13函数的单调性 苏州

合集下载

2022-2023学年江苏省苏州中学高一年级上册学期期末模拟数学试题【含答案】

2022-2023学年江苏省苏州中学高一年级上册学期期末模拟数学试题【含答案】

2022-2023学年江苏省苏州中学高一上学期期末模拟数学试题一、单选题1.“是第四象限角”是“是第二或第四象限角”的( )α2αA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】由象限角的知识结合充分和必要条件的定义作出判断.【详解】当是第四象限角时,,则,即α3222,2k k k Zππαππ+<<+∈3,42k k k Z παπππ+<<+∈是第二或第四象限角.当为第二象限角,但不是第四象限角,故“是第四象限角”2α324απ=32πα=α是“是第二或第四象限角”的充分不必要条件.2α故选:A 2.已知集合,集合,若,则的取值范围是( ){}12A x x =->{}10B x mx =+<A B A ⋃=m A .B .C .D .1,03⎡⎤-⎢⎥⎣⎦1,13⎡⎤-⎢⎥⎣⎦[0,1]1,0(0,1]3⎡⎫-⎪⎢⎣⎭【答案】B【分析】将集合化简,根据条件可得,然后分,,讨论,化简集合,A B A ⊆0m =0m <0m >B 列出不等式求解,即可得到结果.【详解】因为或,解得或1212x x ->⇒->12x -<-3x >1x <-即,{}31A x x x =><-或因为,所以AB A ⋃=B A ⊆当时,,满足要求.0m =B =∅当时,则,由,0m >110mx x m +<⇒<-B A ⊆可得,即111m m -≤-⇒≤01m <≤当时,则,由,0m <110mx x m +<⇒>-B A ⊆可得,即1133m m-≥⇒≥-103m -≤<综上所述,1,13m ⎡⎤∈-⎢⎥⎣⎦故选:B.3.函数的零点所在的区间为( )()22log f x x x=-+A .B .C .D .()01,()12,()23,()34,【答案】B【分析】判断函数的单调性,计算区间端点处函数值,由局零点存在定理即可判断答案.【详解】函数,是单调递增函数,()22log f x x x =-+0x >当 时,,0x +→()f x →-∞,2(1)1,(2)10,(3)1log 30,(4)40f f f f =-=>=+>=>故(1)(2)0f f ⋅<故函数的零点所在的区间为,()12,故选:B4.已知,若是真命题,则实数的取值范围是( )2:R,40p x x x a ∃∈++=p a A .B .()0,4(],4∞-C .D .(),0∞-[)4,+∞【答案】B【分析】根据特称命题为真命题转化为方程有实数根,结合一元二次方程有实数解的条件即可求解.【详解】因为是真命题,2:R,40p x x x a ∃∈++=所以方程有实数根,240x x a ++=所以,解得,2440a ∆=-≥4a ≤故实数的取值范围为.a (],4∞-故选:B.5.牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体初始温度为,则经过一定时0T 间t (单位:分钟)后的温度满足,其中是环境温度,h 为常数,现有一T ()01e a ha tT T T T ⎛⎫-=- ⎪⎝⎭a T 杯80℃的热水用来泡茶,研究表明,此茶的最佳饮用口感会出现在55℃.经测量室温为25℃,茶水降至75℃大约用时一分钟,那么为了获得最佳饮用口感,从泡茶开始大约需要等待(参考数据:,,,.)( )lg 20.30≈lg 30.50≈lg 50.70≈lg11 1.04≈A .4分钟B .5分钟C .6分钟D .7分钟【答案】C【分析】根据已知条件求出参数的值,进而转化为解指数方程,利用对数的运算以及换底公式即h 可求出结果.【详解】根据题意可知,,,25C a T =︒080C T =︒()01e a ha tT T T T ⎛⎫-=- ⎪⎝⎭因为茶水降至75℃大约用时一分钟,即,,1t =75C T =︒所以,解得,则,()1175258025e h⎛⎫-=- ⎪⎝⎭11e e 15010log log 5511h==1e110log 11h =所以要使得该茶降至,即,则有,得,55C ︒55C T =︒()155258025e th⎛⎫-=- ⎪⎝⎭11e e 306log log 5511t h==故,1e1e 1e 66log lg 116lg 6lg11lg 2lg 3lg1111log 101011lg10lg111lg11log lg 1111t h -+-=⨯====--0.30.5 1.0461 1.04+-==-所以大约需要等待6分钟.故选:C.6.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,函数的图像大致是( )322--=-x xy x x A .B .C .D .【答案】A【分析】先判断函数的奇偶性,可排除D ;当时,,可排除C ;由01x <<()0f x <,可排除B.()()()238f f f ><【详解】函数,由,即且且,()()()3222211x x x xf x x x x x x ----==--+30x x -≠0x ≠1x ≠-1x ≠故函数的定义域为,()()()(),11,00,11,-∞-⋃-⋃⋃+∞由,()()332222x x x xx x x f x f x x ---+---===-所以函数为偶函数,其图象关于轴对称,可排除D ;()322x x f x x x --=-y 当时,,,所以,可排除C ;01x <<22x x ->3x x <()0f x <由,,,即,可排除B.()528f =()21364f =()21845843008f =()()()238f f f ><故选:A.7.已知函数的定义域为,且为偶函数,若,则()f x R ()()()112,2f x f x f x ++-=+()02f =( )1151()k f k ==∑A .116B .115C .114D .113【答案】C 【分析】由可得函数的周期为,()()112f x f x ++-=()f x 4再结合为偶函数,可得也为偶函数,通过周期性与对称性即可求解.()2f x +()f x 【详解】由,得,()()112f x f x ++-=()()22f x f x ++=即,()()22f x f x +=-所以,()()()()42222f x f x f x f x ⎡⎤+=-+=--=⎣⎦所以函数的周期为,()f x 4又为偶函数,()2f x +则,()()22f x f x -+=+所以,()()()4f x f x f x =-=-所以函数也为偶函数,()f x 又,()()112f x f x ++-=所以,,()()1+3=2f f ()()242f f +=所以,()()()()12344f f f f +++=又,即,所以,()()112f f +-=()212f =()11f =又,,()()022f f +=()02f =,()20f ∴=所以()()()()()()()()115112342812342820114k f k f f f f f f f =⎡⎤=+++⨯+++=⨯++=⎣⎦∑故选:.C 8.已知函数是定义在上的奇函数,且对任意的,成立,当时,()f x R 0x >()()22f x f x +=-[]0,2x ∈,若对任意的,都有,则的最大值是( )()22f x x x =-[](),0x m m m ∈->()13f x +≤m A .B .C .D .7292112132【答案】A 【分析】求出函数在区间、上的值域,然后在时解不等式,根()f x []2,4[]4,6[]4,6x ∈()3f x ≤据题意可得出关于实数的不等式组,即可解得实数的取值范围,即可得解.m m 【详解】令,其中,则,()()g x f x =x ∈R ()()()()()g x f x f x f x g x -=-=-==所以,函数为偶函数,()g x 当时,,[]0,2x ∈()[]20,12f x x x -∈=则当时,,[]2,4x ∈022x ≤-≤则,()()()()[]222222222680,2f x f x x x x x =-=---=-+-∈当时,,[]4,6x ∈042x ≤-≤则,()()()()[]22444244410240,4f x f x x x x x =-=---=-+-∈当时,由可得或,[]4,6x ∈()2410243f x x x =-+-≤942x ≤≤1162x ≤≤当时,,[](),0x m m m ∈->111m x m -≤+≤+由可得,解得.()13f x +≤9129120m m m ⎧+≤⎪⎪⎪-≥-⎨⎪>⎪⎪⎩702m <≤故选:A.二、多选题9.已知,则 ( )0a b >>A .B .11b a>11ab b a->-C .D ()33222a b a b ab ->->【答案】AC【分析】对A ,对两边同除ab 化简即可判断;a b >对B ,对不等式移项进行因式分解得,即可进一步判断的符号不确定,即()110a b ab ⎛⎫--> ⎪⎝⎭11ab -可判断;对C ,对不等式移项进行因式分解得,由即可判断;()()220ab a ab b --+>()222a b ab a b ab+-=-+对D >【详解】对A ,,A 正确;110a b a b ab ab b a >>⇒>⇒>对B ,,∵,∴,不()11111010a b a b a b b a a b ab ⎛⎫->-⇔-+->⇔--> ⎪⎝⎭0a b ->1101ab ab ->⇔>等式不一定成立,B 错误;对C ,,∵,∴()()()33222220a b a b ab a b a ab b ->-⇔--+>0a b ->,不等式成立,C 正确;()22200a b ab a b ab +->⇔-+>对D>⇔>,不等式不成立,D错误;>⇔>故选:AC .10.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用(图1),明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(图2).一半径为2米的筒车水轮如图3所示,水轮圆心O 距离水面1米,已知水轮每60秒逆时针匀速转动一圈,如果当水轮上点P 从水中浮现时(图中点)开始计时,则( )0P A .点P 再次进入水中时用时30秒B .当水轮转动50秒时,点P 处于最低点C .当水轮转动150秒时,点P 距离水面2米D .点P 第二次到达距水面米时用时25秒(1【答案】BCD【分析】以O 为原点,以与水平面平行的直线为x 轴建立平面直角坐标系,则点P 距离水面的高度,逐一分析各选项即可求解.2sin 1306H t ππ⎛⎫=-+ ⎪⎝⎭【详解】解:由题意,角速度弧度/秒,26030ππω==又由水轮的半径为2米,且圆心O 距离水面1米,可知半径与水面所成角为,点P 再次进入0OP 6π水中用时为秒,故A 错误;264030πππ+⨯=当水轮转动50秒时,半径转动了弧度,而,点P 正好处于最低点,0OP 550303ππ⨯=53362πππ-=故B 正确;以O 为原点,以与水平面平行的直线为x 轴建立平面直角坐标系,设点P 距离水面的高度,()sin (0,0)H A t B A ωϕω=++>>由,所以,max min 31H A B H A B =+=⎧⎨=-+=-⎩21A B =⎧⎨=⎩又角速度弧度/秒,时,,所以,,26030ππω==0=t 06xOP π∠=30πω=6πϕ=-所以点P 距离水面的高度,当水轮转动150秒时,将代入,得,2sin 1306H t ππ⎛⎫=-+ ⎪⎝⎭150t =2H =点P 距离水面2米,故C 正确;将中,得,或,即1H =+2sin 1306H t ππ⎛⎫=-+ ⎪⎝⎭23063t k ππππ-=+223063t k ππππ-=+,或.6015t k =+6025t k =+()k N ∈所以点P 第二次到达距水面米时用时25秒,故D 正确.(1故选:BCD .11.已知函数在区间上有且仅有4条对称轴,则下列四个结论正确()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭[]0,π的是( )A .在区间上有且仅有3个不同的零点()f x ()0,πB .的最小正周期可能是()f x π2C .的取值范围是ω1013,33⎡⎫⎪⎢⎣⎭D .在区间上单调递增()f x π0,12⎛⎫ ⎪⎝⎭【答案】BC 【分析】先根据在区间上对称轴的情况求得的取值范围,然后结合函数的零点、最小()f x []0,πω正周期、单调性等知识对选项进行分析,从而确定正确答案.【详解】由函数,令,,则,,()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭πππ62x k ω+=+Z k ∈()31π3k x ω+=Z k ∈函数在区间上有且仅有4条对称轴,()f x []0,π即有4个整数k 符合,()31π0π3k ω+≤≤由,得,()31π0π3k ω+≤≤()310103133k k ωω+⇒+≤≤≤≤则,即,,故C 正确;0,1,2,3k =1333134ω+⨯<+⨯≤101333ω≤<对于A ,,,∴,()0,πx ∈πππ,π666x ωω⎛+∈⎫+ ⎪⎝⎭π7π9ππ,622ω⎡⎫+∈⎪⎢⎣⎭当时,在区间上有且仅有3个不同的零点;π7ππ,4π62ω⎡⎤+∈⎢⎥⎣⎦()f x ()0,π当时,在区间上有且仅有4个不同的零点,故A 错误;π9ππ4π,62ω⎛⎫+∈ ⎪⎝⎭()f x ()0,π对于B ,周期,由,则,2πT ω=101333ω≤<3131310ω<≤∴,又,所以的最小正周期可能是,故B 正确;6π3π135T <≤π6π3π,2135⎛⎤∈ ⎥⎝⎦()f x π2对于D ,,∴,又,π0,12x ⎛⎫∈ ⎪⎝⎭ππππ,66126x ωω⎛⎫+∈+ ⎪⎝⎭101333ω≤<∴,又,ππ4π19π,126936ω⎡⎫+∈⎪⎢⎣⎭4ππ19ππ,92362<>所以在区间上不一定单调递增,故D 错误.()f x π0,12x ⎛⎫∈ ⎪⎝⎭故选:BC12.已知函数,则下列说法正确的是( )123,12()1,222x x f x x f x ⎧--≤≤⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩A .若函数有4个零点,则实数k 的取值范围为()=-y f x kx 11,246⎛⎫⎪⎝⎭B .关于x 的方程有个不同的解*1()0()2n f x n N -=∈24n +C .对于实数,不等式恒成立[1,)x ∈+∞2()30xf x -≤D .当时,函数的图象与x 轴围成的图形的面积为11[2,2](*)n nx n N -∈∈()f x 【答案】AC【解析】根据函数的表达式,作出函数的图像,对于A ,C 利用数形结合进行判断,对于B ,D 利用特值法进行判断.【详解】当时,;当 时,;312x ≤≤()22f x x =-322x <≤()42f x x =-当,则,;23x <≤3122<≤x 1()1222⎛⎫==- ⎪⎝⎭x x f x f 当,则,;34x <≤3222<≤x 1()2222⎛⎫==- ⎪⎝⎭x x f x f 当,则, ;46x <≤232<≤x 11()2242⎛⎫==- ⎪⎝⎭x x f x f 当,则,;68x <≤342<≤x 1()1224⎛⎫==- ⎪⎝⎭x x f x f 依次类推,作出函数的图像:()f x对于A ,函数有4个零点,即与有4个交点,如图,直线的斜率()=-y f x kx ()y f x =y kx =y kx =应该在直线m , n 之间,又,,,故A 正确;16m k =124=n k 11,246⎛⎫∴∈ ⎪⎝⎭k 对于B ,当时,有3个交点,与不符合,故B 错误;1n =1()2f x =246+=n 对于C ,对于实数,不等式恒成立,即恒成立,由图知函数[1,)x ∈+∞2()30xf x -≤3()2≤f x x的每一个上顶点都在曲线上,故恒成立,故C 正确;()f x 32y x =3()2≤f x x 对于D , 取,,此时函数的图像与x 轴围成的图形的面积为,故D 错1n =[1,2]x ∈()f x 111122⨯⨯=误;故选:AC【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、填空题13.已知幂函数在上单调递增,则的解析式是_____.()2232(1)mm f x m x -+=-()0+∞,()f x 【答案】()2f x x =【分析】根据幂函数的定义和性质求解.【详解】解:是幂函数,()f x ,解得或,211m ∴-=2m =0m =若,则,在上不单调递减,不满足条件;2m =()0f x x =()0+∞,若,则,在上单调递增,满足条件;0m =()2f x x =()0+∞,即.()2f x x =故答案为:()2f x x =14.已知正实数,满足,则的最小值为______.x y 474x y +=2132x y x y +++【答案】94【分析】由,结合基本不等式求解即可.()()47232x y x y x y +=+++【详解】因为,474x y +=所以,()()2112123232432x y x y x y x y x y x y ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭所以,()()22211413242233x y x y x y x y x y x y ⎡⎤++=+++⎢⎥++⎣+++⎦因为为正实数,所以,,x y ()()220,02233x y yyx y x x +++>>+ 所以,当且仅当时等号成立,即()()4222233x y x y x y x y ++++≥=+32474x y x yx y +=+⎧⎨+=⎩时等号成立,84,1515x y ==所以,当且仅当时等号成立,()21194413244x y x y +≥++=++84,1515x y ==所以的最小值为,2132x y x y +++94故答案为:.9415.设函数,方程有四个不相等的实根,则2log ,02()(4),24x x f x f x x ⎧<<=⎨-<<⎩()f x m =(1,2,3,4)i x i =的取值范围是___________.22222341x x x x +++【答案】4120,2⎛⎫ ⎪⎝⎭【分析】根据函数对称性作出图象,结合图象,得到且,求得14234x x x x +=+=12ln ln x x -=,化简,结合换元法和二14322211,4,4x x x x x x ==-=-22222341x x x x +++(22222112828x x x x ⎫⎛⎫=+-++⎪ ⎪⎭⎝⎭次函数的性质,即可求解.【详解】当时,24x <<()()4f x f x =-所以在与上的图像关于对称.()f x ()2,4()0,22x =作出图象如下图所示,不防令,1234x x x x <<<可得且14234x x x x +=+=12ln ln x x -=所以,121=x x 14322211,4,4x x x x x x ==-=-所以.()2422222222123222222221111442828x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫+++=++-+-=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,令,则原式化为.()21,2x ∈22152,2t x x ⎛⎫=+∈ ⎪⎝⎭()252828,2,2h t t t t ⎛⎫=-+∈ ⎪⎝⎭因为其对称轴为,开口向上,所以在上单调递增2t =()h t 52,2⎛⎫⎪⎝⎭所以()41202h t <<所以的取值范围是.22222341x x x x +++4120,2⎛⎫ ⎪⎝⎭故答案为:.4120,2⎛⎫ ⎪⎝⎭【点睛】关键点睛:根据函数的对称性,作出函数的图象,结合函数的图象有()f x ,化简,利用换元法和二14322211,4,4x x x x x x ==-=-22222341x x x x +++(22222112828x x x x ⎫⎛⎫=+-++⎪ ⎪⎭⎝⎭次函数的性质求解是解答的关键.四、双空题16.调查显示,垃圾分类投放可以带来约元/千克的经济效益.为激励居民垃圾分类,某市准备0.34给每个家庭发放一张积分卡,每分类投放积分分,若一个家庭一个月内垃圾分类投放总量不1kg 1低于,则额外奖励分(为正整数).月底积分会按照元/分进行自动兑换.100kg x x 0.1①当时,若某家庭某月产生生活垃圾,该家庭该月积分卡能兑换_____元;10x =120kg ②为了保证每个家庭每月积分卡兑换的金额均不超过当月垃圾分类投放带来的收益的%,则40的最大值为___________.x 【答案】 1336【分析】①计算出该家庭月底的积分,再拿积分乘以可得出该家庭该月积分卡能兑换的金额;0.1②设每个家庭每月产生的垃圾为,每个家庭月底月积分卡能兑换的金额为元,分kg t ()f t、两种情况讨论,计算的表达式,结合可求得的最大值.0100t ≤<100t ≥()f t ()0.340.4f t t ≤⨯x 【详解】①若某家庭某月产生生活垃圾,则该家庭月底的积分为分,120kg 12010130+=故该家庭该月积分卡能兑换元;1300.113⨯=②设每个家庭每月产生的垃圾为,每个家庭月底月积分卡能兑换的金额为元.kg t ()f t 若时,恒成立;0100t ≤<()0.10.340.40.136f t t t t=<⨯=若时,,可得.100t ≥()0.10.10.340.4f t t x t =+≤⨯()min 0.3636x t ≤=故的最大值为.x 36故答案为:①;②.1336五、解答题17.已知集合,,.{}|212A x a x a =-<<+{}02B x x =<≤U =R (1)若,求;12a =()U A B ∩ (2)若,求实数的取值范围.A B ⋂=∅a 【答案】(1);5|22x x ⎧⎫<<⎨⎬⎩⎭(2)或{2x x ≤-32x ⎫≥⎬⎭【分析】(1)由集合得到,将代入集合,最后通过交集运算即可得到答案;B U B 12a =A (2)分和两种情况进行分类讨论,即可求解A =∅A ≠∅【详解】(1)由可得或,{}02B x x =<≤{0U B x x =≤ }2x >因为,所以,12a =5|02A x x ⎧⎫=<<⎨⎬⎩⎭所以()5|22U A B x x ⎧⎫=<<⎨⎬⎩⎭∩ (2)当时,则,解得,此时满足;A =∅212-≥+a a 3a ≥AB ⋂=∅当时,要使,只需或,A ≠∅AB ⋂=∅21220a a a -<+⎧⎨+≤⎩212212a a a -<+⎧⎨-≥⎩解得或,2a ≤-332a ≤<综上所述,实数的取值范围为或a {2x x ≤-32x ⎫≥⎬⎭18.在平面直角坐标系中,角的始边为轴的正半轴,终边在第二象限与单位圆交于点,xOy θx P 点的横坐标为.P 35-(1)求的值;cos 3sin 3sin cos θθθθ+-(2)若将射线绕点逆时针旋转,得到角,求的值.OP O 2πα22sin sin cos cos αααα--【答案】(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得的值,再利用同角三角函数的基本tan α关系,计算求得所给式子的值.(2)由题意利用诱导公式求得,再将化为,即3tan 4α=22sin sin cos cos αααα--22tan tan 1tan 1ααα--+可求得答案.【详解】(1)在单位圆上,且点在第二象限,的横坐标为,可求得纵坐标为,P P P 35-45所以,则.434sin ,cos ,tan 553θθθ==-=-cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--(2)由题知,则,,则2παθ=+3sin(cos 5sin 2παθθ=+==-24cos cos()sin 5παθθ=+=-=- ,sin 3tan cos 4ααα==故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++.2233()443()1241951--==-+19.已知函数是偶函数.()()2log 21x f x kx=+-(1)求的值;k (2)若函数,且在区间上为增函数,求m 的取值范围.()()[]1224,1,2f x xx h x m x +=+⋅∈()h x [1,2]【答案】(1)12k =(2)1[,)8-+∞【分析】(1)根据偶函数的定义列出等式结合对数的运算即可求解;(2)根据指数函数的单调性,利用复合函数的单调性法则,利用换元方法转化为二次函数的单调性问题,进而根据二次函数的单调性即可求解.【详解】(1)由是偶函数可得, .()f x ()()0f x f x --=则,()()()22log 21log 210x x k x kx -+---++=即 ,2212log 21x x kx x-+==+所以恒成立,(21)0k x -=故.12102k k -=⇒=(2)由(1)得,()()21log 212x f x x =+-所以,()21()log (21)22424421xf x xx x x x h x m m m ++=+⋅=+⋅=⋅++令,则 .[]2,1,2x t x =∈[]21,2,4y mt t t =++∈为使为单调增函数,则()h x ①时显然满足题意;0m =②;00122m m m >⎧⎪⇒>⎨-≤⎪⎩③.0101842m m m <⎧⎪⇒-≤<⎨-≥⎪⎩综上:m 的范围为.1,8⎡⎫-+∞⎪⎢⎣⎭20.中国地大物博,大兴安岭的雪花还在飞舞,长江两岸的柳枝已经发芽,海南岛上盛开着鲜花.燕子每年秋天都要从北方飞向南方过冬,专家发现,某种两岁燕子在飞行时的耗氧量与飞行速度米秒之间满足关系:,其中表示燕子耗氧量的单位数.v (/)5102033vq v =⨯≤≤()q(1)当该燕子的耗氧量为个单位时,它的飞行速度大约是多少?720(2)若某只两岁燕子飞行时的耗氧量变为原来的倍,则它的飞行速度大约增加多少?参考数据:3(,lg20.3≈lg30.48≈)【答案】(1)(米/秒)31(2)(米/秒)8【分析】(1)由耗氧量和飞行速度的关系可将表示为对数,然后求出即可.5vv (2)记燕子原来的耗氧量为,飞行速度为,现在的耗氧量为,飞行速度为,则可得1q 1v 2q 2v ,然后化为对数运算即可.21523v v -=【详解】(1)当时,,即,720q =5720102v =⨯5272v =所以,22222lg 3log 72log 8log 932log 33 6.25lg 2v ==+=+=+≈所以,31v ≈即它的飞行速度大约是米秒.31(/)(2)记燕子原来的耗氧量为,飞行速度为,现在的耗氧量为,飞行速度为,1q 1v 2q 2v 则,即,213q q =21551023102v v ⨯=⨯⨯所以,,21523v v -=212log 35v v -=所以,212lg35log 358lg2v v ⎛⎫-==⨯≈ ⎪⎝⎭所以它的飞行速度大约增加米秒.8(/)21.已知在定义域内单调的函数满足恒成立.()12ln 213x f f x x ⎛⎫+-=⎪+⎝⎭(1)设,求实数的值;()1ln 21x f x x k +-=+k (2)解不等式;()()272ln e 21x x f x x +>-+-+(3)设,若对于任意的恒成立,求实数的取值范围,并指()()ln g x f x x=-()()2g x mg x ≥[]1,2x ∈m 出取等时的值.x 【答案】(1)1k =(2)7(,0)3-(3),当且仅当时等号成立,2m ≤2log 1)x =【分析】(1)由题意列方程求解,(2)由函数的单调性转化后求解,(3)参变分离后转化为最值问题,由换元法结合基本不等式求解,【详解】(1)由题意得,()1ln 21x f x x k =-++,12ln 213()k f k k k +=-+=由于在上单调递增,1ln 21k y k k=-++(0,)k ∈+∞观察得的解为,12ln 213k k k -+=+1k =(2)由于在定义域内单调,所以为常数,()f x ()1ln 21xf x x +-+由(1)得,在上单调递增,()1ln 121x f x x =-++()f x (0,)+∞,()12ln()1ln e 1(212)xx xf x x x ---+=---=++故原不等式可化为,()72()f x f x +>-由得,270027x x x x +>⎧⎪->⎨⎪+>-⎩703x -<<故原不等式的解集为7(,0)3-(3)121022)1(1xx x g x -=+=+>+可化为对恒成立,()()2g x mg x ≥241412112144242x x x x x x x x xx m ++-+≤⋅==++++[]1,2x ∈设,21[3,1]xt =-+∈--则,,22211242(1)1233x x x t t t t t t t t -+===+-+-+-+-[3,1]t ∈--由基本不等式得,当且仅当2t t +≤-t =故当,t =min 1()323t t =+-故,当且仅当时等号成立,2m ≤-2log 1)x =+22.对于函数.2()ln f x a x ⎛⎫=+ ⎪⎝⎭(1)若,且为奇函数,求a 的值;()(1)g x f x =-()g x (2)若方程恰有一个实根,求实数a 的取值范围;()ln[(6)28]f x a x a =-+-(3)设,若对任意,当时,满足,求实数a 的取值0a >1,14b ⎡⎤∈⎢⎥⎣⎦12,[,1]x x b b ∈+()()12ln 2f x f x -≤范围.【答案】(1);1a =-(2);{}(2,3]4,6⋃(3).245a ≥【分析】(1)利用奇函数的定义可得;(2)由题可得,分类讨论可得;2(6)2820a a x a x a x ⎧+=-+-⎪⎪⎨⎪+>⎪⎩①②(3)由题可得,进而可得对()()max min 22l l n n n l 21a f x a b f x b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭-=≤+()2220ab a b ++-≥任意的恒成立,然后求函数的最小值即得.1,14b ⎡⎤∈⎢⎥⎣⎦()()222h b ab a b =++-【详解】(1)∵,2()ln f x a x ⎛⎫=+ ⎪⎝⎭∴,又为奇函数,22()(1)ln ln11a ax g x f x a x x +-⎛⎫=-=+= ⎪--⎝⎭()g x ∴,()2222222()()ln ln ln 0111a a x a ax a axg x g x x x x +-+-+++-=+==-+-∴,对定义域内任意恒成立,()()2222110a a x +-+-=x ∴,解得,()2221010a a ⎧+-=⎪⎨-=⎪⎩1a =-此时,定义域为符合奇函数的条件,1()ln1xg x x +=-()1,1-所以;1a =-(2)方程,2ln ln[(6)28]a a x a x ⎛⎫+=-+- ⎪⎝⎭所以,2(6)2820a a x a x a x ⎧+=-+-⎪⎪⎨⎪+>⎪⎩①②由①可得,,即,()2(6)820a x a x -+--=[]()(6)210a x x --+=当时,方程有唯一解,满足②,6a ==1x -2260a x +=-+>所以符合条件;6a =当时,方程有两相等解,满足②,4a =216x a ==--2240a x +=-+>所以符合条件;4a =当且时,方程有两不等解,4a ≠6a ≠122,16x x a ==--若满足②,则,126x a =-12260a a x +=->3a >若满足②,则,21x =-2220a a x +=->2a >所以当时方程恰有一个实根;(2,3]a ∈综上,实数的取值范围为;a {}(2,3]4,6⋃(3)令,则在上为减函数,在上为增函数,2t a x =+2t a x =+()0,∞+ln y t =()0,∞+∴函数在上为减函数,2()ln f x a x ⎛⎫=+ ⎪⎝⎭[,1]b b +当时,满足,12,[,1]x x b b ∈+()()12ln 2f x f x -≤则,()()()()max min 22ln ln 1ln 21a f x f x f a b f b b b -=-+=≤+⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭∴,即对任意的恒成立,2122a a bb ⎛⎫+++ ⎝≤⎪⎭()2220ab a b ++-≥1,14b ⎡⎤∈⎢⎥⎣⎦设,又,所以函数在单调递增,()()222h b ab a b =++-0a >()()222h b ab a b =++-1,14⎡⎤⎢⎥⎣⎦所以,()min 12204164a a h b h +⎛⎫==+-≥ ⎪⎝⎭∴.245a ≥。

江苏省响水中学高中数学 第二章《函数的单调性》课件 苏教版必修1

江苏省响水中学高中数学 第二章《函数的单调性》课件 苏教版必修1

球在运动时的高度绘制成关于运动时
间的函数图象.
问题1
问题2
依据网球上升和下降的路径变化可以把图象分为 4 部 分,总体上看函数图象的变化是先上升后降再 上升,最后 下降 ,利用函数的 单调性 可以研究函数图象上升与下 降的变化过程. (1)①增函数:设函数y=f(x)的定义域为I,如果对于定义域 I内的某个区间D内的 任意 两个自变量的值x1,x2,当 x1<x2 时,都有 f(x )<f(x ),那么就说f(x)在区间D上是增函 1 2 数,区间D称为y=f(x)的 单调递增区间. ②减函数:如果对于区间D上的 任意 两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)>f(x2) ,那么就说f(x)在这个 区间上是减函数,区间D称为y=f(x)的 单调递减区间 . (2)如果函数y=f(x)在某个区间是增函数或减函数,那么我 们说函数y=f(x)在这一区间上具有(严格的)单调性,称函数 y=f(x)为 单调函数 .
【解析】 (1)函数可化为 y= ������-1,������ ≥ 1, 其图象如图甲, -������ + 1,������ < 1,
根据图象 ,可以看出函数 y=|x-1|在 (-∞,1)上单调递减,在 [1,+∞)上单调递增. ������ 2 -2x + 1,x ≥ 0, (2)函数 y=x2-2|x|+1= 其图象如图乙,由图 2 ������ + 2x + 1,x < 0, 象可以看出 ,该函数在 (-∞,-1)上单调递减,在[-1,0)上单调递增,在 [0,1]上单调递减,在(1,+∞)上单调递增 .
2������
������
以 y=bx+a 的图象大致为④中的图象.

函数单调性江苏教育版

函数单调性江苏教育版

特征 当x1<x2时, f(x1) < f(x2) 当x1<x2时, f(x1) > f(x2)
判断函数单调性的方法:
1、图象法
2、代数论证法
证明函数的单调性常用步骤: (1)取值 (2)作差变形 (3)定号 (4)结论
思考题:
讨论函数y=x +
1 x
(x > 0)的单调性。
作业:课本第37页 练习5、6
设 x1,x2 为区间(0,+∞)上的任意两个值,且x1<x2, 则f (x1) – f (x2)= (x12 + x1 ) – (x22 + x2 )
=( x12 –x22) + (x1 – x2)
= (x1 – x2) (x1 + x2) + (x1 – x2)
= (x1 – x2) (x1 + x2 +1) 又 x2 > x1 > 0,所以x1 – x2< 0, x1 + x2 +1 >0,
(1)y = x
y y=x
1 ·f(x1)
O x1 1·
x
此函数在区间 大,在区间
内y随x的增大而增 y随x的增大而减小;
引例2:画出下列函数的图象
y (1)y = x
y=x
f(x1)

O 1· x1 x
此函数在区间(-∞, +∞ )内y随x的增大而增
大,在区间
y随x的增大而减小;
引例2:画出下列函数的图象
y
f(x1) y = x2

O 1· x1 x
此函数在区间 [0, +∞ ) 内y随x的增大而增 大,在区间 (-∞, 0 ] 内y随x的增大而减小。

函数的单调性及与函数有关的不等问题

函数的单调性及与函数有关的不等问题

函数的单调性及与函数有关的不等问题一.函数单调性的意义:函数的单调性是函数又一重要性质,设函数y = f (x) (x • I).若对于任意的X" X2 D. (D - I),当x1< x2时都有f(X》< f(x2) (f (x i) f (x2))则f (x)是区间D上的增(减)函数,区间D为f (x)的增(减)区间。

特别的当D=I时,称y = f (x)是单调函数。

(1)必须了解单调性与“区间”紧密相关,一个函数在不同的区间上可以有不同的单调性。

即:函数的单调性只能在定义域内讨论,且谈函数的单调性时,必须指明对应的区间。

(2)定义中的X i,X2具有任意性,证明时不可用特殊值代替。

(3)函数的单调性在比较大小、求函数最值方面都有广泛的应用。

因此有f(x)是增(减)函数,且f(X i)<f(X2)= X i<X2 (X,〉%),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。

(4)熟练掌握增、减函数的定义,注意定义的如下两种等价形式:设X,,X2・[a,b],那么f (Xi) - f (x2)0= f (x)在[a,b]上是增函数;①X, -x2f (Xi) - f (x2)0= f (X)在[a,b]上是减函数。

X i - X2②(X i -X2)[ f (X i) - f(X2)]>0= f (x)在[a,b]上是增函数;(X i—X2)[f(xj f (X<0护f(x)在[a,b]上是减函数需要指出的是,①的几何意义是:增(减)函数图像上任意两点(X i, f(X i)),(X2, f (X2))连线的斜率都大于(小于)零。

【考点专练】i.下列说法正确的是( )A. 定义在a,b上的函数f (X),若存在X i<X2,有f(X i)<f(X2),那么f (X)在a,b上为增函数。

B. .定义在a, b上的函数f (x),若有无穷多对X" X2J a,b,使得当X,< X2时,有f(X i)<f(X2),那么f (x)在a,b上为增函数。

江苏省苏州市2022-2023学年高三上学期期中考试数学试卷(学生版)

江苏省苏州市2022-2023学年高三上学期期中考试数学试卷(学生版)

高三数学第 页(共6页)1 苏州市2022~2023学年第一学期高三期中调研试卷数 学 2022.11一、单项选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上. 1.已知集合A ={x |x 2≤4x },B ={x |3x -4>0},则A ∩B =A .[0,+∞)B .[0,43)C .(43,+ ) D .(-∞,0) 2.设复数z 满足(1+i)z =2i ,则|z |=A .12B .22 C . 2 D .2 3.在△ABC 中,点N 满足→AN =2→NC ,→BN =→a ,→NC =→b ,那么→BA =A .→a -2→bB .→a +2→bC .→a -→bD .→a +→b 4.“sin α+cos α=1”是“sin2α=0”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.奇函数f (x )在R 上单调递增,若正数m ,n 满足f (2m )+f (1n -1)=0,则1m +n 的最小值为A .3B .4 2C .2+2 2D .3+2 2 6.已知函数f (x )=3cos ωx -sin ωx (ω>0)的周期为2π,那么当x ∈[0,2π3]时,ωf (x高三数学第 页(共6页)2 )的取值范围是A .[-32,32]B .[-3,3]C .[-32,1] D .[-1,2] 7.古时候,为了防盗、防火的需要,在两边对峙着高墙深院的“风火巷”里常有梯子、铜锣、绳索等基本装备.如图,梯子的长度为a ,梯脚落在巷中的M 点,当梯子的顶端放到右边墙上的N 点时,距地面的高度是h ,梯子的倾斜角正好是45°,当梯子顶端放到左边墙上的P 点时,距地面的高度为6尺(1米=3尺),此时梯子的倾斜角是75°.则小巷的宽度AB 等于A .6尺B .a 尺C .(h +2)尺D .h +a2尺 8.已知实数a =log 23,b =2cos36°,c =2,那么实数a ,b ,c 的大小关系是A .b >c >aB .b >a >cC .a >b >cD .a >c >b 二、多项选择题:本大题共45分,共计20分.每小题给出的四个选项中,都有多个选项是正确的,全部选对的得5分,选对但不全的得2分,选错或不答的得0分.请把正确的选项填涂在答题卡相应的位置上.9.己知非零实数a ,b ,c 满足a >b >c 且a +b +c =0,则下列不等式一定正确的有A .c a >c bB .c a +a c ≤-2C .(a -b )a >(b -c )aD .c a ∈(-2,-12) 10.已知函数f (x )=cos2x -2cos x cos3x ,则A .f (x )的最大值为1B .f (π6)=f (-π3)C .f (x )在(-π12,π6)上单调递增D .f (x )的图象关于直线x =π4对称11.在棱长为2的正方体中,M ,N 分别是棱AB ,AD 的中点,线段MN 上有动点P ,棱CC 1上点E 满足C 1C =3C1E .以下说法中正确的有高三数学第 页(共6页)3A .直线C 1P 与BE 是异面直线B .直线C 1P ∥平面BDE C . 三棱锥C -C 1MN 的体积是1D .三棱锥C -C 1MN 的体积是3 12.已知函数f (x )=(x 2-x )(x 2+ax +b )的图象关于直线x =2对称,则A .a +b =5B .f (x )的最小值是-3516C .f (x )图象与直线2x +y -8=0相切D .f (x )图象与直线12x -y -48=0相切 三、填空题:本大题共4小题,每小题5分,若两个空,第一个空2分,第二个空3分,共计20分.请把答案填写在答题卡相应位置上.13.命题p :∃x ∈R ,x 2+mx +2≤0,若“非p ”为真命题,则m 的取值范围是 .14.已知函数f (x )=⎩⎨⎧2x ,x ≤0,|log 2x |,x >0,则函数g (x )=2-f [f (x )]的所有零点之积等于 .15.在△ABC 中,已知B >C ,A =3132,cos(B -C )=18,那么tan B = . 16.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上.设外围第一个正方形A 1B 1C 1D 1的边长为1,往里第二个正方形为A 2B 2C 2D 2,…,往里第n 个正方形为A n B n C n D n .那么第7个正方形的周长是 ,至少需要前 个正方形的面积之和超过2.(本小题第一空2分,第二空3分,参考数据:lg2=0.301,lg3=0.477).四、解答题:本大题共6小题,共计70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A cos B cos C的取值范围.18.(本小题满分12分)平面直角坐标系xOy中,已知点E(cosα,sinα)(其中0≤α≤π),将向量→OE逆时针方向旋转90°,得到向量→OF,记A(1,0),B(0,-1).(1)求|→AE+→AF|的最大值:(2)试判断两向量→AE与→BF的位置关系.高三数学第页(共6页)4高三数学第 页(共6页)519.(本小题满分12分)如图,在三棱锥P -ABC 中,∠ACB =90°,P A ⊥底面ABC . (1)求证:平面P AC ⊥平面PBC ;(2)若AC =BC =P A ,M 是PB 的中点,记AM 与底面ABC 所成角为α,AM 与平面PBC 所成角为β,试研究α与β的等量关系.20.(本小题满分12分)已知首项a 1=4的数列{a n }的前n 项和为S n ,对任意n ∈N *都有a n S n=n +12n .(1)求数列{a n }的通项公式;(2)记c n =a n 2n ,数列{c n }的前n 项和为T n ,有A ≤1T 1+1T 2+…+1T n≤B 恒成立,求B -A 的最小值.21.(本小题满分12分)给定函数f(x)=(x+1)e x.(1)判断函数f(x)的单调性,并求出f(x)的极值;(2)画出函数f(x)的大致图象;(3)求出方程f(x)=a(a∈R)的解的个数.22.(本小题满分12分)已知函数f(x)=ln(1+x)-(ln a) x(实数a>0).(1)若实数a∈N*,当x∈(0,+∞)时,f(x)<0恒成立,求实数a的最小值;(2)证明:(1+1n)n<3.高三数学第页(共6页)6。

高中数学函数单调性解题技巧——以苏教版高中数学为例

高中数学函数单调性解题技巧——以苏教版高中数学为例

是采用带有无理式的函数来进行论证,那么就必须f要(1注− m) < f (m2 −1) 。同时基于单调性的定义,可以求出 1− m < m2 −1,−1 < 1− m
意无理式的有理化。
1−1m− <mm<2m−21−,,−11,−<11<−1m− <m1<, 1,, −1 < m2 −1 < 1 ,以此可以求出 m
数同增异减的特性为依据可知,当 x 属于(-∞,0)时,
单调递减;当 x 属于(0,+∞)时,
单调递增。
3 用函数图象解题
利用函数图象能够找出函数在区间上的增减趋势,
然后可以此为基础进行解题。如果在单调区间上,图象呈
明显的上升趋势,且 x 值在逐渐增大,那么该函数就是增
函数。教师在教学函数的单调性时,加深学生对常见的函
单调减函数,所以(1,+∞)+∞ ⊆ ( ,+∞),从而可以得
在区间 I 上属于单调增函数,并且 f (x1) < f (x2 ),那么 x1 < x2 。基于此,可判断出 f (x) 在区间 (−1,1) 上属于单调
握用定义法证明函数单调性的步骤。若题目重点强调的 增函数,所以可将 f (1− m) − f (m2 −1) < 0 化为 f (1− m) < f (m2 −1)
变,所以教师在开展教学时,不能只针对函数的求解方法 进行单一的讲解,还需要有针对性地运用函数单调性解
因为 x1 - x2 <0, x12 + 2 + x1 > 0, x22 + 2 + x2 > 0 ,
题,以帮助学生更好地解题。
1 运用函数单调性定义解题

江苏省苏州市2022-2023学年高一上学期期末数学试题及答案

江苏省苏州市2022-2023学年高一上学期期末数学试题及答案

江苏省苏州市2022-2023学年高一上学期期末数学试题一、单项选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合U={x∈N|0<x<8},A={1,2,3},B={3,4,5,6},则下列结论错误的是()A.A∩B={3}B.A∪B={1,2,3,4,5,6}C.∁U A={4,5,6,7,8}D.∁U B={1,2,7}2.已知a,b∈R,那么“3a≤3b”是“log a>log b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.毛主席的诗句“坐地日行八万里”描写的是赤道上的人即使坐在地上不动,也会因为地球自转而每天行八万里路程.已知我国四个南极科考站之一的昆仑站距离地球南极点约1050km,把南极附近的地球表面看作平面,则地球每自转,昆仑站运动的路程约为()A.2200km B.1650km C.1100km D.550km4.用二分法求函数f(x)=ln(x+1)+x﹣1在区间[0,1]上的零点,要求精确度为0.01时,所需二分区间的次数最少为()A.5B.6C.7D.85.若实数a,b满足+=,则ab的最小值为()A.B.2C.2D.46.设函数f(x)=cos(ωx﹣)(ω>0).若f(x)≤f()对任意的实数x都成立,则ω的最小值为()A.B.C.D.17.已知幂函数的图象关于y轴对称,且在(0,+∞)上单调递减,则满足的a的取值范围为()A.(0,+∞)B.C.D.8.定义:正割secα=,余割cscα=.已知m为正实数,且m•csc2x+tan2x≥15对任意的实数x均成立,则m的最小值为()A.1B.4C.8D.9二、多项选择题:本大题共4小题,每小题5分,共20分。

在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分。

9.下列选项中,与sin(﹣)的值相等的是()A.2sin15°sin75°B.cos18°cos42°﹣sin18°sin42°C.2cos215°﹣1D.10.下列函数中,既是偶函数又是区间(1,+∞)上的增函数有()A.y=3|x|+1B.y=ln(x+1)+ln(x﹣1)C.y=x2+2D.11.函数f(x)=3sin(2x+φ)的部分图象如图所示,则下列选项中正确的有()A.f(x)的最小正周期为πB.是f(x)的最小值C.f(x)在区间上的值域为D.把函数y=f(x)的图象上所有点向右平移个单位长度,可得到函数y=3sin2x的图象12.若6b=3,6a=2,则()A.>1B.ab<C.a2+b2<D.b﹣a>三、填空题:本大题共4小题,每小题5分,共20分。

苏州市必修五第二章《解三角形》检测(含答案解析)

苏州市必修五第二章《解三角形》检测(含答案解析)

一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC 的面积为3154,则a =( ) A .2B .3C .4D .52.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形3.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c ac b +=+,则cos sin A C +的取值范围为( )A .33,2⎛⎫ ⎪ ⎪⎝⎭B .2,22⎛⎫⎪ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .()3,24.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知3a =,(2332)b ∈,,且223cos cos a b B b A =+,则cos A 的取值范围为( )A .[12,34] B .(12,34) C .[1324,34] D .(1324,34) 5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC 边上的高为3a ,则c bb c+的最大值是( ) A .8B .6C .32D .46.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .177.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( ) A .(2,22⎤⎦B .(22,4⎤⎦C .(4,222⎤+⎦D .(222,6⎤+⎦8.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若3013C c a =︒==,,,则ABC ∆的面积为A .3 B .3C .34D .329.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m10.在△ABC 中,AC 2=BC =1,∠B =45°,则∠A =( )A .30°B .60°C .30°或150°D .60°或120°11.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( ) A .35mB .10mC .490013m D .521m12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒二、填空题13.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,133sin sin B C +=,则bc 的值为______. 14.在ABC 中,角,,A B C 分别对应边,,a b c ,ABC 的面积为S ,若3cos cos 3S a B b A =+,cos sin 7tan cos sin 12A A A A π+=-,3c =,则a =__________. 15.在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,且a x =,3b =,60B =,若ABC ∆有两解,则x 的取值范围是__________.16.给出以下四个结论:①函数()211x f x x -=+的对称中心是()1,2-;②若关于x 的方程10x k x-+=在()0,1x ∈没有实数根,则k 的取值范围是2k ≥;③在ABC 中,若cos cos b A a B =则ABC 为等腰三角形;④若将函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后变为偶函数,则ϕ的最小值是12π.其中正确的结论是________.17.ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若2222b a c ac +-=,3sin B =,则C =__________. 18.如图,研究性学习小组的同学为了估测古塔CD 的高度,在塔底D 和A ,B (与塔底D 同一水平面)处进行测量,在点A ,B 处测得塔顶C 的仰角分别为45︒和30,且A ,B 两点相距127m ,150ADB ∠=︒,则古塔CD 的高度为______m .19.如图,要计算某湖泊岸边两景点B 与C 的距离,由于受地形的限制,需要在岸上选取A 和D 两点,现测得5km AB =,7km AD =,60ABD ∠=︒,15CBD ∠=︒,120BCD ∠=︒,则两景点B 与C 的距离为________km.20.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和132c b =,则tan B =______ 三、解答题21.将函数()sin f x x x =图象上所有点向右平移6π个单位长度,然后横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象. (1)求函数()g x 的解析式及单调递增区间;(2)在ABC 中,内角,,A B C 的对边分别为,,a b c ,若1sin cos 364B B ππ⎛⎫--= ⎪⎝⎭⎛⎫ ⎪⎝⎭,,6c g b π⎛⎫== ⎪⎝⎭ABC 的面积. 22.已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,22(sin sin )sin sin sin A B C A B -=-.(Ⅰ)求角C 的大小;(Ⅱ)若3a b =,求cos(2)B C +的值.23.在①22(sin sin )sin sin sin B C A B C -=-,②sin sin 2B Cb a B +=,③sin cos()6a Bb A π=-这三个条件中任选一个,补充在下面问题中并作答.问题:ΔABC 的内角,,A B C 的对边分别为,,a b c 2b c +=,______,求A 和C .注:若选择多个条件作答,按第一个解答计分.24.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且bcos A c ⋅=. (1)求角B ;(2)若ABC 的面积为BC 边上的高1AH =,求b ,c . 25.在ABC 中,角,,A B C 所对的边分别为,,a b c ,若角C 为23π,且()()()sin 2sin cos A C B C A B +=++.(1)求::a b c 的值;(2)若ABC 的内切圆的半径32r =,求ABC 的面积.26.在ABC 中,它的内角A ,B ,C 的对边分别为a ,b ,c ,且23B π=,b = (Ⅰ)若2cos cos 3A C =,求ABC 的面积; (Ⅱ)试问111a c+=能否成立?若能成立,求此时ABC 的周长;若不能成立,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 24ABCS bc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin A ==,1131sin 224244ABCSbc A a a ==⨯⨯⨯=,解得:4a =. 故选:C 2.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形, 故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状. 3.A解析:A 【分析】 由余弦定理求得6B π=,并求得32A ππ<<,利用三角恒等变换思想将cos sin A C +化为以角A 为自变量的正弦型函数,利用正弦函数的基本性质可求得cos sin A C +的取值范围.【详解】由222a cb ++和余弦定理得222cos 22a cb B ac +-==,又()0,B π∈,6B π∴=.因为三角形ABC 为锐角三角形,则0202A C ππ⎧<<⎪⎪⎨⎪<<⎪⎩,即025062A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32A ππ<<,1cos sin cos sin cos sin cos cos 662A C A A A A A A Aπππ⎛⎫⎛⎫+=+--=++=++ ⎪ ⎪⎝⎭⎝⎭3cos 223A A A π⎛⎫=+=+ ⎪⎝⎭, 32A ππ<<,即25336A πππ<+<,所以,1sin 23A π⎛⎫<+< ⎪⎝⎭,3cos sin 2A C <+<,因此,cos sin AC +的取值范围是32⎫⎪⎪⎝⎭. 故选:A. 【点睛】本题考查三角形中代数式取值范围的计算,涉及利用余弦定理求角,解题的关键就是利用三角恒等变换思想将代数式转化为以某角为自变量的三角函数来求解,考查计算能力,属于中等题.4.D解析:D 【分析】本题先求9c b=,再化简22222819cos 218b bc a b A bc +-+-==,接着求出22817545()42b b +∈,,最后求出cos A 的取值范围即可. 【详解】解:由题意有3a =,223cos cos a b B b A =+,由余弦定理得:2222222233232a c b b c a b b c bc+-+-=⋅+⋅⨯⨯,整理得:9bc = , 所以9c b=,则22222819cos 218b bc ab A bc+-+-==.因为b ∈,所以2(1218)b ∈,,所以22817545()42b b +∈,, 则133cos (,)244A ∈. 故选:D. 【点睛】本题考查余弦定理,利用函数ky x x=+,(0k >)的单调性求范围,是中档题. 5.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c+2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 22bc A a =,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c+的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.6.D解析:D 【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEF AD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.7.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯⎪⎝⎭,据此有:a b+≤△ABC 的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC 周长的取值范围是(4,2+. 本题选择C 选项.8.A解析:A 【分析】根据已知求出b 的值,再求三角形的面积.【详解】在ABC ∆中,301C c a =︒==,, 由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去).∴ABC ∆的面积为111sin 1222ab C =⨯=. 故选A . 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203sin120BC3tan 3020320AB BC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.10.A解析:A 【分析】直接利用正弦定理求出sin A 的大小,根据大边对大角可求A 为锐角,即可得解A 的值. 【详解】因为:△ABC 中,BC =1,AC =∠B =45°,所以:BCAC sinA sinB=,sinA 112BC sinB AC ⨯⋅===. 因为:BC <AC ,可得:A 为锐角, 所以:A =30°. 故选:A . 【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.11.D解析:D【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h ,由已知可知3,OA h OB h ==,且150AOB ∠=,在三角形AOB 中,由余弦定理得22233352cos15033h h h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得521h m =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.12.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案.【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒.故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.二、填空题13.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin 3a R R A =⇒==,根据正弦定理可知1322b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-,得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.14.【分析】先根据三角形面积公式以及正弦定理化简条件得再利用弦化切以及两角和正切公式化简条件得即得最后根据余弦定理解得【详解】由可知根据正弦定理知又得因为所以故因此又故故答案为:【点睛】本题考查三角形面【分析】cos cos a B b A =+得sin b A =再利用弦化切以及两角和正切公式化简条件cos sin 7tan cos sin 12A A A A π+=-得3A π=,即得4b =,最后根据余弦定理解得a =. 【详解】cos cos S a B b A =+1sin cos cos 2ab C a B b A =+,1sin sin sin cos sin cos sin 2A b C AB B AC ⋅=+=,又0,sin 0C C π<<>,得sin b A =cos sin 1tan cos sin 1tan A A A A A A ++=--7tan tan 412A ππ⎛⎫=+= ⎪⎝⎭,因为()0,A π∈,所以7412A ππ+=,故3A π=,因此4b =,又2222cos 13a b c bc A =+-=,故a .【点睛】本题考查三角形面积公式、正弦定理、余弦定理,考查综合分析求解能力,属中档题.15.【分析】利用正弦定理得到再根据有两解得到计算得到答案【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理有两解意在考查学生的计算能力解析:【分析】利用正弦定理得到sinA =ABC ∆有两解得到sin sin 1B A <=<,计算得到答案. 【详解】由正弦定理得:sinsin sin sin a b x A A B A =⇒== 若ABC ∆有两解:sin sin 13B A x <=<⇒<<故答案为 【点睛】本题考查了正弦定理,ABC ∆有两解,意在考查学生的计算能力.16.①③④【分析】将化成后可得图象的对称中心故可判断①的正误;参变分离后考虑在上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出的值从而可判断④的正误【详解】对于①因为故的图解析:①③④ 【分析】将()f x 化成()321f x x -=++后可得图象的对称中心,故可判断①的正误;参变分离后考虑1y x x=-在()0,1上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出ϕ的值,从而可判断④的正误. 【详解】对于①,因为()321f x x -=++,故()f x 的图象可以看出3y x-=向左平移1个单位,向上平移2个单位,故()f x 的图象的对称中心为()1,2-,故①正确. 对于②,考虑方程10x k x -+=在()0,1上有实数根即1k x x=-在()0,1上有实数根, 故(),0k ∈-∞, 故关于x 的方程10x k x-+=在()0,1x ∈没有实数根时,则[)0,k ∈+∞,故②错误. 对于③,由正弦定理得到sin cos sin cos =B A A B ,故()sin 0B A -=, 因为(),B A ππ-∈-,故0B A -=即B A =,故③正确. 对于④,平移后得到的图象对应的解析式为sin 223πy x φ⎛⎫=-- ⎪⎝⎭, 因为该函数为偶函数,故202,32ππφk πk Z ⨯--=+∈, 故5,212k ππφk Z =--∈,因为0ϕ>,故min 12πϕ=,故④正确. 故答案为:①③④. 【点睛】本题考查分式函数的图象性质、函数值域的求法、正弦定理和三角变换以及正弦型函数的图象特征,注意在三角形中,可利用正弦定理把边角的混合关系转化为边的关系或角的关系,而正弦型函数图象的性质,可利用整体法结合正弦函数的性质来讨论,本题属于中档题.17.【分析】首先利用余弦定理将题中条件整理得到根据正弦定理可得结合三角形内角的取值范围最后求得结果【详解】内角的对边分别为且整理得所以由正弦定理得整理得因为所以故答案为:【点睛】该题考查的是有关解三角形 解析:6π【分析】首先利用余弦定理将题中条件整理得到cos b C c =,根据正弦定理可得sin tan B C ==,结合三角形内角的取值范围,最后求得结果. 【详解】ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2222b a c ac +-=, 整理得222cos 22b a c ab ac C +-==,所以cos b C c =,由正弦定理得sin cos sin B C C =,整理得sin tan 3B C ==,因为(0,)C π∈,所以6B π=,故答案为:6π. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理、正弦定理、已知三角函数值求角,属于中档题.18.12【分析】设用表示出在中由余弦定理列方程求出【详解】由题意知:平面设则在中由余弦定理得:即解得故答案为:12【点睛】此题考查了余弦定理以及特殊角的三角函数值熟练掌握余弦定理是解本题的关键属于中档题解析:12 【分析】设CD h =,用h 表示出,AD BD ,在ABD △中,由余弦定理列方程求出h . 【详解】由题意知:CD ⊥平面,45,30,150,,ABD DAC DBC ADB AB ∠=︒∠=︒∠=︒=设CD h =,则,AD CD h BD ====,在ABD △中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅⋅∠即(222233h h h =++,解得12h m =故答案为:12 【点睛】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键,属于中档题.19.【分析】在中根据由余弦定理解得然后在中利用正弦定理求解【详解】在中因为由余弦定理得整理得解得或(舍去)在中因为所以由正弦定理得:所以故答案为:【点睛】本题主要考查余弦定理和正弦定理的应用还考查了运算【分析】在ABD △中,根据5km AB =,7km AD =,60ABD ∠=︒,由余弦定理解得8BD =,然后在BCD △中,利用正弦定理sin sin BD BCBCD BDC=∠∠求解.【详解】在ABD △中,因为5km AB =,7km AD =,60ABD ∠=︒, 由余弦定理得2222cos AD AB BD AB BD ABD =+-⋅⋅∠, 整理得249255BD BD =+-, 解得8BD =或3BD =-(舍去),在BCD △中,因为15CBD ∠=︒,120BCD ∠=︒, 所以45BDC ∠=︒, 由正弦定理得: sin sin BD BCBCD BDC=∠∠,所以sin 45sin1203BD BC ⋅︒==︒.【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.20.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 1sin 2tan 2A B A B B B +==+又因为12c b =+1=2+12+1tan 2B =. 故答案为:12.【点睛】本题考查了正余弦定理的综合运用,属于中档题.三、解答题21.(1)()2sin 26g x x π⎛⎫=+⎪⎝⎭,单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈;(2)【分析】(1)由题可得()2sin 26g x x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-+≤+≤+即可解得单调递增区间;(2)由题可得2c =,6B π=或2B π=,由余弦定理可求得a ,即可求出面积.【详解】(1)()sin 2sin 3f x x x x π⎛⎫=+=+⎪⎝⎭, ()f x 图象向右平移6π个单位长度得到2sin 6y x π⎛⎫=+ ⎪⎝⎭的图象,横坐标缩短为原来的12 (纵坐标不变)得到2sin 6y x π⎛⎫=+ ⎪⎝⎭图象, 所以()2sin 26g x x π⎛⎫=+ ⎪⎝⎭, 令222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+,所以()g x 的单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈ (2)由(1)知,62c g π⎛⎫⎪⎝⎭==, 因为21sin cos cos 3664B B B πππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-+=+=,所以1cos 62B π⎛⎫ ⎪⎝=±⎭+ 又因为()0,B π∈,所以7,666B πππ+=⎛⎫ ⎪⎝⎭, 当1cos 62B π⎛⎫⎪⎝=⎭+时,,636B B πππ+==,此时由余弦定理可知,2422cos 126a a π+-⨯⨯=,解得a所以12sin262ABCSπ=⨯⨯⨯=, 当1cos 62B π⎛⎫⎪⎝=-⎭+时,2,632B B πππ+==,此时由勾股定理可得,a ==,所以122S =⨯⨯△ABC 【点睛】关键点睛:本题考查三角函数的图象变换求三角函数的性质,以及解三角形的应用,解题的关键是根据图象变换正确得出变换后的解析式. 22.(Ⅰ)3π;(Ⅱ)17-. 【分析】(Ⅰ)利用正弦定理的边角互化以及余弦定理即可求解.(Ⅱ)利用正弦定理的边角互化可得sin 3sin A B =,再由23A B π+=求出tan B =再利用两角和的余弦公式即可求解. 【详解】(Ⅰ)∵22(sin sin )sin sin sin A B C A B -=- ∴由正弦定理得22()a b c ab -=-,即222a b c ab +-= ∴1cos 2C =, 又∵(0,)C π∈ ∴3C π=;(Ⅱ)∵3a b =,∴由正弦定理得sin 3sin A B =, ∵23A B π+=,∴2sin 3sin 3B B π⎛⎫-= ⎪⎝⎭,∴tan B =,∴0,2B π⎛⎫∈ ⎪⎝⎭∴sin B B == ,∴11sin 22sin cos 214B B B B === ∴1cos(2)cos 2cos sin 2sin 7B C B C B C +=-=-23.选择见解析;3A π=,512C π=.【分析】若选择条件①,先由正弦定理和余弦定理求出角A ,再利用正弦定理化简2b c +=,把23B C π=-代入,化简求值即可;若选择条件②,利用正弦定理和二倍角公式解出sin2A的值,进而得出角A ; 若选择条件③,由正弦定理结合两角和与差的正弦公式可求出tan A ,进而得出角A 和C .【详解】(1)选择条件①,由()22sin sin sin sin sin B C A B C -=-及正弦定理知,()22b c a bc -=-,整理得,222b c a bc +-=;由余弦定理可得,2221cos 222b c a bc A bc bc +-===;又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=(2)选择条件②,因为A B C π++=,所以222B C Aπ+=-; 由sinsin 2B C b a B +=得,cos sin 2Ab a B =由正弦定理知,sin cos sin sin 2sin cos sin 222A A AB A B B ==; 又sin 0B >,sin02A >,可得1sin 22A =;又因为()0,A π∈,所以,26A π=,故3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. (3)选择条件③,由sin cos 6a B b A π⎛⎫=-⎪⎝⎭及正弦定理知, sin sin sin cos 6A B B A π⎛⎫=- ⎪⎝⎭又sin 0B >,从而1sin cos sin 62A A A A π⎛⎫=-=+ ⎪⎝⎭,解得tan A =又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. 【点睛】方法点睛:本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,解三角形问题中可以应用正余弦定理的题型有: 1.已知一边和两角;2.已知两边和其中一边的对角;3.已知两边和它们所夹的角;4.已知三边.24.(1)6π;(2)b =2c =. 【分析】(1)化角为边,化简得222c a b +-=,再利用余弦定理求角B ;(2)由正弦定理算出c ,由面积公式算出a ,由余弦定理计算b 中即可. 【详解】解:(1)因为cos b A c =-,所以2222b c a b c bc +-⋅=-,所以22222b c a c +-=,即222c a b +-=.由余弦定理可得222cos 22c a b B ac +-==, 因为(0,)B π∈,所以6B π=.(2)由正弦定理可得sin sin 22sin sin6AH AH AHBc Bππ∠===.因为ABC的面积为11sin 22ac B a ==a =由余弦定理可得2222cos b a c ac B =+-=4842228+-⨯⨯=,则b = 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 25.(1)2【分析】(1)利用诱导公式可将已知等式化简得到sin sin A B =,知A B =,a b =,由正弦定理可知::sin :sin :sin a b c A B C =,由此可求得结果; (2)根据()12ABC S a b c r =++⋅△和1sin 2ABCS ab C =,根据(1)中c =,可构造方程求得a ,代入可得所求面积. 【详解】 (1)A B C π++=,()sin sin A C B ∴+=,()sin sin B C A +=,()cos cos A B C +=-,由()()()sin 2sin cos A C B C A B +=++得:2sin 2sin cos 2sin cossin 3B AC A A π=-=-=,A B ∴=,a b =,2::sin :sin :sin sin:sin :sin 663a b c A B C πππ∴=== (2)由(1)知:c =, ()()1132222ABC S a b c r a ⎫=++⋅=+⎪⎭,又21sin 24ABC S ab C a ==,(23222a ⎫+⎪⎝⎭∴=,解得:1a =,2ABC S ∴==. 【点睛】关键点点睛:第二问求解三角形面积的关键是能够利用两种不同方式表示出所求三角形的面积,即()11sin 22S a b c r ab C =++⋅=,从而构造方程求得所需的边长. 26.(Ⅰ;(Ⅱ)不能成立,理由见解析. 【分析】(Ⅰ)由于3A C π+=,cos()cos cos sin sin A C A C A C +=-,得1sin sin 6A C =,结合正弦定理与面积公式可得结果;(Ⅱ)假设111a c+=能成立,得a c ac +=,由余弦定理,2222cos b a c ac B =+-可得3ac =,结合基本不等式判断即可.【详解】(Ⅰ)由23B π=,得3A C π+=,cos()cos cos sin sin A C A C A C +=-, 即1cos cos sin sin 2A C A C =-. 又∵2cos cos 3A C =,∴1sin sin 6A C =.∵sin sin a c A C ===∴a A =,c C =.∴1sin 4sin sin sin 2ABC S A C B A B C =⋅⋅⋅=△146=⨯=. (Ⅱ)假设111a c +=能成立,∴a c ac +=. 由余弦定理,2222cos b a c ac B =+-,∴226a c ac =++.∴2()6a c ac +-=,∴2()60ac ac --=,∴3ac =或-2(舍),此时3a c ac +==.不满足a c +≥,∴111a c +=不成立. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学讲义(13)
函数的单调性
一. 基本内容与要求:
1. 理解函数的单调性意义:
对于函数定义域内的某个区间D 的任意两个值1x ,2x ,且12x x <都有()()12f x f x <,则称函数在区间D 上是增函数;
对定义域内的某个区间D 的任意两个值1x ,2x ,且12x x <都有()()12f x f x >,则称函数在区间D 上是减函数;
2. 函数的单调性是函数性质的一个重要方面,单调区间必须是函数定义域的子集.
3. 函数的单调性的作用很多,主要用于:比较大小、解不等式、确定函数的值域、求函数的最
值等..
4. 复合函数()y f g x =⎡⎤⎣⎦在公共定义域上的单调性,可以直接根据构成函数的单调性来判断。

其规律是:若外函数f 与内函数g 的单调性一致时,则复合函数为增函数;若外函数f 与内函数g 的单调性相反时,则复合函数为减函数。

二. 基础训练:
1.若函数()f x 为(),-∞+∞上的减函数,a R ∈,则有 ( )
(A )()()2f a f a < (B) ()()2f a f a <
(C) ()()21f a f a +< (D) ()
()2f a a f a +< 2.若函数2
45y x mx =-+在[)2.-+∞上是增函数,在区间(],2-∞-上是减函数,则()1f 的值等于 .
3.若函数上()2225y x a x =+-+在()4,+∞是增函数,则实数a 的取值范围是 .
4.若函数223y x x =
+-为减函数的区间是 .
5.函数223y x x =--的递增区间是_______________________
6.函数21
45
y x x =-+的递增区间是_____________________.
三.例题精析
1.判断函数()2243f x x x =+-在区间(].1-∞-上的增减性,并加以证明
2.判断函数()21
f x x x =-在区间()0,+∞上的单调性,并加以证明
3.证明函数()31f x x =-+在R 上是减函数.
4.设函数()f x 的定义域为()0,+∞且在()0,+∞上增函数,()()x f f x f y y ⎛⎫=- ⎪⎝⎭
,若()21f =,解不等式()123f x f x ⎛⎫-≤ ⎪-⎝⎭
.
四.随堂练习
1. 若函数()21y k x b =++在上是().-∞+∞减函数,则k 范围是
2. 函数35y x =-为减函数的区间是 .
3. 函数11x y x -=
+为减函数的区间是______________________.
4. 函数2123y x x =
-++的递增区间是__________________
五.益智演练
1.若()22f x x ax =-+与()1
a g x x =+在区间[]1,2上都是减函数,则a 的取值范围是 .
2.已知()f x 是R 上的增函数,A ()0,1-,B ()3,1是其图像上的两点,则不等式()11f x +<的解集为___________________
3.已知函数()12
ax f x x +=+在区间()2.-+∞上的增函数,试求a 的取值范围
4.定义[]1,3在上的函数()f x 为减函数,求不等式()()2130f a f a --->的解集
六.思考提升题
设()f x 是定义在上的增函数,并且有()()x f f x f y y ⎛⎫
=- ⎪⎝⎭
(1)求()1f 的值;(2)如果()61f =, 解不等式()132f x f x ⎛⎫
+-< ⎪⎝⎭。

相关文档
最新文档