最大公约数解决问题类型归纳,小学奥数最大公约数应用题带答案解析
小学五年级奥数第25讲 最大公约数(含答案分析)

第25讲最大公约数一、专题简析:1、几个数公有的约数叫做这几个数的公约数,其中最大的一个叫做这几个数的最大公约数。
我们可以把自然数a、b的最公约数记作(a、b),如果(a、b)=1,则a和b互质。
2、求几个数的最大公约数可以用分解质因数和短除法等方法。
二、精讲精练:例题1 一张长方形的纸,长7分米5厘米,宽6分米。
现在要把它裁成一块块正方形,而且正方形边长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?练习一1、把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?2、一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?例题2 一个长方体木块,长2.7米,宽1.8分米,高1.5分米。
要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?练习二1、一个长方体木块的长是4分米5厘米、宽3分米6厘米、高2分米4厘米。
要把它切成大小相等的正方体木块,不许有剩余,求所切正方体木块的棱长最长是多少厘米?2、有50个梨,75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?例题3 有三根钢管,它们的长度分别是240厘米、200厘米和480厘米,如果把它们截成同样长的小段,每小段最长可以是多少厘米?练习三1、有一个长方体木块,长60厘米、宽40厘米,高24厘米。
如果要切成同样大小的小正方体,这些正方体的棱长最长是多少厘米?2、用一张长1072毫米、宽469毫米的长方形纸,剪成面积相等的正方形,并且最后没有剩余,这些正方形的边长最长是多少?例题4一条道路由甲村经过乙村到丙村。
已知甲、乙村相距360米,乙、丙村相距675米。
现在准备在路边裁树,要求相邻两棵树之间距离相等,并在甲、乙两村和乙、丙两村的中点都要种上树,求相邻两棵树之间的距离最多是多少米?1、一条公路由A经B到C。
奥数最大公约数及最小公倍数例题、练习及答案

最大公约数与最小公倍数(一)教学目标: 1.通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。
2.通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。
3.培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。
教学过程:一、基本概念知识1.公约数和最大公约数 ①如果一个自然数a 能被自然数b 整除,那么称a 为b 的倍数,b 为a 的约数。
②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
例如:12的约数有:1,2,3,4,6,12;18的约数有:1,2,3,6,9,18。
自然数n a a a ,,,21 的最大公约数通常用符号(n a a a ,,,21 )表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。
(8,12)=4,(6,9,15)=3。
2.公倍数和最小公倍数③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。
在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。
例如:12的倍数有:12,24,36,48,60,72,84,…18的倍数有:18,36,54,72,90,…自然数n a a a ,,,21 的最小公倍数通常用符号[n a a a ,,,21 ]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。
[8,12]=24,[6,9,15]=90。
3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。
常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。
用短除法求若干个数的最大公约数与最小公倍数的区别:求n 个数的最大公约数:(1)必须每次都用n个数的公约数去除;(2)一直除到n个数的商互质(但不一定两两互质);(3)n个数的最大公约数即为短除式中所有除数的乘积。
五年级下册数学专项练习奥数第四讲最大公约数和最小公倍数_全国版(含解析)

五年级下册数学专项练习奥数第四讲最大公约数和最小公倍数_全国版(含解析)本讲重点解决与最大公约数和最小公倍数有关的另一类问题——有关两个自然数.它们的最大公约数、最小公倍数之间的相互关系的问题。
定理1 两个自然数分别除以它们的最大公约数,所得的商互质.即假如(a,b)=d,那么(a÷d,b÷d)=1。
证明:设a÷d=a1,b÷d=b1,那么a=a1d,b=b1d。
假设(a1,b1)≠1,可设(a1,b1)=m(m>1),因此有a1=a 2m,b1=b2m.(a2,b2是整数)因此a=a1d=a2md,b=b1d=b2md。
那么md是a、b的公约数。
又∵m>1,∵md>d。
这就与d是a、b的最大公约数相矛盾.因此,(a1,b1)≠1的假设是不正确的.因此只能是(a1,b1)=1,也确实是(a÷d,b÷d)=1。
定理2 两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积.(证明略)定理3 两个数的公约数一定是这两个数的最大公约数的约数.(证明略)下面我们就应用这些知识来解决一些具体的问题。
例1 甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数.解法1:由甲数×乙数=甲、乙两数的最大公约数×两数的最小公倍数,可得36×乙数=4×288,乙数=4×288÷36,解出乙数=32。
答:乙数是32。
解法2:因为甲、乙两数的最大公约数为4,则甲数=4×9,设乙数=4×b1,且(b1,9)=1。
因为甲、乙两数的最小公倍数是288,则288=4×9×b1,b1=288÷36,解出b1=8。
因此,乙数=4×8=32。
答:乙数是32。
例2 已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?解:要求这两个数的和,我们可先求出这两个数各是多少.设这两个数为a、b,a<b。
奥数最大公约数与最小公倍 数例题、练习及答案

最大公约数与最小公倍数(一)教学目标:1.通过学生对应用题的条件与问题的全面分析,培养学生发现问题和解决问题的意识。
2.通过比较与辨析,使学生进一步理解和掌握“最大公约数和最小公倍数”应用题的解题规律。
3.培养学生的合作交流意识和创新意识,发展学生的空间观念与想像力。
教学过程:一、基本概念知识1.公约数和最大公约数①如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。
②如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
例如:12的约数有:1,2,3,4,6,12; 18的约数有:1,2,3,6,9,18。
自然数的最大公约数通常用符号()表示,例如,12和18的公约数有:1,2,3,6.其中6是12和18的最大公约数,记作(12,18)=6。
(8,12)=4,(6,9,15)=3。
2.公倍数和最小公倍数 ③如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。
在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。
例如:12的倍数有:12,24,36,48,60,72,84,… 18的倍数有:18,36,54,72,90,…自然数的最小公倍数通常用符号[]表示,例如12和18的公倍数有:36,72,….其中36是12和18的最小公倍数,记作[12,18]=36。
[8,12]=24,[6,9,15]=90。
3.互质数如果两个数的最大公约数是1,那么这两个数叫做互质数。
常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。
用短除法求若干个数的最大公约数与最小公倍数的区别:求个数的最大公约数:(1)必须每次都用个数的公约数去除;(2)一直除到个数的商互质(但不一定两两互质);(3)个数的最大公约数即为短除式中所有除数的乘积。
求个数的最小公倍数:(1)必须先用(如果有)个数的公约数去除,除到个数没有除去1以外的公约数后,在用个数的公约数去除,除到个数没有除1以外的公约数后,再用个数的公约数去除,如此继续下去,为保证这一条,每次所用的除数均可选质数;(2)只要有两个数(被除数)能被同一数整除,就要继续除,一定要除到个数的商两两互质为止;(3)个数的最小公倍数即为短除式中,所有除数和最后两两互质的商的乘积。
小学奥数解题技巧-最大公约数法

最大公约数法通过计算出几个数的最大公约数来解题的方法,叫做最大公约数法。
例1 甲班有42名学生,乙班有48名学生,现在要把这两个班的学生平均分成若干个小组,并且使每个小组都是同一个班的学生。
每个小组最多有多少名学生?(适于六年级程度)解:要使每个小组都是同一个班的学生,并且要使每个小组的人数尽可能多,就要求出42和48的最大公约数:2×3=642和48的最大公约数是6。
答:每个小组最多能有6名学生。
例2 有一张长150厘米、宽60厘米的长方形纸板,要把它分割成若干个面积最大,井已面积相等的正方形。
能分割成多少个正方形?(适于六年级程度)解:因为分割成的正方形的面积最大,并且面积相等,所以正方形的边长应是150和60的最大公约数。
求出150和60的最大公约数:2×3×5=30150和60的最大公约数是30,即正方形的边长是30厘米。
看上面的短除式中,150、60除以2之后,再除以3、5,最后的商是5和2。
这说明,当正方形的边长是30厘米时,长方形的长150厘米中含有5个30厘米,宽60厘米中含有2个30厘米。
所以,这个长方形能分割成正方形:5×2=10(个)答:能分割成10个正方形。
例3 有一个长方体的方木,长是3.25米,宽是1.75米,厚是0.75米。
如果将这块方木截成体积相等的小正方体木块,并使每个小正方体木块尽可能大。
小木块的棱长是多少?可以截成多少块这样的小木块?(适于六年级程度)解:3.25米=325厘米,1.75米=175厘米,0.75米=75厘米,此题实际是求325、175和75的最大公约数。
5×5=25325、175和75的最大公约数是25,即小正方体木块的棱长是25厘米。
因为75、175、325除以5得商15、35、65,15、35、65再除以5,最后的商是3、7、13,而小正方体木块的棱长是25厘米,所以,在75厘米中包含3个25厘米,在175厘米中包含7个25厘米,在325厘米中包含13个25厘米。
【思维拓展】数学五年级思维拓展之最大公约数(附答案)

五年级奥数精讲:最大公约数与最小公倍数一、知识总结:1.如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。
2.如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。
在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。
自然数a1,a2,…,a n的最大公约数通常用符号(a1,a2,…,a n)表示,例如,(8,12)=4,(6,9,15)=3。
3.如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。
在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。
自然数a1,a2,…,a n的最小公倍数通常用符号[a1,a2,…,a n]表示,例如[8,12]=24,[6,9,15]=90。
4.常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。
如求18与12的最大公约数与最小公倍数时,由短除法可知,(18,12)=2×3=6,[18,12]=2×3×3×2=36。
如果把18与12的最大公约数与最小公倍数相乘,那么(18,12)×[18,12]=(2×3)×(2×3×3×2)=(2×3×3)×(2×3×2)=18×12。
也就是说,18与12的最大公约数与最小公倍数的乘积,等于18与12的乘积。
当把18,12换成其它自然数时,依然有类似的结论。
从而得出一个重要结论:两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积。
即,(a,b)×[a,b]=a×b。
二、练习题例1、用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。
现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?例2、用自然数a去除498,450,414,得到相同的余数,a最大是多少?例3、现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?例4、在一个30×24的方格纸上画一条对角线(见下页上图),这条对角线除两个端点外,共经过多少个格点(横线与竖线的交叉点)?例5、甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒。
五年级最大公约数奥数拓展知识解析

五年级最大公约数奥数拓展知识一、约数和倍数的定义整数A能被整数B整除,A叫做B的倍数,B就叫做A的约数(在自然数的范围内)。
如:2和6是12的约数,12是2的倍数,12也是6的倍数;18的约数有1、18、2、9、3、6。
注意:①一个数的约数个数是有限的,一个数的倍数有无数个。
②任何数都有最小的约数1,最大的约数本身,最小的倍数也是本身。
③一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
④因数和约数的区别:约数必须在整除的前提下才存在,而是从乘积的角度来提出的。
如果数a与数b相乘的积是数c,a与b都是c的。
二、质数与合数(1)只有1和本身两个约数的数叫做质数(或素数);(2)除了1和本身外还有其它约数的数叫做合数;(3)1既不是质数,也不是合数;(4)100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
(5)每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质约数,例如15=3×5,3和5 叫做15的质约数。
(6)把一个合数用质约数相乘的形式表示出来,叫做分解质约数。
几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和18的公约数,6是它们的最大公约数,记作(12,18)=6。
(7)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质;相邻的两个自然数互质;两个不同的质数互质;当合数不是质数的倍数时,这个合数和这个质数互质;如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数;如果两个数是互质数,它们的最大公约数就是1。
最大公约数和最小公倍数奥数

最大公约数和最小公倍数奥数GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-最大公约数和最小公倍数例1、一个长方体木块,长2.7米,宽1.8分米,高1.5分米。
要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?【思路导航】2.7米=270厘米,1.8分米=18厘米,1.5分米=15厘米。
要把长方体切成大小相等的正方体,不许有剩余,正方体的棱长应该是长、宽、高的公约数。
现要求正方体的棱长最大,所以棱长就是长、宽、高的最大公约数。
(270,18,15)=3 3厘米=0.3分米答:正方体的棱长最大是0.3分米。
练习1、有50个梨、75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?练习2、有三根钢管,它们的长度分别是240厘米,200厘米,480厘米,如果把它们截成同样长的小段,且不许有剩余,每小段最长可以是多少厘米?例2、一个数除200余4,除300余6,除500余10。
求这个数最大是多少?【思路导航】200-4=196,300-6=294,500-10=490;196、294和490都是这个数的倍数。
196=2×2×7×7294=2×3×7×7490=2×5×7×7则196、294和490的最大公因数是:2×7×7=98。
答:这个数最大是98。
练习1、一个数除425余5,除500少4,除300余6,这个数最大是多少?练习2、如果把110本练习本平均分给五(1)班同学,则多5本;如果把210本练习本平均分给这个班同学则正好分完;如果把240本练习本平均分给这班同学,还少5本,五(1)班最多有多少名同学?例3、一条道路由甲村经过乙村到丙村。
已知甲、乙村相距360米,乙、丙村相距675米。