基于AMESim的气动系统建模与仿真技术研究.
基于AMESim注塑机快速合模系统的建模仿真及节能研究

的建 模 、仿 真 及 动 力 学 分 析 的 优 秀 软 件 ,至 今 已经 历 了 十 多 年 的 丰 富 和 完 善 。该 软件 包 含 了 I GI E 的专 门技 术 .并 为 工 程 设 计 提 供 交 互 MA N
能 力 。 它 具 有 完 全 图 形 界 面 ,在 整 个 仿 真 过 程 中 , 系 统 都 是 以 图形 的 形 式 显 示 的 。 在 表 示 元
c mp n n u cin, a d v rf h o rcn s fte mo e a e ne p rme t h tc mp r dt esmuain rs lsa d e p rme tl o o e tfn t o n eiyte c re te so d lb sd o x e h i nsta o ae h i lto eut n x e i na d t o v rf e c re te so h d e;so te e eg t h ciae n e fc mp n ns a d u ig te o t z t n to aa t e y t orcn s fte mo l h w h n ry wi te a tv td id x o o o e t, n sn h pi ai o l i h h mi o
为 重要 的作 用 。其液 压 传 动 系 统 的 主要 任 务是 依
靠 液 体压 力 克 服 负 载 阻 力进 行 动 力 传 动 , 以完成 预定 动作 。然而人们 往往侧 重其 性能及 可靠 性 ,对 其 能耗 控 制 和 效 率 重视 不 足 。造 成 液 压 系 统 的运
行 效率 较 低 ,系统 能耗 较 大 。本 文 将 基 于 AM S E. i m仿 真 软 件 建 立 某 注 塑 机 快 速 合 模 回路 的模 型 , 将 模 型仿 真 结 果 与 实验 数 据 对 比 .验证 模 型 的正 确性 ;而后 对模 型进 行优 化分 析 ,降低 系 统能耗 。
燃气轮机仿真体系与研发信息化建设方案及实践

功能
性能
可靠性
运维与服务体系
需求管理与方案论证
工程设计与试验验证
需求管理系统
•需求定义 •需求管理 •需求挖掘
概要/方案设计 系统
•指标论证 •方案论证 •系统原型验证
产品设计数据 管理平台
•设计数据 •设计流程 •设计知识
仿真数据管理 平台
•仿真数据 •仿真流程 •仿真知识
➢ 仿真方案
—利用Actran DGM模块仿真 —源于欧盟项目成果(MESSIAEN、TURNEX )
消音区
远场指向性产生变化
剪切层导致的声散射
物理区 声源区
项目示例——旋转机械流动噪声分析
CAD模型与 CFD网格处理
获取声压分布、指向性等结果
声学分析
获取非定常流场分布,含 压力、速度、密度等
非定常流场 CFD分析
多学科仿真与优化 设计
•多学科仿真 •MpCCI •EALink •Mag Acoustics •结构优化 •Optistruct •流体优化 •CAESES •电磁优化 •OptiNet •多学科优化 •Optimus
模型模板开发与流程、规范建立
直面工业级应用的深层次、全方位工程研发服务
标准制定 规范建立
试验数据管理 平台
•试验数据 •试验流程 •试验资源
第三方业务系统
/ 第三方业务系统
生产
交付
生产数据管理 平台
•生产数据采集 •工艺检测数据 •质量检测数据
运维数据管理 平台
•运行状态 •故障诊断
第三方业务系统
智慧研发
智能制造
智能运维
大纲
公司简介 仿真体系与研发信息化建设背景及业务概述 燃气轮机多学科仿真方案及实践 基于数据中心的多学科仿真与试验验证环境建设方案及实践 研发云建设方案及实践 结论与展望
史上最全的AMESim-Matlab 联合仿真设置步骤(集大成者,图文并茂)

史上最全的AMESim-Matlab 联合仿真设置步骤(集大成者,图文并茂)中国矿业大学机电学院 haierdhg目前,文库及网上流行的AMESim-Matlab 联合仿真步骤基本不能用,经过几天的研究,终于找到了解决方案。
本文论述了联合仿真的设置步骤、仿真时应注意的事项,以及有用的参考资料,敬请大家分享。
一、版本为AMESim8.0,Matlab2011b,VC++6.0二、安装步骤个人认为以上三个软件,没有安装顺序,但还是建议先安装VC++1.将VC++中的"vcvar32.bat"文件从Microsoft Visual C++目录(通常是.\Microsoft Visual Studio\VC98\Bin中)拷贝至AMESim目录下(我的是C:\AMESim\v800)。
(如果先安装的VC,后安装的AMESim,则在AMESim安装时,自动会拷贝该文件)2.环境变量确认:(这里网上的教程大多是错的!环境变量分为用户变量和系统变量,网上教程大多没说清楚)1)选择“控制面板-系统”或者在“我的电脑”图标上点右键,选择“属性”;2)在弹出的“系统属性”窗口中选择“高级”页,选择“环境变量”;3)用户变量中添加HOME C:\ (我将AMESim Matlab装在了C盘,自己根据情况修改) MATLAB C:\MATLAB\R2011bPath D:\Program Files\Microsoft Visual Studio\Common\Tools\WinNT;D:\Program Files\Microsoft VisualStudio\Common\MSDev98\Bin;D:\Program Files\Microsoft Visual Studio\Common\Tools;D:\Program Files\Microsoft Visual Studio\VC98\bin4)在系统变量中添加AME C:\AMESim\v800 (这个一般都有的,不需要自己添加);Path D:\Program Files\Microsoft Visual Studio;C:\AMESim\v800;C:\AMESim\v800\win32;C:\AMESim\v800\sys\mingw32\bin;C:\AMESim\v800\sys\mpich\mpd\bin;C:\AMESim\v800\sys\cgns;%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;C:\MATLAB\R2011b\bin\win32;C:\WINDOWS\system32;C:\WINNT (该处很重要一定要添加,而且一定要包含C:\WINDOWS\system32,不然会有引起很多错误)3.确认是否在AMESim中选择VC作为编译器。
基于Motion/AMESim的某变载机构的建模与仿真分析

Ab s t r a c t : A v a r i a b l e l o a d me c h a n i s m u n d e r d i r e c t a n d r e v e r s e l o a d a l s o h a v e l a r g e r a n g e o f l o a d c h a n g e i n t h e p r o c e s s o f mo v e me n t , a c c o r d i n g t o t h i s p r o b l e m, t h e a ti r c l e I i n t r o d u c e d a c o mb i n e d s i mu l a t i o n r e s e a r c h me t h o d o f Mo t i o n a n d AME S i m, B y c o mb i n g w i t h t h e a c t u a l c o n d i t i o n s , a mu l t i - b o d y d y n a mi c a l mo d e l o f v a i r a b l e l o a d me c h a n i s m wa s f i r s t e s t a b l i s h e d i n L MS Vi tu r a 1 . L a b Mo t i o n, t h e n a mo d e l o f h y d r a u l i c c o n t r o l s y s t e m w a s e s t a b l i s h e d i n AME S i m, i f n a l l y , i f n ll a y , t h e s y s t e m c o n d u c t t h e c o mb i n e d s i mu l a t i o n . De s i g n t h e c o n t r o l s c h e me, he t s y s t e m p a r a me t e r s c a n b e o p t i mi z e d b y he t s i mu l a t i o n a n a l y s i s , h a v i n g l a i d a t h e o r e t i c a l f o u n d a t i o n f o r mo v e me n t t e s t o f t h e v a ia r b l e l o a d me c h a n i s m. Ke y wo r d s :L MS Vi t r u a 1 . L a b Mo t i o n; AME S i m; v a r i a b l e l o a d; c o mb i n e d s i mu l a t i o n
基于AMESim的减压阀建模与仿真

智者论道智库时代 ·241·减压阀是机车空气管路系统的重要部件,本文利用AMESim 软件对减压阀进行建模并仿真分析,得到减压阀各关键参数的最优取值范围,为减压阀的选型提供依据。
一、减压阀结构及工作原理图1为减压阀结构原理图[1]。
如图所示,初始状态时,低压腔室p2中无压力,调压弹簧2推动膜片4和阀杆5下移,阀杆5再推动阀芯7下移,阀口打开,此时高压腔室p1中压力空气输入到低压腔室p2中。
低压腔室p2压力逐渐上升,同时经阻尼孔6流向膜片4下表面腔室。
当膜片4下表面气体向上推力F2等于调压弹簧向下推力F1时,阀芯7在复位弹簧8的作用下向上移动,阀口关闭,高压腔室p1中压力空气输入到低压腔室p2中的通道关闭,低压腔室p2中的气压不再上升,此时低压腔室p2中即有稳定压力输出。
通过调节调压弹簧2、3的预紧力,即可调节减压阀的输出压力[2]。
图1 直动式减压阀结构原理图1、手柄;2、调压弹簧;3、溢流阀;4、膜片;5、阀杆;6、阻尼孔;7、阀芯;8、复位弹簧二、减压阀AMESim 模型建立A M E S i m (A d v a n c e d M o d e l i n g Environment for performing Simulationof engineering systems)为多学科领域复杂系统建模仿真平台。
用户可以在这个单一平台上建立复杂的多学科领域的系统模型,并在此基础上进行仿真计算和深入分析,也可以在这个平台上研究任何元件或系统的稳态和动态性能。
AMESim 软件采用基于物理化图形建模方法,因此对于气动减压阀来说,利用AMESim 软件建模仿真更加方便与准确[3]。
减压阀的AMESim 模型如图2。
调压弹簧3推动阀芯质量块5向右移动,阀芯6打开,高压腔室9内压力空气通过阀口进入低压腔室12中,进一步经过阻尼孔11进入膜片下腔室10。
当膜片下腔室10中压力作用在膜片上推力F2等于调压弹簧3对膜片下推力F1时,阀芯6向左移动,阀口关闭,高压腔室9中压力空气通向低压腔室12的通道关闭,低压腔室12中压力稳定在设定压力值。
采用AMESIM建模分析splitHHV系统,,ASME

新型可变排量发动机与功率分流液压混合动力系统输出耦合的仿真研究摘要为了使无节流发动机能够工作在部分负荷,从而消除泵气损失,所以在对可变排量发动机充分研究的基础上做出了仿真。
在这项工作中做建立的模型机制从赫夫利发动机的概念中衍生而来。
涡轮增压技术和停缸技术是上述发动机的其他显著特征。
停缸技术结合可变排量可以进一步扩展无节流发动机的工作范围,与此同时,涡轮增压技术增加了发动机的功率密度,使得发动机可以在没有性能损失的前提下进一步减小体积。
虽然上述的具有可变排量涡轮增压发动机的概念可以使发动机拥有很大的工作范围,但是接近怠速运行依然是不切实际的。
所以,集成有混合动力传动系的可变排量涡轮增压发动机(VDTCE)允许在控制发动机,消除发动机空转,以及解决在发动机瞬态和模式转换中可能发生的问题时保持灵活。
在基本物理原理和1-D气体动力学的基础上,发动机模型在AMESIM 基础上开发。
功率分流液压混合动力传动系统的预测模型在SIMULINK中创建,从而与发动机模型集成。
集成的仿真工具是用来在确定包括可变排量涡轮增压发动机和液压混合动力传动系统的动力系统的燃油经济潜力之前,解决设计和控制方面问题的。
简介现代汽车的发展,不仅要求解决能源安全和气候变化问题,而且要提高汽车的燃油经济性,同时也要满足严格的排放法规。
混合动力技术是减少排放和车辆油耗的关键。
这是由于(ⅰ)小型化的发动机,(ⅱ)在再生过程中回收能量,以及(iii)优化发动机运行的可能性。
后者在配备有SI发动机的混合动力汽车上一直是很重要的。
SI发动机的泵气损失(节流操作)不仅是它的软肋,而且是其在部分负荷下燃油经济性较差的主要原因。
因此,混合动力系统的设计和控制通常试图尽量避免发动机低负荷运转,从而提高了驾驶循环中平均燃料转换效率。
随着时间推移,像可变气门正时和可变气缸排量这样可以减少泵气损失的概念已将被提出,因此也提供了进一步改进动力总成整体效率的途径。
基于AMESim的电控天然气针口阀喷嘴仿真设计

天然气喷射器由电磁阀,控制室,针阀偶件组成,其工作原理如图(1)所示,发动机ECU接受经过滤波,整形,放大后的前向电路中的曲轴位置传感器和凸轮轴位置传感器(在顺序喷射中需要该传感器)所测得的模拟信号,经过其处理与计算,判断出符合该工况的喷射正时与喷射脉宽,发送PWM波信号控制电磁线圈的通断电,其中通电时刻决定喷射正时,而通电时间的长短则决定该工况下的喷气量。在整个机构中高压天燃气经过减压与调压后进入喷射器中分为两部分,一部分气体进入喷射针阀,一部分气体则进入喷射器气腔中,当进入喷射气体的压力和流量较小的时候电磁阀处于关闭状态。气体进入了喷射器气腔,由于控制活塞上的面积大于喷射器针阀的作用面积,加上针阀弹簧的作用力,使得喷射器的喷射针阀处于关闭状态。而当电磁线圈通电时产生一个磁场,顶杆(衔铁)在电磁力的作用下,克服天然气背压和复位弹簧的预紧力而升起,打开喷嘴阀门,天然气喷出。顶杆在未达到最大升程前,由于流通面积不断增大,引起喷孔处压力降低,导致了喷嘴环形腔因压力波动而使气体不稳定流动,直到顶杆(衔铁)由于机械限位挡板的作用达到最大升程,喷嘴环形腔内气体流动趋于稳定。当电磁线圈断电后,顶杆(衔铁)所受电磁力也立即消失,并在复位弹簧和天然气背压的作用下,落回并压紧阀座,切断喷气动作,从而可以根据该原理对天然气这一特殊燃料的喷射机理进行研究,以期发现天然气的喷射规律,改进喷射方式。
注意:由于气体的泄漏,部件传热与管路设计长度等在实际的使用过程中对喷射的影响是很小的,为了方便建模同时考虑到实际情况所以均把它们作为理想化的模型处理。下图4为电控天燃气的AMESim模型:
图 4 电控天然气喷嘴模型
1—天然气特征参数 2—电磁特性参数 3—重力参数 4—气隙 5—复位弹簧 6—铁芯
7—限位挡板 8—PWM占控比 9—PWM波 10—驱动电路 11—电磁线圈 12—天然气喷嘴阀门 13—理想气源 14—低压腔 15—可变器腔体积 16—节流孔 17—燃烧室18—高压枪19—喷孔体积
系统仿真AMESim软件使用说明

系统仿真AMESim软件使用说明目录1.AMESim是什么?2.AMESim 建模步骤?3.AMESim接口4.AMESim标准库5.AMESim软件包6.AMESim参数和变量观察7.AMESim建模(调用已有模型,讲解各元件及相互间联系)1.AMESim是什么?AMESim表示工程系统仿真高级建模环境(Advanced Modeling Environment for performing Simulations of engineering systems).基于直接图形接口,在整个仿真过程中草图系统可以显示在环境中。
AMESim 使用图标符号代表各种系统的元件,这些图标符号要么是国际标准组织(如工程领域的ISO为液压元部件)确定的标准符号、控制系统确定的方块图符号,或者当不存在这样的标准符号时可以为该系统给出一个容易接受的非标准图形特征。
Figure 1.1: AMESim中使用符号(标准液压,机械和控制符号表达的一个工程系统)Figure 1.2: 汽车制动系统的符号(非标准图形特征)2.如何使用AMESim?可按如步骤进行系统建模仿真:• sketch mode (草图模式)----从不同的应用库中选取现存的图形• submodel mode (子模型模式)----为每个图形选择子模型(即给定合适的数学模型假设)• parameter mode (参数设置模式)----每个图形模型设置特定的参数• simulation mode (仿真模式)----运行仿真并分析仿真结果大多数自动化系统都可按上述步骤执行,在每一步都可以看到系统草图。
3.接口与脚本you have the possibility of interfacing with Matlab/Simulink to test the Electronic Control Unit (ECU) of the complete gearbox and have the complete simulation platform for the conception of every kind of gearboxes3.1接口3.2 脚本4.标准库标准库提供了控制和机械图标,子模型允许你完成大量工程系统的动态仿真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于AMESim的气动系统建模与仿真技术研究(版本A)本文主要内容如下(1)推导气体的流量、温度和压力方程。
(2)基于AMESim对普通气动回路进行仿真分析。
并推导气动系统常用元件的数学方程,在此基础上对气动元件及系统进行模型仿真分析。
(3)对气动比例位置系统进行建模与仿真研究,在系统仿真模型基础上进行故障仿真研究。
最后探讨基于 AMESim 的气动比例位置系统实时仿真研究。
1.气动系统建模的理论基础气动系统和元件建模的首要任务就是要充分的明确空气的物理性质和空气的热力学性质,为准确的元件建模和系统仿真奠定基础。
气动元件的结构是十分复杂的,但其中的基本规律和数学描述一般还是比较清楚的。
经过前人的大量研究发现,气动系统的动态特性从本质上讲可以抽象为由一些基本环节所组成,比如放气环节、惯性环节和气容充气环节等等。
而它们之间又是通过压力、力、位移、容积等参数相互关联相互影响的。
1.1 流量方程流量特性表示元件的空气流通能力,将直接影响气动系统的动态特性。
所有的压力降取决于下面两个基本参数:a)声速流导 C(Sonic Conductance)——[null]b)临界压力比b(Critical Pressure Ratio)[S*m4/kg]ISO6358标准孔口——标准体积流量设绝对温度T ,绝对压力p的工况下的体积流量为Q,基准状态和标准状态下的体积流量可表示为:空气压缩机的输出流量通常用换算到吸入口的大气状态下的体积流量来表示。
以上公式同样适用于从吸入口的大气状态到基准或标准状态的换算。
气动孔口流量在气动系统中,一般需要计算通过节流口的气体压力、流量、温度等参数,但是由于气体的可压缩性,气体在通过节流口时是个很复杂的过程,节流口前后的流道突然收缩或扩张,气体在孔口前后均会形成涡流,产生强烈的摩擦,因而机械能变成热能具有不可逆过程。
同时,由于流体运动的极不规则,同一界面上的各点参数极不均匀。
为了研究气体的流量特性,基本上可将阀中的节流口理想地等价为一个小孔或收缩喷嘴,并用小孔或者收缩喷嘴的流量特性来表示其流量特性。
式中 u——缩流处的流速k ——空气的比热ρ0 ——喷嘴上游空气密度(kg/m3)p0 ——上游压力(bar)p1——下游压力(bar)因为是等熵流动,将绝热过程公式带入替换密度ρ1可得流经收缩喷嘴的质量流量:式中 R ——气体常数(J/(kgK))T0——上游空气的绝对温度(K)A1——喷嘴出口面积(mm2)这里A1比喷嘴入口处截面积A 0小,两者的比是:称之为缩流系数。
缩流系数根据收缩喷嘴入口的形状及尺寸不同,一般在0.85~0.95 之间的范围内。
当质量流量达到最大时,即流量达到饱和,此时的压力比P1/P0就是临界压力比。
根据气体绝热过程的能量方程式可得临界压力比b为:压力比P1/P0比临界压力小时,流动为声速流。
将临界压力比代入质量流量计算式则:实际上气体流过复杂的内部元件时,流动损失是不能忽略的。
在一定的上游条件和一定的压差条件下,实际通过元件的质量流量将小于按理论公式计算出来的理论质量流量。
则实际流量应为:(重要公式)式中 Cq流量系数:实际流量与理论流量之比当进口的流量系数是一个定值时,那么流过收缩喷嘴的焓流量如下式:式中 Cq ——等压比热(Nm/kg/K)h ——单位质量流量的焓(J/s/kg)注意到在收缩喷嘴处的气体音速表达式是:式中 Tvc——喷嘴下游温度(K)结合质量流量计算式可以推导出:流量系数(重要公式)实际的气动系统中,由于气动元件的节流方程可知节流孔的面积不等于其气流的节流面积,要知道小孔的节流面积是十分困难的,因而流量系数的测定很难做到精确。
而且在实际工程中,不可能逐一的用实验来测定其流量系数,实际上流量系数是一个不断变化的量,因为它不仅跟阀口或者小孔的上下游压力差有关,而且还与阀口或者小孔的类型、开度及气流的流动方向等因素有关。
然而我们在工程设计和仿真时,经常把流量系数看作一个常数,但这样必定会给系统的最终计算结果带来一定的误差,因此针对不同类型的阀口,选取合适的流量系数能真实的反映实际情况,这在建模过程中是十分必要的。
实际的气动元件不同于单个喷嘴,因为每个实际元件并非是单个节流口,而是与流通界面面积相串联的、任意形式收缩的一串喷嘴群,显然,当气体通过串联的两个喷嘴时,当其中任何一个喷嘴达到临界状态时,气流都会发生阻塞而得到最大流量。
然而由于总压力比的原因,因此任何时候的临界压力比都应该小于 0.5283。
在利用 AMESim 软件进行气动元件建模时可以充分利用相关流量系数的曲线图和相关点的数值,只要把这些数值通过 AMESim 中的 Table 编辑器后即可生成“.data”数据文件如图所示,图中显示的是流量系数随上下游压力比和阀口开度关系的二维线性样条变化曲线,该文件可以很方便的在元件模型系统仿真时调用,这样一来可以保证元件流量系数的准确性同时也确保了流量计算的正确。
(打开方式:tools-table editor)1.2 温度压力方程根据热力学第一定律和能量守恒定律推知一个系统(开口或闭口、与外界发生或不发生热交换)的内部能量变化方程为:式中 dQ/dt——外界加入控制体的热量的变化(J/s)dW/dt——控制体内气体对外做功的变化(J/s)dV/dt——腔室体积变化(m3/s)Aex ——元件的热交换面积(m2)T ext——外界温度(K)T ——腔室内气体温度(K)K ——气体热交换系数(J/m2/s)假设单位质量气体的内能是u ,所以气体的内能为:联立dU/dt与U方程得:对于理想气体,单位气体的内能也是温度的函数所以有:式中C V——比定容热容(Nm/kg/K)因为理想气体的状态方程为:上式两边对时间t微分即可求得压力的一阶微分方程式:然而对于变体积的热气动腔室来说,由于气体自身的温度在不断的变化,所以单位气体的内能也是不断的变化,用公式表示即为:综合方程式,可得变体积气动腔室温度变化的一阶微分方程通式:(重要公式)在此公式中,m i、h i表示的是在一开口或闭口系统之中气体带入控制体的焓与气体流出控制体的焓之和,流入的为正值,流出的为负值。
上述所推导的流量、温度和压力方程在气动系统中建模时普遍适用,但针对个别具体的气动元件还有一些个别相关的方程需要计算。
小结:本节针对气体的流量、常见类型的小孔和喷嘴状阀口的流量系数以及温度压力方程进行了详细的分析论述,得出如下结论:(1)通过对流量、温度压力方程推导所得到的相关一阶微分方程在气动元件建模中普遍实用。
(2)流量系数本身是一个不断变化的值,其值的变化情况不仅与阀口处上下游的静压力比有关而且还与阀口的开度大小有关。
通常情况下流量系数都是随阀口的上下游压力的比值增大而增加的,阀口的开度越大时相应的流量系数也是越大的。
通过对一些类型的小孔和喷嘴状阀口的流量系数的分析后,从方便应用的角度出发对它们的流量系数的取值给出了一个合适的取值范围以供使用时作为参考。
根据需要可以将流量系数随变量的变化关系通过 AMESim 设置成数据文件的形式,在进行元件模型系统仿真时能够调用该文件或者直接调用表达式,保证了流量系数或其它相关参数的正确性。
2.气动主要元件及系统的建模与仿真2.1 AMESim介绍AMESim 环境下的气动控制系统建模常采用自上而下的建模方法,把复杂的系统模块化,使得抽象的系统具体化,AMESim 仿真机构框架如图所示。
AMESim 具有丰富的模型库,用户可以采用基本元素法,按照实际物理系统来构建自定义模块或仿真模型,不需要推导复杂的数学模型。
在AMESim 中,用于气动系统建模的气动库中包括了一些在气动系统中经常使用的气动元件图标,这些图标直观形象地表现了气动元件的功能,每个图标有一个或多个数学模型与之对应,用于描述气动元件的特性,以便更真实地模拟气动系统的参数并进行仿真研究。
以PCD中的带环形孔口的滑阀设计一个三通阀为例进行说明。
在完成草图后,在子模型模式中可以更换子模型,然后在参数模式中中设置各个参数,最后进行运行仿真。
在 AMESim 中,每一个子模型都是由语言程序代码编写的。
在建模过程中,如果遇到AMESim 标准库中没有的子模型,可以通过 AMEset(模型、文档生成器)编辑子模型,来扩充 AMESim 应用库。
以下是方波信号的c语言代码:气动元件的数学模型是依据气体状态方程和质量守恒定律以及等熵方程等建立,同时也考虑到了一些元件的动态特性,为了方便地建立数学型,一般都会做一些假设,比如:(1)气体流过阀口或其它限流孔时,均为等熵流动;(2)腔室内气体的压力场和温度场均匀;(3)气体粘度小时,忽略控制截面处粘性阻力的影响;(4)不考虑引力场对气流的作用;等等。
2.2 气体回路分析以列车中一个简单的气动回路为例进行说明。
该回路描述的是两个压力储能容器释放气体进入到第三个储能器中。
这个系统中三个储能器的体积分别为(800L、400L 和100L)通过两个截面积分别是500mm2和 20mm2的节流口和气管连接而成的,它们的初始压力分别是12bar、7bar 和1 bar,而初始温度是293.15 K,所采用的仿真时间是20秒,步长为0.01秒。
经过仿真之后,可知在第三个腔室达到稳定之前,两个较高压力的腔室首先达到了稳定状态,这个最终的稳定压力大概是 8.7bar 在仿真时间进行到 18 秒左右时到达。
气体由节流口面积为500mm2和20mm2的节流口进入储能器 2 和 3,因而气体流量因为较大的节流口面积而较快达到稳定,通过小的节流口时候,节流口达到稳定过程就需要耗费较长的时间,同时也因为储能器之间的高压力比而导致了音速饱和流,而这种情况可以通过质量流参数Cm来反映。
这个例子,需要设置的参数不多,但对于一些复杂的系统来说,需要设置的参数十分庞大,要得到满意的结果往往需要反复不断的试值才能找到一个满意的结果。
2.3 调压阀PCD模型调压阀在气动系统中起到稳定系统压力的作用,AMESim对元件进行仿真,可以模拟调压阀在气源压力波动和负载变化的情况下的稳压效果。
比如B10调压阀可以类似地看为这种调压阀。
通过一个可变节流孔来控制气源压力的变化,另外一个可变节流孔来控制负载的变化,气源为一个简单的温度压力源。
在建模过程中最重要的是对各个子模块设置参数,准确的参数使得系统模型更加精确。
下图所示为气体喷嘴平板阀子模型PNAPO32-1 的参数列表。
设置阀口的开口量为零,表明在没有气源通过时,阀芯处于关闭状态。
再通过阀芯质量的参数列表设置阀芯的最大位移为 2 mm。
在 0~1 秒内控制气源的可变节流孔逐渐打开并在 1 秒后保持恒定,这时控制负载的可变节流口开始逐渐打开,并在 2 秒时保持稳定。