直线与方程例题解析
第三章直线与方程测试题及答案解析

2D .不存在3B . 3C . 4D .第三章 直线与方程A 组一、选择题1.若直线 x =1 的倾斜角为 α,则α ().A .等于 0B .等于πC .等于π2.图中的直线 l 1,l 2,l 3 的斜率分别为 k 1,k 2,k 3,则( ).A .k 1<k 2<k 3C .k 3<k 2<k 1B .k 3<k 1<k 2D .k 1<k 3<k 2(第 2 题)3.已知直线 l 1 经过两点(-1,-2)、(-1,4),直线 l 2 经过两点(2,1)、(x ,6),且l 1∥l 2,则 x =().A .2B .-2C .4D .14.已知直线 l 与过点 M (- 3 , 2 ),N ( 2 ,- 3 )的直线垂直,则直线 l 的倾斜角是().A . π2ππ3π45.如果 AC <0,且 BC <0,那么直线 Ax +By +C =0 不通过( ).A .第一象限B .第二象限C .第三象限D .第四象限6.设 A ,B 是 x 轴上的两点,点 P 的横坐标为 2,且|P A |=|PB |,若直线 PA 的方程为x -y +1=0,则直线 PB 的方程是().A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=07.过两直线 l 1:x -3y +4=0 和 l 2:2x +y +5=0 的交点和原点的直线方程为().A .19x -9y =0B .9x +19y =0C .19x -3y = 0D .3x +19y =08.直线 l 1:x +a 2y +6=0 和直线 l 2 : (a -2)x +3ay +2a =0 没有公共点,则 a 的值是().a+1B.-a+1C.aD.-A.3B.-3C.1D.-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A.a a a+1a+1a10.点(4,0)关于直线5x+4y+21=0的对称点是().A.(-6,8)二、填空题B.(-8,-6)C.(6,8)D.(-6,-8)11.已知直线l1的倾斜角1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为.12.若三点A(-2,3),B(3,-2),C(12,m)共线,则m的值为.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为.14.求直线3x+ay=1的斜率.15.已知点A(-2,1),B(1,-2),直线y=2上一点P,使|AP|=|BP|,则P点坐标为.16.与直线2x+3y+5=0平行,且在两坐标轴上截距的和为6的直线方程是.17.若一束光线沿着直线x-2y+5=0射到x轴上一点,经x轴反射后其反射线所在直线的方程是.三、解答题18.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:①l在x轴上的截距是-3;②斜率为1.△19.已知ABC的三顶点是A(-1,-1),B(3,1),C(1,6).直线l平行于AB,交AC ,BC 分别于 E ,△F , CEF 的面积是△CAB 面积的 1.求直线 l 的方程.4(第 19 题)20.一直线被两直线 l 1:4x +y +6=0,l 2:3x -5y -6=0 截得的线段的中点恰好是坐标原点,求该直线方程..21.直线 l 过点(1,2)和第一、二、四象限,若直线 l 的横截距与纵截距之和为 6,求直线 l 的方程.第三章 直线与方程.( 4- 3- 2 =-1 ,而已知直线 l 与直线MN 垂直,所以直 <0,在 y 轴上的截距 D =- >0,所以,参考答案A 组一、选择题1.C解析:直线 x =1 垂直于 x 轴,其倾斜角为 90°2.D解析:直线 l 1 的倾斜角α 1 是钝角,故 k 1<0;直线 l 2 与 l 3 的倾斜角α 2,α3 均为锐角且α2>α3,所以 k 2>k 3>0,因此 k 2>k 3>k 1,故应选 D .3.A解析:因为直线 l 1 经过两点(-1,-2)、 -1, ),所以直线 l 1 的倾斜角为 π 2 ,而 l 1∥l 2,所以,直线 l 2 的倾斜角也为 π 2,又直线 l 2 经过两点(2,1)、(x ,6),所以,x =2.4.C解析:因为直线 MN 的斜率为 2+ 3线 l 的斜率为 1,故直线 l 的倾斜角是5.Cπ 4 .解析:直线 Ax +By +C =0 的斜率 k = -A B CB直线不通过第三象限.6.A解析:由已知得点 A (-1,0),P (2,3),B (5,0),可得直线 PB 的方程是 x +y -5=0.7.D8.D9.B解析: 结合图形,若直线 l 先沿 y 轴的负方向平移,再沿 x 轴正方向平移后,所得直线与 l 重合,这说明直线 l 和 l ’ 的斜率均为负,倾斜角是钝角.设 l ’ 的倾斜角为 θ,则tan θ=-10.Daa +1.∴k AB =k AC , -2-3= .解得 m = .+2 ∴ y -1 y -2 y -1 1 x +解析:这是考察两点关于直线的对称点问题.直线5x +4y +21=0 是点 A (4,0)与所求点 A'(x ,y )连线的中垂线,列出关于 x ,y 的两个方程求解.二、填空题11.-1.解析:设直线 l 2 的倾斜角为α 2,则由题意知:180°-α2+15°=60°,α2=135°,∴k 2=tan α2=tan (180°-45°)=-tan45°=-1. 12. 1.2(第 11 题)解:∵A ,B ,C 三点共线,m -3 1 3+2 2213.(2,3).解析:设第四个顶点 D 的坐标为(x ,y ),∵AD ⊥CD ,AD ∥BC ,∴k AD ·k CD =-1,且 k AD =k BC .· =-1, =1.x -0 x -3 x -0⎧x =0 ⎧x =2 解得 ⎨ (舍去) ⎨⎩ y =1 ⎩ y =3所以,第四个顶点 D 的坐标为(2,3).14.- 3或不存在.a解析:若 a =0 时,倾角 90°,无斜率.若 a ≠0 时,y =- 3 1a a∴直线的斜率为- 3 a.15.P (2,2).解析:设所求点 P (x ,2),依题意: (x + 2)2 + (2 - 1)2 = (x - 1)2 + (2 + 2)2 ,解得 x =2,故所求 P 点的坐标为(2,2).16.10x +15y -36=0.c c18.①m =- 5 ;②m = .②由题意,得 =-1,且 2m 2+m -1≠0.解得 m = .解析:由已知,直线 AB 的斜率 k = 1 + 1 1,所以 E 是 CA 的中点.点 E 的坐标是(0, ).= x ,即 x -2y +5=0. ⎧⎪4x +y 0+6=0⎩解析:设所求的直线的方程为 2x +3y +c =0,横截距为-,纵截距为- ,进而得 2 3c = - 36 5.17.x +2y +5=0.解析:反射线所在直线与入射线所在的直线关于 x 轴对称,故将直线方程中的 y 换成-y .三、解答题43 3解析:①由题意,得2m - 6m 2 - 2m - 3=-3,且 m 2-2m -3≠0.解得 m =- 5.3m 2 - 2m - 32m 2 + m - 14319.x -2y +5=0.= .3 + 1 2因为 EF ∥AB ,所以直线 EF 的斜率为 1 2.△因为CEF 的面积是△CAB 面积的 1 54 2直线 EF 的方程是 y - 5 12 220.x +6y =0.解析:设所求直线与 l 1,l 2 的交点分别是 A ,B ,设 A (x 0,y 0),则 B 点坐标为(-x 0,-y 0).因为 A ,B 分别在 l 1,l 2 上,所以 ⎨ 0⎪-3x 0+5 y 0-6=0 ①②①+②得:x 0+6y 0=0,即点 A 在直线 x +6y =0 上,又直线 x +6y =0 过原点,所以直线 l 的方程为 x +6y =0.21.2x +y -4=0 和 x +y -3=0.∴直线 l 的方程为 + =1 .2∵点(1,2)在直线 l 上,∴ + =1 ,a -5a +6=0,解得 a 1=2,a 2=3.当 a =2 时,直线的方程为 x+ = 1 ,直线经过第一、二、四象限.当 a =3 时,直线的方程为+ = 1 ,解析:设直线 l 的横截距为 a ,由题意可得纵截距为 6-a .x ya 6-a1 2 a 6-ay x y2 43 3直线经过第一、二、四象限.综上所述,所求直线方程为 2x +y -4=0 和 x +y -3=0.。
高中直线与方程练习题及讲解

高中直线与方程练习题及讲解### 高中直线与方程练习题及讲解题目一:直线方程的求解题目描述:已知点A(2,3)和点B(-1,-2),求经过这两点的直线方程。
解题步骤:1. 首先,我们需要找到直线的斜率。
斜率公式为 \( k = \frac{y_2- y_1}{x_2 - x_1} \)。
2. 将点A和点B的坐标代入公式,得到 \( k = \frac{-2 - 3}{-1 - 2} = \frac{-5}{-3} = \frac{5}{3} \)。
3. 有了斜率,我们可以使用点斜式方程 \( y - y_1 = k(x - x_1) \) 来写出直线方程。
选择点A代入,得到 \( y - 3 = \frac{5}{3}(x - 2) \)。
4. 最后,将方程化为一般形式 \( Ax + By + C = 0 \),得到 \( 5x - 3y + 1 = 0 \)。
题目二:直线的平行与垂直题目描述:已知直线 \( l_1: 3x - 4y + 5 = 0 \),求与 \( l_1 \) 平行且与直线 \( 2x + y - 7 = 0 \) 垂直的直线方程。
解题步骤:1. 平行直线的斜率相同,所以 \( l_1 \) 的斜率为 \( k =\frac{3}{4} \)。
2. 垂直直线的斜率互为相反数的倒数,因此 \( l_1 \) 垂直的直线斜率为 \( -\frac{4}{3} \)。
3. 利用点斜式方程,我们可以选择直线 \( l_1 \) 上的一点,比如\( (0, 5/4) \),代入 \( y - y_1 = k(x - x_1) \),得到 \( y - \frac{5}{4} = -\frac{4}{3}(x - 0) \)。
4. 将方程化为一般形式,得到 \( 4x + 3y - 15 = 0 \)。
题目三:直线的交点题目描述:求直线 \( l_1: 2x + 3y - 6 = 0 \) 与直线 \( l_2: x - y + 1 = 0 \) 的交点坐标。
直线与方程知识梳理、典型例题讲解与习题

直线与方程知识梳理、典型例题讲解与习题一、复习引入介绍斜率概念、两条直线平行与垂直的判断公式,直线方程的三种形式。
(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l(3)(1)两条直线的交点设两条直线的方程是1111:0l A x B y C ++=, 2222:0l A x B y C ++=两条直线的交点坐标就是方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩的解。
①若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;②若方程组无解,则两条直线无公共点,此时两条直线平行.(4)几种距离两点间的距离:平面上的两点111222(,),(,)P x y P x y 间的距离公式22122121||()()PP x x y y =-+-特别地,原点(0,0)O 与任一点(,)P x y 的距离22||OP x y =+点到直线的距离:点00(,)o P x y 到直线0Ax By C ++=的距离0022||Ax By C d A B ++=+两条平行线间的距离:两条平行线1200Ax By C Ax By C ++=++=与间的距离1222||C C d A B -=+二、课堂讲解讲解、.一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点分别为(0,0),(0,1)时,求此直线方程。
.解:由4603560x y x y ++=⎧⎨--=⎩得两直线交于2418(,)2323-,记为2418(,)2323A -,则直线AP 垂直于所求直线l ,即43l k =,或245l k =43y x ∴=,或2415y x -=,即430x y -=,或24550x y -+=为所求。
《直线与方程》教案+例题精析

考点1:倾斜角与斜率(一)直线的倾斜角例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛32,22,0πππ B.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛32223ππππ,, C.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛πππ,,330 D.⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛πππ,,32202 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .,63ππ⎡⎫⎪⎢⎣⎭B .,62ππ⎛⎫ ⎪⎝⎭C .,32ππ⎛⎫ ⎪⎝⎭D .,62ππ⎡⎤⎢⎥⎣⎦(二)直线的斜率及应用3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++=1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或43.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150°4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ).A .4,5a b ==B .1b a -=C .23a b -=D .23a b -=5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ).A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 26.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = .7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 .8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________.考点2:求直线的方程例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。
完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
高一数学直线与方程经典例题-必修二第3章

直线与方程经典例题【考点指要】关于直线的方程,直线的斜率、倾斜角,两点间距离公式,点到直线的距离公式,夹角与到角公式,两直线的垂直、平行关系等知识的试题,都属于基本要求。
解决问题的基本方法和途径:数形结合法、分类讨论法、待定系数法。
【综合例题分析】例1. 已知圆22440x x y --+=的圆心是P ,则点P 到直线10x y --=的距离是__________。
答案:22解析:由题意圆的方程22440x x y --+=可化为()2228x y -+=∴圆心()2,0P ,代入点到直线距离公式得22)1(1|1-(-1)012|d 22=-+⨯+⨯=例2.若曲线21y x =+与直线y kx b =+没有公共点,则k b 、分别应满足的条件是____________。
答案:k=0且-1<b<1 解析:由y x x x x x 211010=+=+>-+<⎧⎨⎩||,,画出图象得设图象与y 轴的交点分别为()()0101A B -,、,,过点A B 、作平行于x 轴的直线,根据题意,直线y kx b =+与曲线没有公共点,则只能与x 轴平行且在虚线区域内移动。
评述:由于曲线方程中含有绝对值,所以先分情况去掉绝对值符号,若联立方程组2211y x y x y kx b y kx b⎧⎧=+=-+⎨⎨=+=+⎩⎩或,分别利用判别式“△<0”去求解没有公共点的情况,题目会变的非常烦琐。
借助于图象既快捷又直观,利用数形结合是解决这类题目非常有效的方法。
例3. 设过()P x y ,点的直线分别与x 轴、y 轴的正半轴交于A B 、两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =且1OQ AB ⋅=,则点P 的轨迹方程为( ) A. )0,0(123x 322>>=+y x y B. )0,0(123322>>=-y x y x C.)0,0(132322>>=-y x y xD.)0,0(132322>>=+y x y x 答案:D解析:设过点()P x y ,的直线方程为)0,0(><+=b k b kx y ,则(),0,0,b A B b k ⎛⎫- ⎪⎝⎭,由题意知点Q 与点P 关于y 轴对称,得(),Q x y -,又()0,0O∴()()0,2,00,00,01b x y b x y k b x y b k ⎧⎛⎫--=--- ⎪⎪⎝⎭⎪⎨⎡⎤⎛⎫⎪---⋅---= ⎪⎢⎥⎪⎝⎭⎣⎦⎩ 即3231b x k b y b x by k⎧-=⎪⎪=⎨⎪⎪-+=⎩,得223312x y +=0,0,0,0>>∴><y x b k评述:此题体现了直线与向量知识的综合运用,向量的坐标运算和解析几何关系密切。
《直线与方程》教案例题精析

《直线与方程》教案例题精析一、教学目标1. 让学生掌握直线方程的基本形式和斜截式、两点式等求直线方程的方法。
2. 培养学生运用直线方程解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 直线方程的基本形式:Ax + By + C = 02. 斜截式方程:y = kx + b3. 两点式方程:y y1 = (y2 y1) / (x2 x1) (x x1)4. 直线方程的解法:代入法、消元法、图解法5. 直线方程在实际问题中的应用。
三、教学重点与难点1. 重点:直线方程的求法及应用。
2. 难点:直线方程在不同情况下的求解方法和技巧。
四、教学方法1. 采用问题驱动法,引导学生主动探究直线方程的求法。
2. 利用多媒体辅助教学,直观展示直线方程的图解过程。
3. 实例分析,让学生体验直线方程在实际问题中的应用。
五、教学准备1. 课件:直线方程的求法及应用。
2. 练习题:涵盖各种类型的直线方程题目。
3. 实物模型:直线图形的模型,如直尺、三角板等。
教案目录:第一章:直线方程的基本形式1.1 斜率与截距1.2 直线方程的斜截式1.3 直线方程的一般式第二章:斜截式方程2.1 斜截式方程的定义2.2 斜截式方程的求法2.3 斜截式方程的应用第三章:两点式方程3.1 两点式方程的定义3.2 两点式方程的求法3.3 两点式方程的应用第四章:直线方程的解法4.1 代入法求直线方程4.2 消元法求直线方程4.3 图解法求直线方程第五章:直线方程在实际问题中的应用5.1 直线方程与几何问题5.2 直线方程与物理问题5.3 直线方程与生活问题六、直线方程的综合应用6.1 两条直线的交点6.2 直线与圆的位置关系6.3 直线方程在立体几何中的应用七、直线方程的变换7.1 直线的平移7.2 直线的旋转7.3 直线的缩放八、直线方程的优化问题8.1 直线方程的最值问题8.2 直线方程的线性规划问题8.3 直线方程的优化方法与应用九、线性方程组与直线方程9.1 线性方程组的定义9.2 线性方程组的求解方法9.3 线性方程组与直线方程的关系十、直线方程与其他数学学科的联系10.1 直线方程与函数的关系10.2 直线方程与三角函数的联系10.3 直线方程与其他数学学科的融合应用十一、直线方程的拓展与应用11.1 空间直线方程11.2 参数方程与直线方程11.3 直线方程在现代数学中的应用十二、直线方程与坐标系12.1 直角坐标系中的直线方程12.2 极坐标系中的直线方程12.3 柱坐标系与球坐标系中的直线方程十三、直线方程与日常生活13.1 地图上的直线方程13.2 导航与直线方程13.3 直线方程在日常生活中的其他应用十四、直线方程与科技发展14.1 计算机图形学与直线方程14.2 机器学习与直线方程14.3 直线方程在其他科技领域中的应用十五、综合练习与案例分析15.1 综合练习题集15.2 案例分析:直线方程在实际问题中的应用15.3 学生展示与讨论:个人或小组项目重点和难点解析本文档为您提供了《直线与方程》的教案,涵盖了直线方程的基本形式、斜截式、两点式、解法、实际应用、综合应用、变换、优化问题、线性方程组、学科联系、拓展应用、坐标系、日常生活、科技发展以及综合练习与案例分析等十五个章节。
1直线与方程练习题及答案详解

1直线与方程练习题及答案详解直线与方程练题及答案详解一、选择题1.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A.a+b=1B.a-b=1C.a+b=0D.a-b=02.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=03.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.-8B.-2/3C.2D.104.已知ab<0,bc<0,则直线ax+by=c通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线x=1的倾斜角和斜率分别是()A.45°,1B.135°,-1C.90°,不存在D.180°,不存在6.若方程(2m+m-3)x+(m-m)y-4m+1=0表示一条直线,则实数m满足()A.m≠0B.m≠-1C.m≠1D.m≠-2/3二、填空题1.点P(1,-1)到直线x-y+1=0的距离是√2/2.2.已知直线;若l4与l1关于y=x对称,则l4的方程为y=-x+3.3.若原点在直线l上的射影为(2,-1),则l的方程为2x-y-2=0.4.点P(x,y)在直线x+y-4=0上,则x+y的最小值是4.5.直线l过原点且平分ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为y=-3x+0.三、解答题1.已知直线Ax+By+C=0。
1)系数为什么值时,方程表示通过原点的直线;当C=0时,方程表示通过原点的直线。
2)系数满足什么关系时与坐标轴都相交;当A≠0且B≠0时,直线与x轴和y轴都有交点。
3)系数满足什么条件时只与x轴相交;当B=0且A≠0时,直线只与x轴相交。
4)系数满足什么条件时是x轴;当A=0且B≠0时,直线是x轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章:直线与方程的知识点一、基础知识倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<或),0[πα∈2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ⇔12k k =;(2)12l l ⊥⇔121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;….直线的方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.注. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.注意:0y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.3 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 4. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=. 注.①两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.②线段12P P 中点坐标公式1212(,)22x x y y ++.5. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线.注. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.6.点法式方程(附加): 若直线l 的法向量),(B A n =,且过点(),00y x ,则直线的方程为0)()(00=-+-y y B x x A .显然一般式方程0Ax By C ++=中的系数构成的向量),(B A 即为直线的法向量.注. 两条直线平行与垂直的判定在一般直线方程中的判定已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=;(2)1l ∥00,01221122112212≠-≠-=-⇔C B C B C A C A B A B A l 或且;(3)1l 与2l 重合0,0,01221122112212=-=-=-⇔C B C B C A C A B A B A l 且; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B C A B C ⇔==;1l 与2l 相交1122A B A B ⇔≠. 两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP . 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离 1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax B y C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d ==二、典型例题分析例1:已知直线l 过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段相交,求直线l 的斜率的取值范围.例2: 1.已知直线l 过点P(-1,2),且点A(-2,-3),B(3,0)到直线的距离相等,求直线l 的方程;2.已知直线l 过点P(-1,2),且在两坐标轴上的截距相等, 求直线l 的方程;3.已知直线l 过点P(-1,2), A(m,3),求直线PA 的方程;4. 已知直线l 过点P(-1,2),倾斜角等于直线y=3x 的倾斜角的两倍, 求直线l 的方程.例 3.直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)例5 与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0例6.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为 。
例7直线023cos =++y x α的倾斜角的范围是( ) A. ]65,2()2,6[ππππ⋃ B. ),65[)6,0[πππ⋃ C. ]65,0[π D. ]65,6[ππ例8.已知三直线)0(02:1>=+-a a y x l ,直线0124:2=++-y x l 和01:3=-+y x l ,且21l l 和的 距离是5107, (1) 求a 的值(2) 能否找到一点P ,使P 同时满足下列三个条件:①P 是第一象限的点;②P 到1l 距离是到P 到2l 的距离的21③P 到1l 距离与到P 到3l 的距离的之比是5:2。
若能,求P 点的坐标,若不能,说明理由。
[课后练习]一.选择题1. 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A. 012=-+y x B. 052=-+y xC. 052=-+y xD. 072=+-y x3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( ) A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=05.设直线ax+by+c=0的倾斜角为θ,切sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211. 直线3y kx =+与圆22(3)(2)x y -+-=MN ≥k 的取值范围是A .3,04⎡⎤-⎢⎥⎣⎦ B .[)3,0,4⎛⎤-∞-+∞ ⎥⎝⎦C .⎡⎢⎣⎦ D .2,03⎡⎤-⎢⎥⎣⎦12、与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 13. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <014. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点x到直线 l 的距离是( )A. 2B. 1 2C. 22 15. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为( )3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2), B (-1,6)等距离的直线的方程是 。