2:330x y --=等距离的直线方程为 . 8.一束光线从点(1,1)A -出发,经x 轴反射到点(2,3)O ,光线经过的最短路程是 . 9.直线()0232=++-t y x t 不经过第二象限,则t 的取值范围是 .10.已知两直线01012211=++=++y b x a y b x a 和都通过点()3,2P ,则经过两点()()222111,,b a Q b a Q 、的直线方程是 .11.已知直线l 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B (1)求△AOB 面积为4时l 的方程;(2)求l 在两轴上截距之和为+3l 的方程.12.△ABC 中,A (0,1),AB 边上的高线方程为x +2y -4=0,AC 边上的中线方程为2x +y -3=0,求AB ,BC ,AC 边所在的直线方程.答案与解析: 1—6.BCBCCD .7.设所求直线方程为03=+-c y x ,则10|3|10|9|+=-c c ,解得3=c ,故所求直线方程为3x-y+3=0.8.点B (2,3)关于x 轴的对称点是C (2,-3),光线经过的最短路程与A ,C 两点的距离相等,故光线经过的最短路程为5.9.因为直线()0232=++-t y x t 不经过第二象限,所以232--t >0且2t-<0,解得∈t )23,0(. 10.因为两直线01012211=++=++y b x a y b x a 和都通过点()3,2P ,所以013201322211=++=++b a b a 和,即点()()222111,,b a Q b a Q 、的坐标都满足方程2x+3y+1=0,从而经过两点()()222111,,b a Q b a Q 、的直线方程是2x+3y+1=0.11.设直线l 的方程为),1(2-=-x k y k<0,则直线l 在x ,y 轴上的截距分别为k21-,2-k. ① 当△AOB 面积为4时,4)2)(21(21=--k k,解得k=-2,从而直线l 的方程为2x+y-4=0;②当l 在两轴上截距之和为+3(k21-)+(2-k )= +3,解得2-=k ,从而求得直线l 的方程2x-y-2-2=0.12.因为AB 边与AB 边上的高线方程x +2y -4=0垂直,所以由点斜式得AB 边所在的直线方程为x y 21=-,即012=+-y x ;AC 边的中点M 在AC 边上的中线方程2x +y -3=0上,可设)23,(a a M -,则)45,2(a a C -,由点C 在AB 边上的高线方程x +2y -4=0上可求得1=a ,所以C (2,1),又联立AB 边所在的直线方程012=+-y x 和AC 边上的中线方程2x +y -3=0求得)2,21(B ,于是由两点式即可求得BC ,AC 边所在的直线方程0732=-+y x ,y =1.故AB ,BC ,AC 边所在的直线方程分别是012=+-y x ,0732=-+y x ,y =1.。
直线与方程章末复习课件

[例 1] (1)点( 3,4)在直线 l:ax-y+1=0 上,则
直线 l 的倾斜角为( )
A.30°
B.45°
C.60°
D.120°
(2)已知在平行四边形 ABCD 中,A(1,2),B(2,1),
中心 E(3,3).
①判断平行四边形 ABCD 是否为正方形;
②点 P(x,y)在平行四边形 ABCD 的边界及内部运动,
(2)单调性. 当 α 由 0°→90°→180°(不含 180°)变化时,k 由 0(含 0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增 大到 0(不含 0). 经过 A(x1,y1),B(x2,y2)(x1≠x2)两点的直线的斜率 公式是 k=xy22--xy11,应用时注意其适用的条件是 x1≠x2, 当 x1=x2 时,直线的斜率不存在.
解:由点M(3,5)及直线l:x-2y+2= 0,可求得点M关于l的对称点M1(5,1),
同理可得点M关于y轴的对称点M2(- 3,5),如图所示.
根据M1,M2两点可得直线M1M2的方程为x+2y-7=0. 令x=0,得直线M1M2与y轴的交点Q0,72, 解方程组xx+-22yy-+72==00,,得两直线的交点P52,94. 所以点P52,94与点Q0,72即为所求.
归纳升华 利用直接求解法比较烦琐时,可从图形方面考虑, 利用数形结合的方法来求解,从而使问题变得形象、直 观,利于求解.
[变式训练] 点P(-2,-1)到直线l:(1+3λ)x+(1+ λ)y-2-5λ=0的距离为d,则d的最大值为________.
解析:直线l的方程可化为x+y-2+λ(3x+y-5)=0,
[例 2] 已知两条直线 l1:ax-by+4=0,l2:(a-1)x +y+b=0,求分别满足下列条件的 a,b 的值:
高一数学《直线与方程复习课》(课件)

例题精析
1、求直线方程
【例1】
求经过点A( 2, 1), 且到点B( 1, 1)的距离为 3的直线方程.
【例2】
(1) 已知两条平行直线 3 x 2 y 6 0与6 x 4 y 3 0, 求与它们等距离的平行 线的方程.
( 2) 过点P ( 3, 0)有一条直线l , 它夹在两条直线 l1 : 2 x y 2 0与l 2 : x y 3 0之间的线段恰被 点P平分,求直线 l的方程.
2、对称问题与最值问题
【例3】
已知直线l : 3 x y 3 0, 求: (1)点P (4, 5)关于l的对称点 ; (2)直线x y 2 0关于直线l对称的直线方程 .
【例4】
已知点M ( 3, 5), 在直线l : x 2 y 2 0和y轴 上各找一点P和Q , 使MPQ 的周长最小 .
知识结构
从几何直观到代数表示 (建立直线的方程) 点 坐标 倾斜角 斜率 直线 二元一次方程
点斜式 两点式
一般式
从代数表示到几何直观 (通过方程研究几何性质 和度量)
两条直线的 位置关系
平行和垂 直的判定
两点间的距离
距 离
点到直线的距离
两条平行线间 的距离
平行 相交 (无交点) (一个交点)
3、数形结合的应用
【例5】
已知函数f ( x ) x2 2x 2 x2 4x 8,
求f ( x )的最小值, 并求取得最小值时 x的值.
【例6】
已知x , y满足x 4 y 3 0, 1 x 3, 求 y2 的取值范围 . x 1
备用题
求经过点P ( 2, 3)且被两条平行直线 3x 4 y 7 0和3 x 4 y 3 0截得的线段长为 5的 直线方程.
第三章《直线与方程》复习课

6.线段的中点坐标公式:
已知 P1 (x1,y1)、P2 (x2,y2),x则 x1 x2 ______2____
已知 P1 (x1,y1)、P2 (x2,y2),则线段 P1P2 的中点 M 的坐标为
【基【础基自础测自】测】
__________
_y___y1__2_y_2__ .
5 、线已1、段知直PA1P线(2 4的,2中x0点)、5MyB的(坐61,0标7为)0、与C_坐_(0_, _标__3轴_)_,转__则成. 的三角形 直线的A面B 积的是方_程__是_____________._________________,
(3)斜率公式:k= y2 y1 . x2 x1
3、直线方程的五种形式:
直线方程
应用
点斜式 y-y0=k(x-x0)
可判定直线过定点 x0 , y0
斜截式 y=kx+b
可判定直线不过哪个象限,最后结果表示法。
两点式
y y1 x x1 y2 y1 x2 x1
易作图
截距式
与两坐标轴所围成的 RtΔ 面积 S= ab ,
A1B2-A2B1 ≠ 0
A1B2-A2B1=0 B1C2-B2C1≠0(或A1C2-A2C1≠0).
重合 k1=k2且b1=b2
A1B2-A2B1=0 B1C2-B2C1=0
(且A1C2-A2C1=0)
垂直 k1k2=-1
A1A2+B1B2=0
( (512、) )((( (5(的两 点、距12123距))) )点 到)距离5(5(的的离两点两 点、、 两间 直离33:距距为点到点 到 的 线 )) 距距条:离离两两 间直间 直距 的 离离平为为的线的 线条条 行离 距::距的距 的平平离线公行行 离距离 距公式l1:离离 线线公公式:A公公式式:llP11x1::式式::d+P=B2AA::_y=PPxx_+11_dd++_PPC_==_BB22_1___yy===____++0______CC______与___11___(==______xl00___2___2___:___与与______x___A___1ll___)___22x2___::___+_____;B___AA__(y___y__xx+___2__++___C;;BB___2yyy___=1++___0)2___CC___22≥__==__00__0__;≥≥00;;
必修2第3章直线与方程单元复习课件人教新课标

l1
x
x
l1//l2 k1 k2
k1
k2
l1//l2 ,
或l1和l
重合
2
2.直线的点斜式、斜截式、两点式、截距式、 一般式的灵活应用.
点斜式:y - y0 k(x,x0 )
斜截式: y kx b 两点式:y y1 x x1
y2 y1 x2 x1
截距式: x y 1
ab
3.应用直线方程求两条直线的交点坐标.
3.1.1倾斜角与斜率
1、直线的倾斜角定义及其范围:0 180
2、直线的斜率定义: k tan a (a 90 )
3、斜率k与倾斜角α 之间的关系:
α 0 k tan0 0
0 α 90 k tanα 0
α
90
ta nαa n α(不
k不 不 存
90 α 180 k tanα 0
1.直线方程的两种情势: 点斜式:y y1 k(x x1) 斜截式:y kx b.
2.两种特殊情况:过点P(x0,y0)且与坐标轴平行的 直线的方程分别是:y=y0和x=x0.
3.1.2两条直线平行与垂直的判定
直线的两点式方程(x1≠x2 ,y1≠y2 )
y y1 x x1 y2 y1 x2 x1
3.3.1两条直线的交点坐标
用代数方法求两条直线的交点坐标,只需 写出这两条直线的方程,然后联立求解.
A1x B1y C10 A2x B2y C2 0
唯一解 无穷多解
无解
两直线相交 两直线重合 两直线平行
3.3.2两点间的距离
1、平面内两点P1(x1,y1), P2(x2,y2) 的距离公式是: | P1P2 | (x 2 x1 )2 (y 2 y1 )2y来自l1Al2
直线与方程复习课件

则由2ba× - -a02+ ×2 223- =3-×1b,+2 0+1=0,
得 B′163,3103.
设 m 与 l 的交点为 N,
由32xx--23yy-+61==00,, 得 N(4,3).
设直线 m′上的点为(x,y),由两点式得直线 m′的方程为3103y--313=16x3--44, 即 9x-46y+102=0.
【精彩点拨】 已知直线过定点 A,且与两坐标轴都相交,围成的直角三角 形的面积已知.求直线方程时可采用待定系数法,设出直线方程的点斜式,再 由面积为 5 列方程,求直线的斜率.
【规范解答】 由题意知,直线 l 的斜率存在.设直线为 y+4=k(x+5), 交 x 轴于点4k-5,0,交 y 轴于点(0,5k-4),
[再练一题] 2.已知点 A(2,2)和直线 l:3x+4y-20=0. (1)求过点 A,且和直线 l 平行的直线方程; (2)求过点 A,且和直线 l 垂直的直线方程. 【解】 (1)因为所求直线与 l:3x+4y-20=0 平行, 所以设所求直线方程为 3x+4y+m=0. 又因为所求直线过点 A(2,2),所以 3×2+4×2+m=0, 所以 m=-14,所以所求直线方程为 3x+4y-14=0.
[再练一题] 3.求直线 l1:2x+y-4=0 关于直线 l:3x+4y-1=0 的对称直线 l2 的方程. 【解】 解方程组32xx++4y-y-41==00,, 得yx==-3,2, 所以直线 l1 与 l 相交,且交点为 E(3,-2),E 也在直线 l2 上,在直线 l1: 2x+y-4=0 上取点 A(2,0),设点 A 关于直线 l 的对称点为 B(x0,y0),
直线方程及其应用
(1)求直线方程的主要方法是待定系数法,要掌握直线方程五种形式的适用 条件及相互转化,能根据条件灵活选用方程,当不能确定某种方程条件具备时 要另行讨论条件不满足的情况.
6.[教学设计]必修二第三章直线与方程复习课_数学_高中
![6.[教学设计]必修二第三章直线与方程复习课_数学_高中](https://img.taocdn.com/s3/m/faf8f7c9e009581b6bd9ebe6.png)
直线的方程复习课教学设计一、教材分析本章注意突出解析几何的基本思想“坐标法”:用方程表示直线,运用方程研究直线的位置关系:平行、垂直,以及两条直线的交点、点到直线的距离、两条平行直线之间的距离。
几何问题代数化,用数量关系表示空间形式、位置关系等等。
结合大量的例题,突出用坐标方法解决几何问题的“三部曲”。
重要的数学思想方法不怕重复。
“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
于是,我们在教学中应注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,只强调“形”到“数”的方面。
而忽视“数”到“形”的方面。
二、学情分析通过前面内容的学习,学生已经对解析几何这一数学学科有了基本的了解,知道了解析几何是用代数方法研究几何问题。
由于这一节学生基础不是很好,但学习积极性较高,思维活跃,所以教学中既要放手给学生,又要注意引导学生,让学生始终是课堂的主人。
三、教学目标知识与技能:掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、斜截式、两点式、截距式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
过程与方法:理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程。
掌握直线方程各种形式之间的互化。
情感、态度与价值观:通过直线方程一般式的教学培养学生全面、系统、周密的分析、讨论问题的能力。
四、教学重、难点重点:掌握直线方程的五种形式,根据具体条件能求出直线方程。
难点:直线方程特殊形式的限制条件,直线方程的整体结构,对于不同条件的情况下选用不同的方程形式。
五、教学过程1、知识回顾问题1直线的倾斜角①一个前提:直线l与x轴_______;一个基准:取______作为基准;两个方向:x轴正方向与直线l向上方向.②当直线l与x轴平行或重合时,规定:它的倾斜角为_____.问题2直线的斜率(1)定义:直线y=kx+b中的_______ 叫做这条直线的斜率,垂直于x轴的直线斜率不存在;(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x 轴,则k =_______ .若直线的倾斜角为θ (θ≠π2),则k = _______ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识 自主学习
要点梳理 1.直线的倾斜角与斜率 (1) 直线的倾斜角①定义:当直线 l 与 x 轴 相交时,我们取 x 轴作为基准,x 轴 正向 与 直线 l 向上的 方向之间所成的角α叫做直 线 l 的倾斜角.当直线 l 与 x 轴平行或重合 时,规定它的倾斜角为 0°.
≤α<180° . ②倾斜角的范围为 0°
由于 A、B、C 三点共线,所以 a-3=1, 即 a=4.
3.过点 M(3,-4),且在两坐标轴上的截距相等的 直线的方程为 x+y+1=0或4x+3y=0 .
4 解析 ①若直线过原点,则 k=-3, 4 ∴y=-3x,即 4x+3y=0. ②若直线不过原点. x y 设a+a=1,即 x+y=a. ∴a=3+(-4)=-1,∴x+y+1=0.
小结:
方法与技巧
1.要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率 y2-y1 公式: k= , 该公式与两点顺序无关, 已知两点坐标(x1≠x2) x2-x1 时, 根据该公式可求出经过两点的直线的斜率. 当 x1=x2, y1≠y2 时,直线的斜率不存在,此时直线的倾斜角为 90° . 2.求斜率可用 k= tan α (α ≠90°),其中 α 为倾斜角,由此可 见倾斜角与斜率相互联系不可分割, 牢记: “斜率变化分两段, 90°是分界,遇到斜率要谨记,存在与否需讨论”. 3.求直线方程中一种重要的方法就是先设直线方程,再求直线方 程中的系数,这种方法叫待定系数法.
解
x y 方法一 设直线方程为 + =1 (a>0, a b 6 ,得 ab
b>0), 3 2 点 P(3,2) 代 入 得 + = 1≥2 a b ab≥24, 1 3 2 从而 S△AOB= ab≥12,当且仅当 = 时等号 2 a b b 2 成立,这时 k=- =- ,从而所求直线方 a 3 程为 2x+3y-12=0.
方法二 设直线 l 的斜率为 k,则直线 l 的方程 为 y-2=k(x+1),即 kx-y+k+2=0. ∵A、 B 两点在直线的两侧或其中一点在直线 l 上, ∴(-2k+3+k+2)(3k-0+k+2)≤0, 1 即(k-5)(4k+2)≥0,∴k≥5 或 k≤-2. 即直线 l 的斜率 k 的取值范围是 1 -∞,- ∪[5,+∞). 2
k 1 的中点)为 M - , . 2 2 1 k 折痕所在的直线方程为 y- =kx+ , 2 2 2 k 1 即 y=kx+ + . 2 2 2 k 1 1 ∴k=0 时,y= ;k≠0 时,y=kx+ + . 2 2 2
[8 分]
[10 分] [12 分]
4.已知直线 l 经过点 P(-2,5),且斜率为 3 - ,则直线 l 的方程为( A ) 4 A.3x+4y-14=0 B.3x-4y+14=0 C.4x+3y-14=0 D.4x-3y+14=0
3 解析 由 y-5=-4(x+2),得:3x+4y-14 =0,故选 A.
5.已知点 M 是直线 l : 3 x y 3 0 与 x 轴的 交点,将直线 l 绕点 M 旋转 30 后,所得的 直线方程为 x
y2-y1 k= x2-x1
.
2.直线方程的常用形式 名称 点斜式 斜截式 方程
y-y1=k(x-x1)
适用范围
不含垂直于x轴 的直线 不含垂直于X轴 的直线
y=kx+b
截距式
x y + =1 a b
不含垂直于坐 标轴和过原点 的直线
Ax+By+C=0
一般式
(A2+B2≠0)
平面直角坐标 系内的直线都 适用
思想与方法 13.求直线方程时,要根据斜率存在与否进行 分类讨论
试题:(12 分)在平面直角坐标系中,已知矩形 ABCD,AB=2,BC=1,AB、AD 边分别在 x 轴、 y 轴的正半轴上, A 点与坐标原点重合.将 矩形折叠,使 A 点落在线 DC 上.若折痕所在 直线的斜率为 k, 试写出折痕所在直线的方程.
x y 方法二 设直线方程为 + =1 (a>0,b>0), a b 3 2 2a 点 P(3,2) 代入得 + = 1 ,解得 b = a b a-3 2 1 a 9 (a>3),则 S△AOB= ab= =(a-3)+ 2 a-3 a-3 9 +6≥12, 当且仅当 a-3= 即 a=6 时等 a-3 x 号成立, 这时 b=4, 从而所求直线方程为 + 6 y =1,即 2x+3y-12=0. 4
5+x0 ∵M 在 y 轴上,∴ =0,x0=-5. 2 y0+3 ∵N 在 x 轴上,∴ =0,y0=-3,即 2 C(-5,-3). 5 (2)∵M0,-2 ,N(1,0). x y ∴直线 MN 的方程为 + =1. 1 5 - 2 即 5x-2y-5=0.
1.选择适当的方法,选择适当的形式 2.涉及斜率注意存在与否,涉及截距 注意是否为零
失误与防范
1 .求直线方程时要注意判断直线斜率是否存 在;每条直线都有倾斜角,但不一定每条 直线都存在斜率. 2 .根据斜率求倾斜角,一是要注意倾斜角的 范围;二是要考虑正切函数的单调性. 3. 利用一般式方程 Ax+By+C=0 求它的方向 向量为(-B,A)不可记错,但同时注意方向 向量是不唯一的.
直线与方程复习(第一讲)
• 大邑中学高二年级数学组
熊康
考点要求
• 1.考查直线的有关概念,如直线的倾斜角、斜率、 截距等;考查过两点的斜率公式. • 2.求不同条件下的直线方程(点斜式、截距式及 一般式等). • 3.本讲是解析几何的基础,复习时要掌握直线方 程的几种形式及相互转化的关系,会根据已知条 件求直线方程. • 4.注意熟练地画出图形,抓住图形的特征量,利 用该特征量解决问题往往能达到事半功倍.
作业:学案上课后巩固作业
谢 谢!
规范解答 解 1 (1)当 k=0 时, 此时 A 点与 D 点重合, 折痕所在的直线方程为 y= .[2 2
分] (2)当 k≠0 时,将矩形折叠后 A 点落在线段 C D 上的点为 G (a,1),[4 分] 所以 A 与 G 关于折痕所在的直线对称, 1 有 kA G ·k=-1, k=-1⇒a=-k. [6 分] a 故 G 点坐标为 G (-k,1), 从而折痕所在的直线与 A G 的交点坐标(线段 A G
(2)直线的斜率 ①定义:一条直线的倾斜角 α的 正切值 叫做这 条直线的斜率,斜率常用小写字母 k 表示,即 k= tan ,倾斜角是 90°的直线斜率不存在 . 函数 k tan( [0, )) 的图像为: k
2 O
②过两点的直线的斜率公式 经过两点 P1(x1,y1),P2(x2,y2) (x1≠x2)的直线 的斜率公式为
本题型小结:
题型三
直线方程的综合应用
例 3 已知直线 l 经过点 P(-5, -4),且与两坐 标轴围成的三角形面积为 5 ,求直线 l 的方 程.
注意
斜率不是距离
由题意知直线不过原点, 且与两坐标轴都相交, x y 可设直线 l 的方程为a+b=1, ∵直线 l 过点 P(-5,-4), - 5 -4 ∴ a + b =1,即 4a+5b=-ab. 1 又由已知有2|a|· |b|=5,即|ab|=10, 5 4 a + 5 b =- ab , a=-2, 解 方 程 组 得 或 |ab|=10 b=4
4.线段的中点坐标公式 若点 P1、P2 的坐标分别为(x1,y1)、(x2,y2), 且线段 P1P2 的中点 M 的坐标为(x,y),则
x1 x2 x 2 y1 y2 y 此公式为线段 P1P2 的中点 2 ,
坐标公式.
5.求直线方程的一般方法:
(1)直接法:选择适当形式的直线方程,直 接求出方程中的系数。 (2)待定系数法:选择适当的直线方程设出 目标方程,构造关于系数的方程 ( 组 ) 求系 数。
直线 PB 的斜率
02 1 kPB= 3 (1) =- .
2
当直线 l 绕着点 P 由 PA 旋转到与 y 轴平行的位置 PC 时,它的斜率变化范围是[5,+∞); 当直线 l 绕着点 P 由 PC 旋转到 PB 的位置时, 它的斜率 1 -∞,- 2. 的变化范围是 1 -∞,- 2 ∪[5, ∴直线 l 的斜率的取值范围是 +∞).
3.过 P1(x1,y1),P2(x2,y2)的直线方程 (1)若 x1=x2,且 y1≠y2 时,直线垂直于 x 轴, 方程为 x x1; (2)若 x1≠x2,且 y1=y2 时,直线垂直于 y 轴, 方程为 y y1 ; (3)若 x1=x2=0, 且 y1≠y2 时, 直线即为 y 轴, 方程为 x=0 ; (4)若 x1≠x2,且 y1=y2=0 时,直线即为 x 轴,方程为 y=0 .
a=5, b=-2.
解
y x y 故所求直线 l 的方程为 5+4=1 或5+ =1. -2 -2 即 8x-5y+20=0 或 2x-5y-10=0.
x
变式训练 3 直线 l 经过点 P(3,2),且与 x、y 轴 的正半轴交于 A、 B 两点, 且△AOB 的面积 最小(O 为坐标原点),求直启迪:选择适当的直线方程形式,把所 需要的条件求出即可.
变式训练 2 在△ABC 中,已知 A(5,-2)、 B(7,3),且 AC 边的中点 M 在 y 轴上,BC 边 的中点 N 在 x 轴上,求: (1)顶点 C 的坐标; (2)直线 MN 的方程.
解 BC
5 + x y - 2 0 0 (1)设 C(x0, y0), 则 AC 中点 M , , 2 2 7 + x y + 3 0 0 中点 N . , 2 2
审题视角
(1)题目已告诉直线斜率为 k, 即斜
率存在.(2)从题意上看,斜率 k 可以为 0,也 可以不为 0,所以要分类讨论.