数3--02真题初步答案

合集下载

考研数学三真题及答案详解

考研数学三真题及答案详解

考研数学三真题及答案详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】2008年全国硕士研究生入学统一考试数学三试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()xf t dtg x x=⎰的()()A 跳跃间断点. ()B 可去间断点. ()C 无穷间断点.()D 振荡间断点.解:B分析:()()0()lim ()limlim 0xx x x f t dt g x f x f x→→→===⎰,所以0x =是函数()g x 的可去间断点。

(2)设f 连续,221x y +=,222x y u +=,1u >,则()22,Df u v F u v +=,则Fu∂=∂() 解:选A分析;用极坐标得()222()2011,()vu uf r r Df u v F u v dv rdr v f r dr +===⎰⎰⎰(3)设(,)f x y =则函数在原点偏导数存在的情况是()解:C分析:0011(0,0)limlim 00xx x x e f x x →→--'==--00011lim lim 100xx x x e e x x →+→+--==--,故000011lim lim 00xx x x e e x x -→+→---≠--,所以偏导数不存在。

所以偏导数存在。

故选C(4)曲线段方程为()y f x =函数在区间[0,]a 上有连续导数则定积分0'()axf x dx ⎰()()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.解:()C分析:0()()()()a a axf x dx xdf x af a f x dx '==-⎰⎰⎰其中()af a 是矩形面积,0()a f x dx ⎰为曲边梯形的面积,所以0()axf x dx '⎰为曲边三角形的面积。

考研数学:2002年考研数学三_真题及答案(精校版)

考研数学:2002年考研数学三_真题及答案(精校版)
T

P
1
T T 1 ,则 B P A P PT AP 1 AP B
T
T
T
A PT BPT , A ( PT BPT )
T 两边左乘 P ,得 B ( P ) P
T T
1
1
故知 B ( P AP ) 的对应于特征值 的特征向量为 PT ,即应选(B).
T
1T
( PT ) PT A ( PT ) 成立.故应选(B).
(5)设随机变量 X 和 Y 都服从标准正态分布,则 (A) X Y 服从正态分布 (C) X 和 Y 都服从 分布
2 2
2

2 2

2
(B) X Y 服从 分布 (D) X 2 / Y 2 服从 F 分布
答案应填
二、选择题(本题共 5 小题,每小题 3 分,共 15 分,在每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内.) (1)设函数 f ( x) 在闭区间 [a, b] 上有定义,在开区间 (a, b) 内可导,则 (A)当 f (a) f (b) 0 时,存在 (a, b) ,使 f ( ) 0 . (B)对任何 (a, b) ,有 lim[ f ( x) f ( )] 0 .
x 1
x (1,1] x 1
f ( 1) f ( 1) ,但 1 f ( x) 1 (当 x (1,1) ),不满足罗
尔中值定理,当然也不满足拉格朗日中值定理的结论.

(2)设幂级数
an xn 与 bn x n 的收敛半径分别为
n 1 n 1
a2 n 5 1 与 ,则幂级数 2 n x 的收敛 3 3 i 1 b n

2002-数三真题、标准答案及解析

2002-数三真题、标准答案及解析

X 的简单随机样本,则未知参数 θ 的矩估计量为______
【答】
1 n ∑ X i −1 n i =1
北京市海淀区王庄路 1 号清华同方科技广场 B 座 609 -3电话: 62701055
培训网:
2002 年全国硕士研究生入学统一考试 数学试题解析点评
x y z
Fx' = ( x + 1)e x , Fy' = −( y + 1)e y , Fz' = −( z + 1)e z .

F' F' x + 1 x − z ∂z y + 1 y−z ∂z e , =− y = e , =− x = F 'z z + 1 F 'z z + 1 ∂x ∂y
+∞
水木艾迪考研辅导班命题研究中心
【详解】因为 E ( X ) = 所以,由 E ( X ) = X =

0
xe −( x −θ ) dx = θ + 1,
1 n 1 n , 1 X 即 θ + = ∑ i ∑ Xi, n i =1 n i =1 1 n ∑ X i − 1. n i =1
$= 得参数 θ 的矩估计量为 θ
x →ξ
(C) 对 f (a ) = f (b) 时,存在 ξ ∈ (a, b) ,使 f '(ξ ) = 0 (D) 存在. ξ ∈ (a, b) ,使 【答】 [ B] 【详解】 由题设, f ( x) 在 ξ (ξ ∈ (a, b) 处可导,从而连续, 故有 lim[ f ( x ) − f (ξ )] = 0. 应选(B).
n →∞
1 1 n (1− 2 a ) n − 2na + 1 n 1 1− 2 a = e1− 2 a ] = lim[1 + ] n →∞ n(1 − 2a ) n(1 − 2a) 1 n − 2na + 1 n 1 ] = ln e1− 2 a = n(1 − 2a ) 1 − 2a

2023中考数学考试试卷试题中考数学初三真题及答案解析(含答案和解析) (3)

 2023中考数学考试试卷试题中考数学初三真题及答案解析(含答案和解析) (3)

2023中考数学考试试卷试题中考数学初中学业水平考试 初三真题及答案解析(含答案和解析)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.在下列四个实数中,最小的数是( )A. 2−B.13C. 0D.【答案】A 【解析】 【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数大小比较的方法,可得-2<0<13所以四个实数中,最小的数是-2. 故选:A .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( ) A. 51.6410−⨯B. 61.6410−⨯C. 716.410−⨯D.50.16410−⨯【答案】B 【解析】 【分析】绝对值小于1的数利用科学记数法表示的一般形式为a×10-n ,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000164=1.64×10-6, 故选:B .【点睛】本题考查用科学记数法表示较小数的方法,写成a×10n 的形式是关键. 3.下列运算正确的是( )A. 236a a a ⋅=B. 33a a a ÷=C. ()325a a =D.()2242a b a b =【答案】D 【解析】 【分析】根据幂的运算法则逐一计算可得.【详解】解: A 、235a a a ⋅=,此选项错误; B 、32a a a ÷=,此选项错误; C 、()326a a =,此选项错误;D 、()2242a ba b =,此选项正确;故选:D .【点睛】本题主要考查幂的运算,解题的关键是掌握幂的运算法则. 4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )A. B. C. D.【答案】C 【解析】 【分析】根据组合体的俯视图是从上向下看的图形,即可得到答案. 【详解】组合体从上往下看是横着放的三个正方形. 故选C .【点睛】本题主要考查组合体三视图,熟练掌握三视图的概念,是解题的关键.5.不等式213x −≤的解集在数轴上表示正确的是( )A.B.C.D.【答案】C【解析】 【分析】先求出不等式的解集,再在数轴上表示出来即可. 【详解】解:移项得,2x≤3+1, 合并同类项得,2x≤4, 系数化为1得,x≤2, 在数轴上表示为:故选:C .【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右,在表示解集时≥,≤要用实心圆点表示;<,>要用空心圆点表示”是解答此题的关键. 6.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s ):则这10只手表的平均日走时误差(单位:s )是( ) A. 0 B. 0.6C. 0.8D. 1.1【答案】D 【解析】 【分析】根据加权平均数的概念,列出算式,即可求解. 【详解】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s ) 故选D .【点睛】本题主要考查加权平均数,熟练掌握加权平均数的计算方法,是解题的关键. 7.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A. tan a b α+B. sin a b α+C. tan ba α+D.sin b a α+【答案】A 【解析】 【分析】延长CE 交AB 于F ,得四边形CDBF 为矩形,故CF=DB=b ,FB=CD=a ,在直角三角形ACF 中,利用CF 的长和已知的角的度数,利用正切函数可求得AF 的长,从而可求出旗杆AB 的长.【详解】延长CE 交AB 于F ,如图,根据题意得,四边形CDBF 为矩形, ∴CF=DB=b ,FB=CD=a ,在Rt △ACF 中,∠ACF=α,CF=b , tan ∠ACF=AFCF∴AF=tan tan CF ACF b α∠=, AB=AF+BF=tan a b α+, 故选:A .【点睛】主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.8.如图,在扇形OAB 中,已知90AOB ∠=︒,OA =AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A. 1π−B.12π−C.12π−D.122π−【答案】B 【解析】 【分析】连接OC ,易证CDO CEO ≅△△,进一步可得出四边形CDOE 为正方形,再根据正方形的性质求出边长即可求得正方形的面积,根据扇形面积公式得出扇形AOB 的面积,最后根据阴影部分的面积等于扇形AOB 的面积剪去正方形CDOE 的面积就可得出答案. 【详解】连接OC 点C 为AB 的中点AOC BOC ∠=∠∴在CDO 和CEO 中90AOC BOC CDO CEO CO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()CDO CEO AAS ∴≅△△,OD OE CD CE ∴==又90CDO CEO DOE ∠=∠=∠=︒∴四边形CDOE 为正方形OC OA ==1OD OE ∴== =11=1CDOE S ∴⨯正方形由扇形面积公式得290==3602AOBSππ⨯扇形==12CDOE AOB S S S π∴−−阴影正方形扇形故选B .【点睛】本题考查了扇形面积的计算、正方形的判定及性质,熟练掌握扇形面积公式是解题的关键.9.如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到AB C ''∆.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A. 18︒B. 20︒C. 24︒D. 28︒【答案】C 【解析】 【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案. 【详解】解:设C '∠=x°.根据旋转的性质,得∠C=∠'C = x°,'AC =AC, 'AB =AB. ∴∠'AB B =∠B.∵AB CB ''=,∴∠C=∠CA 'B =x°. ∴∠'AB B =∠C+∠CA 'B =2x°. ∴∠B=2x°.∵∠C+∠B+∠CAB=180°,108BAC ∠=︒, ∴x+2x+108=180. 解得x=24.∴C '∠的度数为24°. 故选:C.【点睛】本题考查了三角形内角和定理,旋转的性质的应用及等腰三角形得性质. 10.如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点()3,2D 在对角线OB 上,反比例函数()0,0k y k x x =>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A. 84,3⎛⎫ ⎪⎝⎭B. 9,32⎛⎫⎪⎝⎭C. 105,3⎛⎫⎪⎝⎭D.2416,55⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】根据题意求出反比例函数解析式,设出点C 坐标6,a a ⎛⎫⎪⎝⎭,得到点B 纵坐标,利用相似三角形性质,用a 表示求出OA ,再利用平行四边形OABC 的面积是152构造方程求a 即可. 【详解】解:如图,分别过点D 、B 作DE ⊥x 轴于点E ,DF ⊥x 轴于点F ,延长BC 交y 轴于点H∵四边形OABC 是平行四边形 ∴易得CH=AF∵点()3,2D 在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点 ∴236k =⨯= 即反比例函数解析式为6y x= ∴设点C 坐标为6,a a ⎛⎫ ⎪⎝⎭∵DEBF∴ODE OBF △△∴DE OEBF OF=∴236OF a=∴6392a OF a⨯== ∴9OA OF AF OF HC a a =−=−=−,点B 坐标为96,a a ⎛⎫⎪⎝⎭∵平行四边形OABC 的面积是152∴96152a a a ⎛⎫−⋅=⎪⎝⎭ 解得122,2a a ==−(舍去) ∴点B 坐标为9,32⎛⎫⎪⎝⎭故应选:B【点睛】本题是反比例函数与几何图形的综合问题,涉及到相似三角形的的性质、反比例函数的性质,解答关键是根据题意构造方程求解. 二、填空题(本题有6小题,每小题4分,共24分) 11.(4分)计算:﹣2﹣1= ﹣3 .【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可. 【解答】解:﹣2﹣1 =﹣3 故答案为:﹣3 12.(4分)化简:=.【分析】直接将分母分解因式,进而化简得出答案. 【解答】解:==.故答案为:.13.(4分)如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8,AB =10,则CD 与AB 之间的距离是 3 .【分析】过点O 作OH ⊥CD 于H ,连接OC ,如图,根据垂径定理得到CH =DH =4,再利用勾股定理计算出OH =3,从而得到CD 与AB 之间的距离.【解答】解:过点O 作OH ⊥CD 于H ,连接OC ,如图,则CH =DH =CD =4, 在Rt △OCH 中,OH ==3,所以CD 与AB 之间的距离是3. 故答案为3.14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.【分析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种, 则两次摸出的球都是红球的概率为; 故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt△ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt△ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是.【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S△OCE=S△OBD=k,根据OA的中点C,利用△OCE∽△OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE∥AB,交x轴于E,∵∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∴S△COE=S△BOD=,S△ACD=S△OCD=2,∵CE∥AB,∴△OCE∽△OAB,∴,∴4S△OCE=S△OAB,∴4×k=2+2+k,∴k=,故答案为:.三、解答题(本题有8小题,共66分)17.(6分)计算:+|﹣1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】解:原式=2+﹣1=3﹣1.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解①得x<1;解②得x<﹣6.故不等式组的解集为x<﹣6.19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【分析】(1)过点B作BE⊥AC于E,根据等腰三角形的性质得到∠OAC=∠OCA==30°,根据三角函数的定义即可得到结论;(2)过点B作BE⊥AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】解:(1)过点B作BE⊥AC于E,∵OA=OC,∠AOC=120°,∴∠OAC=∠OCA==30°,∴h=BE=AB•sin30°=110×=55;(2)过点B作BE⊥AC于E,∵OA=OC,∠AOC=74°,∴∠OAC=∠OCA==53°,∴AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.(8分)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)∵∠CAD=∠ABC,∴=,∵AD是⊙O的直径,AD=6,∴的长=××π×6=π.22.(10分)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【分析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)①设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;②用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∴甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)①设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∴乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:=18(天).∴选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∴选择方案一能更节省开支.23.(10分)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明△ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:∵AC=BC,∠C=60°,∴△ABC是等边三角形,∴AC=AB,∠A=60°,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=AD=AB=AC.(2)解:∵AC=BC=6,∠C=90°,∴AB===12,∵DH⊥AC,∴DH∥BC,∴△ADH∽△ABC,∴=,∵AD=7,∴=,∴DH=,将∠B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∴DP1=DB=AB﹣AD=5,∴HP1===,∴A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∴AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tan A==,∴=,∴x=,∴AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)①先确定出点C的坐标,再用待定系数法即可得出结论;②先确定出抛物线的顶点坐标,进而得出DF=,再判断出△AFD≌△BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出△AFD≌△BCO(AAS),得出AF=BC,DF=OC,再判断出△ANF∽△AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.【解答】解:(1)①∵AC∥x轴,点A(﹣2,1),∴C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∴,∴抛物线的解析式为y=﹣x2﹣2x+1;②如图1,过点D作DE⊥x轴于E,交AB于点F,∵AC∥x轴,∴EF=OC=c,∵点D是抛物线的顶点坐标,∴D(,c+),∴DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∴AD=DO,AD∥OB,∴∠DAF=∠OBC,∵∠AFD=∠BCO=90°,∴△AFD≌△BCO(AAS),∴DF=OC,∴=c,即b2=4c;(2)如图2,∵b=﹣2.∴抛物线的解析式为y=﹣x2﹣2x+c,∴顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE⊥x轴于点E,交AB于F,∴∠AFD=∠EFC=∠BCO,∵四边形AOBD是平行四边形,∴AD=BO,AD∥OB,∴∠DAF=∠OBC,∴△AFD≌△BCO(AAS),∴AF=BC,DF=OC,过点A作AM⊥y轴于M,交DE于N,∴DE∥CO,∴△ANF∽△AMC,∴=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∴,∴,∴点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∥x轴,∴点M的坐标为(0,c﹣),N(﹣1,c﹣),∴CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∴DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∴FN=DN﹣DF=﹣c,∵=,∴,∴c=,∴c﹣=,∴点A纵坐标为,∴A(﹣,),∴存在这样的点A,使四边形AOBD是平行四边形.。

考研真题【1987-2002考研数(三)真题及解析】2002考研数三真题及解析

考研真题【1987-2002考研数(三)真题及解析】2002考研数三真题及解析

2002年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设常数12a ≠,则21lim ln .(12)nn n na n a →∞⎡⎤-+=⎢⎥-⎣⎦(2)交换积分次序:111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰.(3) 设三阶矩阵122212304A -⎛⎫⎪= ⎪ ⎪⎝⎭,三维列向量(),1,1T a α=.已知A α与α线性相关,则 a =.(4)则2X 和2Y 的协方差22cov(,)X Y =.(5) 设总体X 的概率密度为(),,(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩若若而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f x 在闭区间[,]a b 上有定义,在开区间(,)a b 内可导,则 ( )(A)当()()0f a f b <时,存在(,)a b ξ∈,使()0f ξ=. (B)对任何(,)a b ξ∈,有lim[()()]0x f x f ξξ→-=.(C)当()()f a f b =时,存在(,)a b ξ∈,使()0f ξ'=. (D)存在(,)a b ξ∈,使()()()()f b f a f b a ξ'-=-.(2) 设幂级数1nn n a x ∞=∑与1nn n b x ∞=∑13,则幂级数221nn i na xb ∞=∑的收敛半径为 ( ) (A) 5 (B)(C) 13 (D)15(3) 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()0AB x = ( )(A)当n m >时仅有零解 (B)当n m >时必有非零解(C)当m n >时仅有零解 (D)当m n >时必有非零解(4) 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的 特征向量,则矩阵()1TP AP-属于特征值λ的特征向量是 ( )(A) 1P α- (B) TP α (C)P α (D)()1TP α-(5) 设随机变量X 和Y 都服从标准正态分布,则 ( )(A)X Y +服从正态分布 (B)22X Y +服从2χ分布(C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布三、(本题满分5分)求极限 200arctan(1)lim(1cos )xu x t dt du x x →⎡⎤+⎢⎥⎣⎦-⎰⎰四、(本题满分7分)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程xyzxe ye ze -=所确定,求du . 五、(本题满分6分)设2(sin ),sin x f x x =求()x dx . 六、(本题满分7分)设1D 是由抛物线22y x =和直线,2x a x ==及0y =所围成的平面区域;2D 是由抛物线22y x =和直线0y =,x a =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V ; (2)问当a 为何值时,12V V +取得最大值?试求此最大值.七、(本题满分7分)(1)验证函数()()3693()13!6!9!3!nx x x x y x x n =+++++++-∞<<+∞满足微分方程x y y y e '''++=(2)利用(1)的结果求幂级数()303!nn x n ∞=∑的和函数.八、(本题满分6分)设函数(),()f x g x 在[,]a b 上连续,且()0g x >.利用闭区间上连续函数性质,证明存在一点[,]a b ξ∈,使()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九、(本题满分8分)设齐次线性方程组1231231230,0,0,n n n ax bx bx bx bx ax bx bx bx bx bx ax ++++=⎧⎪++++=⎪⎨⎪⎪++++=⎩其中0,0,2a b n ≠≠≥,试讨论,a b 为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.十、(本题满分8分)设A 为三阶实对称矩阵,且满足条件220A A +=,已知A 的秩()2r A = (1)求A 的全部特征值(2)当k 为何值时,矩阵A kE +为正定矩阵,其中E 为三阶单位矩阵. 十一、(本题满分8分)假设随机变量U 在区间[]2,2-上服从均匀分布,随机变量1,1-1,11,1;1,1;U U X Y U U -≤-≤⎧⎧==⎨⎨>->⎩⎩若若若若试求:(1)X 和Y 的联合概率分布;(2)()D X Y +. 十二、(本题满分8分)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间()E X 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数()F y .2002年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】112a- 【详解】ln “”里面为1∞“”型,通过凑成重要极限形式来求极限, 1(12)12211limln limln 1(12)(12)nn a an n n na n a n a -⋅-→∞→∞⎡⎤⎡⎤-+=+⎢⎥⎢⎥--⎣⎦⎣⎦(12)11lim ln 112(12)n a n a n a -→∞⎡⎤=+⎢⎥--⎣⎦11ln 1212e a a==--.(2)【答案】2120(,)xxdx f x y dy ⎰⎰【详解】画出与原题中二次积分的限所对应的积分区域1D 与2D ,将它们的并集记为D . 于是111422104(,)(,)yydy f x y dx dy f x y dx +⎰⎰⎰(,)Df x y d σ=⎰⎰.再将后者根据积分定义化为如下形式,即2102x y x x →→从,从,所以2120(,)(,).xxDf x y d dx f x y dy σ=⎰⎰⎰⎰(3)【答案】1- 【详解】122212123,304134a a A a a α-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+ ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭由于A α与α线性相关,(两个非零向量线性相关,则对应分量成比例),所以有233411a a a a ++==,得 2334, 1.a a a +=+=- 或,(0)A k k αα=≠(两个非零向量线性相关,则其中一个可以由另一个线性表出)即 231341a a a k a ⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭,得2334a ka a k a k =⎧⎪+=⎨⎪+=⎩,得 1.(1)a k =-=(4)【答案】0.02-.【详解】2X 、2Y 和2X 2Y 都是01-分布,而01-分布的期望值恰为取1时的概率p .由离散型随机变量X 和Y 的联合概率分布表可得2X 的可能取值为0和1,且2Y 的可能取值也为0和1,且X 和Y 的边缘分布为{}00.070.180.150.4P X ==++=;{}10.080.320.200.6P X ==++=; {}10.070.080.15P Y =-=+=;{}00.180.320.5P Y ==+=; {}10.150.200.35P Y ==+=;故有{}{}220,00,00.18,P X Y P X Y ======X0 10.4 0.6Y 1- 0 10.15 0.5 0.35{}{}{}220,10,10,10.070.150.22,P X Y P X Y P X Y =====-+===+= {}{}221,01,00.32,P X Y P X Y ======{}{}{}221,11,11,10.080.200.28,P X Y P X Y P X Y =====-+===+=而边缘分布律:{}{}2000.4P X P X ====,{}{}2110.6P X P X ====, {}{}2000.5P Y P Y ====,{}{}{}21110.150.350.5P Y P Y P Y ===-+==+=所以,22(,)X Y 的联合分布及其边缘分布为由上表同理可求得22X Y 的分布律为所以由01-分布的期望值恰为取1时的概率p 得到:2222222222()0.5()0.60,(0.28cov ()()0.280.60.50.02E X E Y E X Y X Y E X Y E X E Y ====-=-⨯=-,)(,)()(5)【答案】1X -.【详解】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望) 期望 ()()()1x E X xf x dx xe dx θθθ+∞+∞---∞===+⎰⎰样本均值 11ni i X X n ==∑用样本均值估计期望有 EX X =,即 111ni i X n θ=+=∑,解得未知参数θ的矩估计量为 11ˆ11n i i X X n θ==-=-∑.二、选择题 (1)【答案】(B)【详解】方法1:论证法.由题设()f x 在开区间(,)a b 内可导,所以()f x 在(,)a b 内连续,因此,对于(,)a b 内的任意一点ξ,必有lim ()().x f x f ξξ→= 即有lim[()()]0x f x f ξξ→-=.故选(B).方法2:排除法.(A)的反例:1(,]()1x a b f x x a ∈⎧=⎨-=⎩,有()1,()1,()()10f a f b f a f b =-==-<,但()f x 在(,)a b 内无零点.(C)与(D)的反例,(1,1]()11xx f x x ∈-⎧=⎨=-⎩ (1)(1)1f f -==,但()1f x '=(当(1,1)x ∈-),不满足罗尔中值定理,当然也不满足拉格朗日中值定理的结论.故选(B).(2)【答案】(D)【详解】方法1:A 是m n ⨯矩阵,B 是n m ⨯矩阵,则AB 是m 阶方阵,因()min((),())r AB r A r B ≤.当m n >时,有()min((),())r AB r A r B n m ≤≤<.(系数矩阵的秩小于未知数的个数)方程组()0AB x =必有非零解,故应选(D).方法2:B 是n m ⨯矩阵, 当m n >时,,则()r B n =,(系数矩阵的秩小于未知数的个数)方程组0Bx =必有非零解,即存在00x ≠,使得00Bx =,两边左乘A ,得00ABx =,即0ABx =有非零解,故选(D).(3)【答案】(B)【详解】方法1:由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故TA A =.设()1TP APB -=,则111()TTT T T T T B P A P P AP P A P ---===上式左乘1T P-,右乘TP ,得111()()()T T T T T T P BP P P A P P ---=,即1T T A P BP -=,所以 1()T T A P BP ααλα-==两边左乘T P ,得 1()()T T T T P P BP P αλα-=得()T TB P P αλα=根据特征值和特征向量的定义,知1()TB P AP -=的对应于特征值λ的特征向量为T P α,即应选(B).方法2:逐个验算(A),(B),(C),(D)中哪个选项满足,由题设根据特征值和特征向量的定义,A αλα=,A 是n 阶实对称矩阵,故T A A =.设()1TP AP -属于特征值λ的特征向量为ξ,即()1TP APξλξ-=,其中()111TTTT T T P AP P A P P AP ---==对(A),即令1P ξα-=,代入111()TT P AP P P αλα---≠对(B),1()TT T P AP P α-1()TT T P A P P α-=1[())]T T TP A P P α-=TP A α=()T P λα=成立.故应选(B).(4)【答案】C【分析】(i)2χ变量的典型模式是:222212n X X X χ=+++,其中i X 要求满足:i X 相互独立,(0,1)iX N .称2χ为参数为n 的2χ变量.(ii) F 变量的典型模式是:12//X n F Y n =,其中,X Y 要求满足:X 与Y 相互独立,2212(),()Xn Yn χχ,称F 为参数为()12,n n 的F 变量.【详解】方法1:根据题设条件,X 和Y 均服从(0,1)N .故2X 和2Y 都服从2(1)χ分布,答案应选(C).方法2:题设条件只有X 和Y 服从(0,1)N ,没有X 与Y 的相互独立条件.因此,2X 与2Y的独立条件不存在,选(B)、(D)项均不正确.题中条件既没有X 与Y 独立,也没有(,)X Y 正态,这样就不能推出X Y +服从正态分布的选项(A).根据排除法,正确选项必为(C).三【详解】22000003arctan(1)arctan(1)limlim 1(1cos )2xu x u x x t dt du t dt du x x x→→⎡⎤⎡⎤++⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰等 22arctan(1)lim32x x t dt x →+⎰洛洛20arctan(1)2lim 3x x x x →+⋅2346ππ=⋅=.四【详解】方法1:用一阶微分形式不变性求全微分.123du f dx f dy f dz '''=++(,)z z x y =由x y z xe ye ze -=所确定,两边求全微分,有()()()()()x y z x y z d xe ye d ze d xe d ye d ze -=⇒-= x x y y z z xe dx e dx ye dy e dy ze dz e dz ⇒+--=+,解出 (1)(1),(10).(1)x y z e x dx e y dydz z e z +-+=+≠+设 所以 du =123(1)(1)(1)x y z e x dx e y dyf dx f dy f e z +-+'''++⨯+1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦ 方法2:1323,u z u zf f f f x x y y∂∂∂∂''''=+=+∂∂∂∂(根据多元函数偏导数的链式法则) 下面通过隐函数求导得到z x ∂∂,z y∂∂.由x y zxe ye ze -=两边对x 求偏导数,有 (),x x z z z xe e ze e x∂+=+∂ 得x xz zz xe e x ze e∂+=∂+,(10)z +≠设.类似可得,y y z z z ye e y ze e ∂+=-∂+,代入,u u x y ∂∂∂∂表达式 1323(),()x xy yz zz zu xe e u ye e f f f f x ze e y ze e ∂+∂+''''=+⋅=-⋅∂+∂+, 再代入 u udu dx dy x y∂∂=+∂∂中,得du 1323(1)(1)(1)(1)x yz ze x e yf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦.五【详解】首先要从2(sin )sin xf x x=求出()f x . 命2sin u x =,则有sin x =x =()f u =(通过换元求出函数的表达式)arcsin ()x f x dxx == sin 2sin cos cos ttt tdt t⎰(换元积分法) sin t tdt =2⎰[]2cossin t t t C=-++(分部积分法)2C ⎡=+⎣.六【分析】旋转体的体积公式:设有连续曲线:()()y f x a x b Γ=≤≤,()0f x ≥与直线,x a x b ==及x 轴围成平面图形绕x 轴旋转一周产生旋转体的体积2()baV f x dx π=⎰.【详解】(1) ()2225142(32)5aV xdx a ππ==-⎰22222420202a V a a x dy a a πππ=-=<<⎰.(2) 54124(32)5V V V a a ππ=+=-+ 根据一元函数最值的求法要求驻点,令34(1)0dVa a daπ=-=, 得1a =. 当01a <<时0dV da >,当12a <<时0dVda<,因此1a =是V 的唯一极值点且是极大值点,所以是V 的最大值点,129max 5V π=.七【解】(1) 369331()113(3)!(3)!nnn x x x x x y x n n ∞==+++++=+∑+!6!9!,由收敛半径的求法知收敛半径为∞,故由幂级数在收敛区间上逐项可导公式得3311()(1)(3)!(3)!nn n n x x y x n n ∞∞=='⎛⎫''=+= ⎪⎝⎭∑∑3113(3)!n n nx n -∞==∑311(31)!n n x n -∞==-∑,同理得 321(32)!n n x y n -∞=''=-∑从而 ()()()y x y x y x '''++32313111()()(1)(32)!(31)!(3)!n n nn n n x x x n n n --∞∞∞====+++--∑∑∑ 11!nn x n ∞==+∑(由x e 的麦克劳林展开式)x e =这说明,30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件310(0)1(3)!n n y n ∞==+∑1=,3110(0)(31)!n n y n -∞='=-∑0=. (2)微分方程xy y y e '''++=对应的齐次线性方程为0y y y '''++=,其特征方程为210λλ++=,其特征根为12-±,所以其通解为212[cossin ]22xy e C x C x -=+. 另外,该非齐次方程的特解形式为xy ce =,代入原非齐次方程得x x x xce ce ce e ++=,所以13c =.故微分方程xy y y e '''++=的通解为2121[sin ]3x x y e C x C x e -=++. 故22121211[cossin ][sin cos ]2222223x xx y e C x C x e C x x e --'=-⨯++-⨯++222112111(2(22222223x x x e C C x e C C x e --=-⨯-⨯-⨯-⨯+由初始条件(0)1,(0)0y y '==得0212100022211212111[00]331110(20(2022311223e C C e C e C C e C C e C C ---⎧=++=+⎪⎪⎪=-⨯--⨯-+⎨⎪⎪⎪=-++⎩解得11211311023C C ⎧+=⎪⎪⎨⎪-+=⎪⎩, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为221cos 323x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由微分方程解的唯一性,知321211cos ().(3)!323xn x n x e x e x n ∞-=+=+-∞<<+∞∑八【详解】方法1:因为()f x 与()g x 在[],a b 上连续,所以存在1x 2x 使得1[,]()max ()x a b f x M f x ∈==,2[,]()min ()x a b f x m f x ∈==,满足()m f x M ≤≤.又()0g x >,故根据不等式的性质()()()()mg x f x g x Mg x ≤≤根据定积分的不等式性质有()()()(),b b baaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰所以 ()().()babaf xg x dxm M g x dx≤≤⎰⎰由连续函数的介值定理知,存在[,]a b ξ∈,使()()()()babaf xg x dxf g x dxξ=⎰⎰即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.方法2:因为()f x 与()g x 在[],a b 上连续,且()0g x >,故()()baf xg x dx ⎰与()bag x dx ⎰都存在,且()0.bag x dx >⎰记()()()babaf xg x dxh g x dx=⎰⎰,于是()()()(),bbbaaaf xg x dxh g x dx hg x dx ==⎰⎰⎰即(())()0baf x hg x dx -=⎰因此必存在(,)a b ξ∈使()f h ξ=.不然,则在(,)a b 内由连续函数的零点定理知要么()f x h -恒为正,从而根据积分的基本性质得(())()0ba f x h g x dx ->⎰;要么()f x h -恒为负,同理得(())()0baf x hg x dx -<⎰,均与(())()0baf x hg x dx -=⎰不符.由此推知存在(,)a b ξ∈使()f h ξ=,从而()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.九【详解】方法1:对系数矩阵记为A 作初等行变换21311000000n a b b b a b b b b a b b b a a b A bb a b b a a b b b ba b a a b -- -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪ ⎪ ⎪=→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭行行行行行行当(0)a b =≠时,()1,0r A AX ==的同解方程组为120n x x x +++=,基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…,230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.当a b ≠时,000000ab b b b a a bA b a a bb a a b ⎛⎫⎪-- ⎪ ⎪→-- ⎪⎪⎪--⎝⎭23110010101001a b a b n a b a b bb ---⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行/()行/()行/() 12131(1)000110010101001bb n ba n b-⨯-⨯-⨯+-⎛⎫⎪-⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行行行行行行 当a b ≠且(1)a n b ≠--时,(1)0A a n b =+-≠,(),0r A n AX ==仅有零解. 当(1)a n b =--时,()1,0r A n AX =-=的同解方程组是121310,0,0,n x x x x x x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.方法2:方程组的系数行列式a b b bb a b b A b b abb b ba=(1)(1)2...(1)1(1)a n b b bb a n ba b b n a n b b ab a n b b ba+-+-+-+-把第,,列加到第列111[(1)]11b bb a bb an b b ab b ba +-提取第列的公因子 1210003-1[(1)]000-1000bbb a b an ba bna b--+---第行第行第行第行第行第行1[(1)]()n a n b a b -=+--(1)当a b ≠且(1)a n b ≠--时,0A ≠,()r A n =方程组只有零解. (2)当(0)a b =≠时,a a a a a a a a A a a a a a a aa ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦21000031000010000a a aa n ⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦第行第行第行第行第行第行111100001100000000a ⎡⎤⎢⎥⎢⎥⎢⎥⨯⎢⎥⎢⎥⎢⎥⎣⎦第行 方程组的同解方程组为120n x x x +++=基础解系中含有1n -个(未知数的个数-系数矩阵的秩)线性无关的解向量,取23,,...,n x x x 为自由未知量,分别取231,0,...,0n x x x ===,230,1,...,0n x x x ===,…, 230,0,...,1n x x x ===得方程组1n -个线性无关的解[][][]1211,1,0,,0,1,0,1,0,,0,,1,0,,0,1T T Tn ξξξ-=-=-=-,为基础解系,方程组0AX =的全部解为112211n n X k k k ξξξ--=+++,其中(1,2,1)i k i n =-是任意常数.(1)当(1)(0)a n b b =--≠时,(1)(1)(1)(1)n bb b bbn b b b A b b n bb b b b n b -⎛⎫⎪- ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭1,2,...,11111111111111111n bn n nn ⨯-⎛⎫⎪- ⎪ ⎪→- ⎪ ⎪ ⎪-⎝⎭行分别111121003100100n n n n nn n n -⎛⎫-⎪-⎪- ⎪- ⎪ ⎪- ⎪-⎝⎭行行行行行行 111111002,...,101011001n n n -⎛⎫⎪- ⎪ ⎪-⨯⎪ ⎪ ⎪-⎝⎭行分别000011002,...,10101001n ⎛⎫ ⎪-⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭把第行都依次加到第1行 ()1r A n =-,其同解方程组是121310,0,0,n x x x x x x -=⎧⎪-=⎪⎨⎪⎪-=⎩…… 基础解系中含有1个线性无关的解向量,取1x 为自由未知量,取11x =,得方程组1个非零解[]1,1,,1Tξ=,即其基础解系,故方程组的全部解为X k ξ=,其中k 是任意常数.十【详解】(1) 设λ是A 的任意特征值,α是A 的属于λ的特征向量,根据特征值、特征向量的定义,有 ,0,A αλαα=≠ ①两边左乘A ,得 2A αA λαλλα==2λα= ②②+2*①得 ()()2222A Aαλλα+=+因220A A +=,0α≠,从而上式()()22220A Aαλλα+=+=,所以有220λλ+=,故A 的特征值λ的取值范围为0,2-.因为A 是实对称矩阵,所以必相似于对角阵Λ,且Λ的主对角线上元素由A 的特征值组成,且()()2r A r =Λ=,故A 的特征值中有且只有一个0.(若没有0,则222-⎡⎤⎢⎥Λ=-⎢⎥⎢⎥-⎣⎦,故()()3r A r =Λ=与已知矛盾;若有两个0,则200-⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()1r A r =Λ=与已知矛盾;若三个全为0,则000⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,故()()0r A r =Λ=与已知矛盾). 故220A -⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦即A 有特征值1232,0λλλ==-=.(2)A kE +是实对称矩阵,A 有特征值1232,0λλλ==-=,知A kE +的特征值为2,2,k k k --.因为矩阵正定的充要条件是它的所有的特征值均大于零,故A kE +正定200k k ->⎧⇔⎨>⎩2k k >⎧⇔⎨>⎩2k ⇔> 故2k >时A kE +是正定矩阵.十一【分析】(,)X Y 有四个可能值,可以逐个求出.在计算过程中要注意到取值与U 的值有关.U 的分布为均匀分布,计算概率不用积分都行,可以直接看所占区间的长度比例即可.【详解】(,)X Y 只有四个可能值(1,1),(1,1),(1,1)(1,1)----和.依照题意,有{}{}{}1(2)11,11,11;2(2)4P X Y P U U P U ---=-=-=≤-≤=≤-==--{}{}{}1,11,10;P X Y P U U P =-==≤->=∅= {}{}{}11,11,111;2P X Y P U U P U ==-=>-≤=-<≤={}{}{}11,11,11.4P X Y P U U P U ===>->=>=于是,(,)X Y 分布为(2) 因为22()()[()]D X Y E X Y E X Y +=+-+,所以我们应该知道X Y +和2()X Y +的分布律.对离散型随机变量,X Y +的取值可能有2,0,2;-2()X Y +的取值可能有0和4;{}{}121,1,4P X Y P X Y +=-==-=-={}{}{}1101,11,10,22P X Y P X Y P X Y +====-+=-==+= {}{}121,1,4P X Y P X Y +=====(){}{}2100,2P X Y P X Y +==+==(){}{}{}214222P X Y P X Y P X Y +==+=-++==.X Y +和2()X Y +的分布律分别为和所以由离散型随机变量的数学期望计算公式有:{}1()nk k k E X x P X x ==⋅=∑所以有,2224()0,()2442E X Y E X Y +=-+=+==. 22()()[()]2D X Y E X Y E X Y +=+-+=十二【详解】首先找出随机变量Y 的表达式. Y 由X 和2(小时)来确定,所以min(,2)Y X =.指数分布的X 的分布参数为 11,()5E X λ==其密度函数为:1510()500x X ex f x x -⎧>⎪=⎨⎪≤⎩其中0λ>是参数由分布函数的定义:{}{}()min(,2)F y P Y y P X y =≤=≤(1) 当0y <时,()0Y F y =(因为{}min ,2Y X =,其中X 和2都大于0,那么小于0是不可能事件)(2) 当2y ≥时,()1Y F y =(因为{}min ,2Y X =最大也就取到2,所以小于等于2是一定发生的,是必然事件)(3) 当02y ≤<时, {}{}{}()min(,2)F y P Y y P X y P X y =≤=≤=≤115501()15x y yyX f x dx e dx e ---∞===-⎰⎰所以1500()10212y Y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩。

2022考研数学三真题及答案解析(数三)

2022考研数学三真题及答案解析(数三)

2022年全国硕士研究生入学统一考试数学(三)试题及参考答案一、选择题:1~10题,每小题5分,共50分.1、当0→x 时,)()(x x βα、是非零无穷小量,给出以下四个命题 ① 若)(~)(x x βα,则)(~)(22x x βα; ② 若)(~)(22x x βα,则)(~)(x x βα; ③ 若)(~)(x x βα,则))(()()(x o x x αβα=-; ④ 若))(()()(x o x x αβα=-,则)(~)(x x βα. 其中正确的序号是( )A :①②;B :①④;C :①③④;D :②③④. 答案:C .解析:当0→x 时,若)(~)(x x βα,则1)()(lim 0=→x x x βα,故1)()(lim )()(lim 20220=⎪⎪⎭⎫⎝⎛=→→x x x x x x βαβα,即)(~)(22x x βα,且011)()()(lim0=-=-→x x x x αβα,故))(()()(x o x x αβα=-.所以①③正确.当0→x 时,)(~)(22x x βα,则1)()(lim 220=→x x x βα,此时1)()(lim 0±=→x x x βα,而1)()(lim 0-=→x x x βα时,)(x α与)(x β不是等价无穷小,故 ②不正确.当0→x 时,若))(()()(x o x x αβα=-,1)()(lim ))(()()(lim )()(lim000==-=→→→x x x o x x x x x x x αααααβα,所以)(~)(x x βα,④正确.综上,C 为选项.2 、已知),2,1()1( =--=n nn a nnn ,则}{n a ( ) A :有最大值,有最小值; B :有最大值,没有最小值; C :没有最大值,有最小值; D :没有最大值,没有最小值. 答案:A .解析:1212,1221<-=>=a a ,又1lim =∞→n n a ,故存在0>N ,当N n >时,12a a a n <<,所以}{n a 有最大值和最小值,选项A 正确.3、设函数)(t f 连续,令⎰---=y x dt t f t y x y x F 0)()(),(,则( )A :2222y F x F y F x F ∂∂=∂∂∂∂=∂∂,; B :2222y Fx F y F x F ∂∂-=∂∂∂∂=∂∂,; C :2222y F x F y F x F ∂∂=∂∂∂∂-=∂∂,; D :2222yF x F y F x F ∂∂-=∂∂∂∂-=∂∂,. 答案:C .解析:⎰⎰⎰-----=--=y x y x y x dt t tf dt t f y x dt t f t y x y x F 0)()()()()(),(,⎰⎰--=-----+=∂∂y x y x dt t f y x f y x y x f y x dt t f x F 00)()()()()()(,)(22y x f x F -=∂∂,同理⎰⎰---=--+----=∂∂y x y x dt t f y x f y x y x f y x dt t f yF00)()()()()()(,)(22y x f y F -=∂∂, 综上2222yF x F y F x F ∂∂=∂∂∂∂-=∂∂,,选项C 正确. 4、已知⎰⎰⎰+=++=+=101031021sin 12,cos 1)1ln(,)cos 1(2dx x xI dx x x I dx x x I ,则( ) A :321I I I <<; B :312I I I <<; C :231I I I <<; D :123I I I <<. 答案:A .解析:⎰⎰⎰+=++=+=1010310212sin 1,cos 1)1ln(,)cos 1(2dx xx I dx x x I dx x xI ,先比较21,I I 的大小,令)1,0()1ln(2)(∈+-=x x xx f ,此时0)0(=f ,此时0)1(211121)(<+-=+-='x x x x f ,即)(x f 单调递减,从而0)0()(=<f x f ,可得)1,0()1ln(2∈+x x x《,从而21I I <.再比较23,I I 的大小,因)1,0(,cos 12sin 1,)1ln(∈+<+<+x x x x x ,则2sin 1cos 1)1ln(x xxx +<++,从而23I I >.综上,可得A 正确.5、设A 为3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=Λ000010001,则A 的特征值为011,,-的充分必要条件是( )A :存在可逆矩阵Q P ,,使得Q P A Λ=;B :存在可逆矩阵P ,使得1-Λ=P P A ; C :存在正交矩阵Q ,使得1-Λ=Q Q A ; D :存在可逆矩阵P ,使得TP P A Λ=; 答案:B解析:3阶A 有011,,-三个不同的特征值,所以A 可以相似对角化,故存在可逆矩阵P ,使得1-Λ=P P A ;若存在可逆矩阵P ,使得1-Λ=P P A ,即A 相似与Λ,而相似矩阵具有相同的特征值,而Λ的特征值为011,,-,故A 的特征值为011,,-.因此选B . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=421,1111122b b b a a A ,则线性方程组b Ax =解的情况为( )A :无解; B: 有解; C:有无穷多解或无解 ; D: 有唯一解或无解; 答案:D .解析:⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫⎝⎛→31101110111141211111)|2222b b a a b b a a b A ((1)当1=a 或1=b 时,)|()(b A r A r ≠,方程无解(2)当1≠a 且1≠b 时,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+→11130011110111113110111101111)|a b a b a a b b a a b A ( (i )当b a ≠时,3)|()(==b A r A r ,方程有唯一解 (ii )当b a =时,3)|(2)(==b A r A r ,,方程无解; 综述:方程有唯一解或无解,选D .7、设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=243211,11,11,11λλαλαλαλα,若向量组321,,ααα与421,,ααα等价,则λ的取值范围( )A :}1,0{ ; B:}2,|{-≠∈λλλR ;C:}2,1,|{-≠-≠∈λλλλR ; D:}1,|{-≠∈λλλR . 答案:C解析:向量组321,,ααα与421,,ααα等价的充要条件是()),,.,,(,,),,(421321421321ααααααααααααr r r ==,而),,,(),,.,,(4321421321αααααααααα,r r =()⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛→λλλλλλλλλλλλαααα2222431201101101111111111,,,(1)当1=λ时,()1).,,(,,),,(4321421321===ααααααααααr r r ,此时向量组等价 (2)当1≠λ时()⎪⎪⎪⎭⎫ ⎝⎛++---→⎪⎪⎪⎭⎫⎝⎛---+→⎪⎪⎪⎭⎫ ⎝⎛-++→24312)1(2001110111111001101110110110111,,,λλλλλλλλλλλαααα(i )当2-=λ时,3).,,(),,(2),,(4321421321===ααααααααααr r r ,,此时向量组不等价 (ii )当1,2-=-≠λλ时,3).,,(2),,(3),,(4321421321===ααααααααααr r r ,,,此时向量组不等价(iii )当1,2-≠-≠λλ时,3).,,(),,(),,(4321421321===ααααααααααr r r ,此时向量组等价 综上,当1,2-≠-≠λλ时,向量组321,,ααα与421,,ααα等价;选C8、随机变量)4,0(~N X ,随机变量⎪⎭⎫⎝⎛31,3~B Y ,且X 与Y 不相关,则=+-)13(Y X D ( )A: 2; B: 4; C: 6; D: 10. 答案:D .解析:由题意知,0),(32)(,4)(===Y X Cov Y D X D ,; 10)(9)()3()13(=+=-=+-Y D X D Y X D Y X D ,故选D .9、设随机变量序列 ,,,21n X X X 独立同分布,且i X 的概率密度为⎩⎨⎧<-=其他11)(x xx f 则当∞→n 时,∑=n i i X n 121依概率收敛于( )A :81; B : 61; C: 31; D: 21. 答案:B .解析:61)1(2)1()()(1211222=-=-==⎰⎰⎰-+∞∞-dx x x dx x x dx x f x X E i ,从而∑∑====⎪⎭⎫ ⎝⎛n i i n i i X E n X n E 121261)(11,由辛钦大数定律可得,∑=n i i X n 121依概率收敛于⎪⎭⎫ ⎝⎛∑=n i i X n E 121,从而选B .10、设二维随机变量),(Y X 的概率分布若事件}2},{max{==Y X A 与事件}1},{min{==Y X B 相互独立,则=),(Y X Cov ( )A :6.0- ; B: 36.0-; C: 0; D: 48.0. 答案:B .解析:1.0}2,1{)(,2.0)(,1.0)(=====+=Y X P AB P B P b A P ,由B A ,相互独立,故)()()(B P A P AB P =,解得4.0=b ,由分布律的性质得2.0=a ,6.0)(,2.1)(,2.0)(-==-=XY E Y E X E从而36.0)()()(),(-=-=Y E X E XY E Y X Cov ,故选B . 二、填空题:11~16题,每题5分,共30分.11、若=⎪⎪⎭⎫ ⎝⎛+→xx x e cot 021lim .答案:21e .解析:21tan 21lim21ln cot lim cot 00021lim e eeex e e x xxx x x xx ===⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+→→→.12、⎰=++-2024242dx x x x .答案:333ln π-. 解析:原式⎰⎰++-+++=2022024*******dx x x dx x x x ⎰⎰++-++++=20222022)3()1(1642)42(dx x x x x x d 20202|31arctan 36|)42ln(+-++=x x x 333ln π-=.13、已知函数x xe e xf sin sin )(-+=,则=''')2(πf .答案:0.解析:方法一:x xxe xex f sin sin cos cos )(--=',x x e x x e x x x f sin 2sin 2)sin (cos )sin (cos )(-++-='',)cos sin cos 2()sin (cos cos )sin (cos cos )cos sin cos 2()(sin sin 2sin 2sin x x x eex x x e x x x e x x x x f xxxx +-++--+--='''--从而01111)2(=+--='''πf . 方法二:x xe ex f sin sin )(-+=,显然)()(sin sin x f e e x f x x=+=--,故)(x f 为偶函数,且周期π2=T ,于是)(x f '为奇函数,)(x f ''为偶函数,)(x f '''为奇函数,从而0)0(='''f ,而0)0()2(='''='''f f π.14、已知⎩⎨⎧≤≤=其他,010,)(x e x f x ,则=-⎰⎰∞+∞-∞+∞-dy x y f x f dx )()( .答案:2)1(-e .解析:记}10,10|),{(≤-≤≤≤=x y x y x D ,原式⎰⎰⎰⎰-=-=Dx y x Ddxdy e e dxdy x y f x f )()(,2111)1()1(-=-==⎰⎰⎰+-e dy e e dy edx e x x xxy x.15、设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的1-倍加到第一列,得到矩阵⎪⎪⎪⎭⎫ ⎝⎛----=001011112B ,则1-A 的迹=-)(1A tr .答案:-1.解析:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=100011001,010********P P ,则B AP P =21 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛==--0100011111000110010010111120101000011211BP P A 0)1)(1(1011112=++-=-------=-λλλλλλE A ,解得i i -==-=321,,1λλλ 故1-A 的特征值为i i =-=-=321,,1λλλ,从而1)(1-=-A tr16、设C B A ,,为随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立,31)()()(===C P B P A P ,则=)|(C B A C B P .答案:85. 解析:()C B A P C B P C B A C B P )()|(=()98)()())(()()(95)()()()()()()()(=+=-+==-+=-+=C B P A P C B A P C B P A P C B A P C P B P C P B P BC P C P B P C B P从而85)|(=C B A C B P . 三、解答题:17~22小题,共94分,解答应写出文字说明,证明过程或演算步骤. 17、(本题满分10分)设函数)(x y 是微分方程x y xy +=+'221满足条件3)1(=y 的解,求曲线)(x y y =的渐近线.解:])2([)(2121C dx ex ex y dxxdxx+⎰+⎰=⎰-])2([C dx e x e x x ++=⎰-]2[C xee xx +=-xCe x -+=2,其中C 为任意常数,又3)1(=y ,得e C =,即xe x x y -+=12)(.22limlim 1=+==-+∞→+∞→xe x x y a xx x ,0lim )2(lim 1==-=-+∞→+∞→xx x e x y b ,故x y 2=为曲线)(x y y =的斜渐近线.18、(本题满分12分)设某产品的产量Q 由资本投入量x 和劳动投入量y 决定,生产函数为612112y x Q =,该产品的销售单价P 与Q 的关系为Q P 5.11160-=,若单位资本投入量和单位蓝洞投入量的价格分别为6和8,求利润最大时的产量.解:利润y x xy y x y x Q Q y x PQ L 862161392086)6.11160(86316121---=---=--=令⎪⎩⎪⎨⎧=--=--='=--=--='--------08)722320(872232006)722320(362166960612132326521612131316121y x xy xy y x L y x y y y x L yx,得驻点)64,256(, 此时38464256126=⨯⨯=Q ,在实际问题中由于驻点唯一,故利润L 在384=Q 处取到最大值. 19、(本题满分12分)已知平面区域}20,42|),{(2≤≤-≤≤-=y y x y y x D ,计算⎰⎰+-=Ddxdy y x y x I 222)(. 解:⎰⎰⎰⎰⎰⎰--+-=+-=ππϕϕπρρϕϕϕρρϕϕϕ2cos sin 20220202222)sin (cos )sin (cos )(d d d d dxdy y x y x I D⎰⎰+-=πππϕϕϕϕ2202)cos sin 21(2d d 22)12(2|)sin (2202-=+-=+-=ππππϕϕπ. 20、(本题满分12分)求幂级数∑∞=++-02)12(41)4(n nnn x n 的收敛域及和函数)(x S . 解:1)12(41)4()32(41)4(lim 22211n <++-++-+++∞→nnn n n n x n xn ,解得1||<x ,从而1=R ,收敛区间)1,1(-,当1±=x 时,∑∞=++-0)12(41)4(n nn n 收敛,故收敛域为]1,1[-. 当]1,1[-∈x ,令∑∑∞=∞=+++-=012)12(412)1()(n n n nn n n x x n x S , 令∑∑∞=+∞=≠+-=+-=0120210,12)1(112)1()(n n n n n n x n x x n x x S ,此时∑∑∞=∞=++=-='⎪⎪⎭⎫ ⎝⎛+-02201211)1(12)1(n nn n n n x x n x ,x dx x n x x n n n arctan 1112)1(0202=+=+-⎰∑∞=,故0,arctan 1)(1≠=x x xx S .∑∑∞=+∞=≠+=+=0120220,1241)12(4)(n n n n n n x n x x n x x S )(,此时2202012444114124x x x n x n n nn n n -=-=='⎪⎪⎭⎫ ⎝⎛+∑∑∞=∞=+)(,0,22ln 4412402012≠-+=-=+⎰∑∞=+x x x dx x n x x n n n )(,故0,22ln 1)(2≠-+=x xx x x S .0=x 时,2)0(=S .综上当]1,1[-∈x ,⎪⎩⎪⎨⎧=-∈-++=0,2]1,0)0,1[,22ln1arctan 1)(x x xx x x x x S ( . 21、(本题满分12分)已知二次型312322213212343),,(x x x x x x x x f +++=,(1)求正交变换Qy x =将),,(321x x x f 化为标准形; (2)证明:2)(min=≠xx x f T x . 解:(1)二次型对应矩阵⎪⎪⎪⎭⎫⎝⎛=301040103A ,0)2()4(3010401032=---=---=-λλλλλλE A ,解得4,2321===λλλ21=λ对应特征向量满足0)2(=-x E A ,解得⎪⎪⎪⎭⎫⎝⎛-=1011ξ432==λλ对应特征向量满足0)4(=-x E A ,解得⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ321,,ξξξ已经两两正交,单位化得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛-=22022,010,22022321ηηη,故存在正交矩阵),,(321ηηη=Q ,当Qy x =时232221321442),,(y y y y y y f ++=.(2)2322212322232221232221222442)()()(y y y y y y y y y y y y y y f Qy Q y y f x x x f T T T Qy x T ++++=++++==== 当0≠x 时,由Qy x =得0≠y ,当0,0132≠==y y y 时,2322212322222y y y y y ++++的最小值为2,故2)(min=≠xx x f Tx . 22、(本题12分)设n X X X ,,,21 为来自均值为θ的指数分布总体X 的简单随机样本,m Y Y Y ,,,21 为来自均值为θ2的指数分布总体Y 的简单随机样本,且两样本相互独立,其中)0(>θθ是未知参数,利用样本n X X X ,,,21 ,m Y Y Y ,,,21 ,求θ的最大似然估计量θˆ,并求)ˆ(θD . 解:由题知:总体Y X ,的概率密度为,0021)(,0001)(2⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>=--y y ey f x x ex f y YxX θθθθ令θθθθθθθθθ21211111121211),(),(∑∑=⋅=⋅===--+=-=-==∏∏∏∏mj j ni ij iy x n m m mj y ni x m j j Y ni i Xee e ey f x fLθθθ2ln )(2ln ln 11∑∑==--+--=mj jni i yx n m m L02ln 2121=+++-=∑∑==θθθθmj jni i yx n m d L d 解得⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i y x n m 11211ˆθ故θ的最大似然估计量⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i Y X n m 11211ˆθ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++=∑∑∑∑====m j j n i i m j j n i i Y D X D n m Y X n m D D 11211)(41)()(1211)ˆ(θ⎪⎭⎫ ⎝⎛++=)(4)()(12j i Y D m X nD n m 而224)(,)(θθ==j i Y D X D ,从而n m m n n m D +=⎪⎭⎫ ⎝⎛⋅++=222244)(1)ˆ(θθθθ。

专业科目考试:2022数学3真题模拟及答案(1)

专业科目考试:2022数学3真题模拟及答案(1)

专业科目考试:2022数学3真题模拟及答案(1)共599道题1、若f(x)是[a,b]上的连续函数且则必∃ξ∈(a,b),使φ′(ξ)=()。

(单选题)A. 0B. 1C. 2D. e试题答案:A2、设函数f(x)在区间(-δ,δ)内有定义,若当x∈(-δ,δ)时恒有|f(x)|≤x2,则x=0必是f(x)的()(单选题)A. 间断点B. 连续而不可导的点C. 可导的点,且f′(0)=0D. 可导的点,且f′(0)≠0试题答案:C3、∫[(4sinx+3cosx)/(sinx+2cosx)]dx=()。

(单选题)A. 2x-ln|sinx+2cosx|+CB. 2x+ln|sinx+2cosx|+CC. -2x-ln|sinx+2cosx|+CD. -2x+ln|sinx+2cosx|+C试题答案:A4、矩阵可逆,向量α→=(1,b ,1)T 是矩阵A *的一个特征向量,λ是α对应的特征值,其则非零实数λ为( )。

(单选题)A. 1B. 4C. 1或4D. 无解 试题答案:C5、若有( ),则必存在。

(单选题) A.B. ,A 为常数,k 为任意实数C. 函数f (x ,y )在点(x 0,y 0)连续D. 当点P (x ,y )沿无穷多条路径趋向定点P 0(x 0,y 0)时,有f (x ,y )趋于A 试题答案:C6、设α→=(1,0,-1,2),β→=(0,1,0,2),则r (α→T β→)=( )。

(单选题)A. 1B. 2C. 3D. 4 试题答案:A7、设D 是由点(1,1),(-1,-1),(-1,1)为顶点的三角区域,则=( )。

(D 1为D 在第一象限的部分)(单选题)A. B.C.D. 0试题答案:A8、=()。

(单选题)A. 1-πB. 2-πC. 4-πD. 6-π试题答案:C9、设α、β均为非零常数,已知f(x+x0)=αf(x)恒成立,且f′(0)=β,则f(x)在x0处()(单选题)A. f′(x0)=αβB. f′(x0)=αC. f′(x0)=βD. 不可导试题答案:A10、设f(x)可导,F(x)=f(x)[1-|ln(1+x)|],则f(0)=0是F(x)在x =0处可导的()。

2002年考研数学(三)真题及详细解析

2002年考研数学(三)真题及详细解析

2002 年全国硕士研‎究生入学统一‎考试数学三试‎题及解析一、填空题(本题共5小题‎,每小题3分,满分15分.把答案填在题‎中横线上) ⑴ 设常数12a ≠,则21lim ln[]________(12)nn n na n a →∞-+=-.【分析】将所求极限转‎换为1l n [1](12)l i m1n n an→∞+-,利用等价无穷‎小代换化简求‎解,或利用重要极‎限。

【详解】法一:11ln[1]211(12)(12)lim ln[]limlim 11(12)12nn n n n na n a n a n a an n→∞→∞→∞+-+--===-- 法二:11(12)12122111limln[]limln[1]limln (12)(12)12n a n a a n n n n na e n a n a a -⨯--→∞→∞→∞-+=+==--- ⑵ 交换积分次序‎:111422104(,)(,)________yydy f x y dx dy f x y dx +=⎰⎰⎰.【分析】写出对应的二‎重积分积分域‎D 的不等式,画出的草图后‎D ,便可写出先对‎y 后对的二次积‎x 分【详解】对应的积分区‎域12D D D =+,其中11(,)0,4D x y y y x ⎧=≤≤≤≤⎨⎩2111(,),422D x y y y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭画出的草图如‎D 右图所示,则也可表示为‎D 21(,)0,2D x y x x y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭故211114222104(,)(,)(,)xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⑶ 设三阶矩阵122212304A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,三维列向量(,1,1)Ta α=。

已知与线性相‎A αα关,则______a =。

【分析】由与线性相关‎A αα知,存在常数使得‎k A k αα=,及对应坐标成‎比例,由此求出a【详解】由于122212123304134a a A a a α-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦由与线性相关‎A αα可得:233411aa a a ++==,从而1a =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2002年全国硕士研究生入学统一考试数学三试题答案一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1)112a- 【考点】求数列极限.【解】ln “”里面为1∞“”型,凑成重要极限形式: (12)12211limln limln 1(12)(12)n a nan n n na n a n a --→∞→∞⎡⎤⎡⎤-+=+⎢⎥⎢⎥--⎣⎦⎣⎦(12)11lim ln 112(12)n a n a n a -→∞⎡⎤=+⎢⎥--⎣⎦11ln 1212e a a==--. (2)2120(,)xxdy f x y dy ⎰⎰【考点】交换二次积分的积分次序.【解】画出与原题中二次积分的限所对应的积分区域1D 与2D , 如图.将它们的并集记为D .于是111422104(,)(,)yydy f x y dx dy f x y dx +⎰⎰⎰(,)Df x y d σ=⎰⎰.再将后者化为先y 后x 的二次积分:2120(,)(,).xxDf x y d dy f x y dx σ=⎰⎰⎰⎰于是111422104(,)(,)yydy f x y dx dy f x y dx +=⎰⎰⎰2120(,)xxdy f x y dx ⎰⎰(3) 1-【考点】线性相关.【解】因122212123,304134a a A a a α-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==+ ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭A α与α线性相关.有233411a a a a ++==,得 2334, 1.a a a +=+=- 或 ,A k αα=即231341a a a k a ⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭,得2334a kaa k a k =⎧⎪+=⎨⎪+=⎩,得 1.(1)a k =-=(4) 0.02-【考点】随机变量的协方差,01-分布.【解】22(,)X Y 的分布及其边缘分布为而22X Y 的分布为所以2222222222()0.5()0.60,(0.28cov ()()0.280.60.50.02E X E Y E X Y X Y E X Y E X E Y ====-=-⨯=-,)(,)()答案应填0.02-.(5) 111ni i X n =-∑【考点】矩估计法与矩估计量. 【解】总体的一阶矩为数学期望()()1x E X xe dx θθθ+∞--==+⎰样本的一阶矩为样本均值11ni i X X n ==∑令111n i i X n θ=+=∑,解得 11ˆ1ni i X n θ==-∑.答案应填111ni i X n =-∑.二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内.) (1)(B )【考点】准确的掌握连续函数介值定理、罗尔定理与拉格朗日中值定理,理解可导与连续的关系.【解】方法1:论证法.由题设()f x 在开区间(,)a b 内可导,所以()f x 在(,)a b 内连续,因此,对于(,)a b 内的任意一点ξ,必有 lim ()().x f x f ξξ→=即有 lim[()()]0x f x f ξξ→-=.选(B ).方法2:排斥法.(A)的反例:1(,]()1x a b f x x a ∈⎧=⎨-=⎩有()1,()1,()()10f a f b f a f b =-==-<,但()f x 在(,)a b 内无零点.(C )与(D )的反例,(1,1]()11xx f x x ∈-⎧=⎨=-⎩ (1)(1)1f f -==,但()1f x '=(当(1,1)x ∈-),不满足罗尔中值定理,当然也不满足拉格朗日中值定理的结论. (2)(A )【考点】求幂级数的收敛半径.【解】在补充假设1limn n n a a +→∞与1lim n n nbb +→∞ 存在的前提下,由于已知1nn n a x ∞=∑与1n n n b x ∞=∑13,故有 1limn n n a a +→∞1lim n n nb b +→∞=3 于是 212221122212911lim lim 595n n n n n n n n n na b a b a a b b +++→∞→∞+⎛⎫=⋅=⋅= ⎪⎝⎭,故题设的幂级数收敛半径为5,选(A ). (3)(D )【考点】齐次线性方程组有非零解(或仅有零解)的判别.【解】方法1:A 是m n ⨯矩阵,B 是n m ⨯矩阵,则AB 是m 阶方阵,因()min((),())r AB r A r B ≤当m n >时,有()min((),())r AB r A r B n m ≤≤<. 方程组0Ax =必有零解,故应选(D ).方法2:B 是n m ⨯矩阵, 当m n >时,方程组0Bx =必有非零解,即存在00x ≠,使得00Bx =,两边左乘A ,得00ABx =,即0ABx =有非零解,故选(D ). (4)(B )【考点】矩阵及其相似矩阵的特征值、特征向量.【解】方法1:由题设A αλα=,且T A A =. 设 ()1TP APB -=,则11TTT TTB P A PP AP--==1T T A P BP -=,1()T T A P BP ααλα-==两边左乘T P ,得()TTB P P αλα=故知1()TB P AP -=的对应于特征值λ的特征向量为TP α,即应选(B ).方法2:逐个验算(A ),(B ),(C ),(D )中哪个选项满足()1.TP AP ξλξ-=其中()111T TTT T T P APP A P P AP ---==对(A ),即令1P ξα-=,代入111()TT P AP P P αλα---≠ 对(B ),有1()()TT T T T P AP P P A P ααλα-==成立.故应选(B ). (5)(C )【考点】正态分布、2χ分布、F 分布.【解】方法1:根据题设条件,X 和Y 均服从(0,1)N .故2X 和2Y 都服从2(1)χ分布答案应选(C ).方法2:题设条件只有X 和Y 服从(0,1)N ,没有X 与Y 的相互独立条件.因此,2X 与2Y 的独立条件不存在,选(B )、(D )项均不正确. 题中条件既没有X 与Y 独立,也没有(,)X Y 正态,这样就不能推出X Y +服从正态分布的选项(A ).根据排除法,正确选项必为(C ).三、(本题满分5分)【考点】求极限,洛必达法则,变限函数求导.【解】2200003arctan(1)arctan(1)limlim1(1cos )2xu x u x x t dt du t dt du x x x→→⎡⎤⎡⎤++⎢⎥⎢⎥⎣⎦⎣⎦-⎰⎰⎰⎰等22002arctan(1)arctan(1)2limlim 332x x x t dt x xxx →→++⋅⎰洛洛2346ππ=⋅=.四、(本题满分7分)【考点】复合函数求全微分.【解】方法1:用微分形式不变性求全微分.123du f dx f dy f dz '''=++而(,)z z x y =由xyzxe ye ze -=所确定,两边求全微分,有()(),x y z d xe ye d ze -=x x y y z z xe dx e dx ye dy e dy ze dz e dz +--=+,解出 (1)(1),(10).(1)x y z e x dx e y dydz z e z +-+=+≠+设 代入du 中,1323(1)(1).(1)(1)x yz ze x e y duf f dx f f dy e z e z ⎡⎤⎡⎤++''''=++-⎢⎥⎢⎥++⎣⎦⎣⎦ 方法2:1323,u z u zf f f f x x y y∂∂∂∂''''=+=+∂∂∂∂ 又由xyzxe ye ze -=两边对x 求偏导数,有(),x x z z zxe e ze e x∂+=+∂ 得 x xz z z xe e x ze e ∂+=∂+,(10)z +≠设. 类似可得 y yz z z ye e y ze e∂+=-∂+, 代入,u ux y∂∂∂∂表达式中得 1323(),()x xy yz z z z u xe e u ye e f f f f x ze ey ze e∂+∂+''''=+⋅=-⋅∂+∂+, 再代入 u udu dx dy x y∂∂=+∂∂中,得du 如方法1.六、(本题满分7分)【考点】求空心的旋转体体积,求最值.【解】(1)()2225142(32)5aV x dx a ππ==-⎰ 22222420202a V a a x dy a a πππ=-=<<⎰g .(2)54124(32)5V V V a a ππ=+=-+ 34(1)0dVa a daπ=-命, 得1a =,当01a <<时0dV da >,当12a <<时0dVda<,因此1a =是V 的唯一极值点且是极大值点,所以是V 的最大值点,129max 5V π=.五 、(本题满分6分)【考点】求不定积分.【解】由题中要求()f x dx 及2(sin )sin x f x x =知,01x <<.命2sin u x =,则有sin x =arcsin x =()f u =()f x dx =sin 2sin cos cos ttt tdt t= ⎰sin t tdt =2⎰[]2cos sin t t t C =-++2C ⎡=+⎣.七、(本题满分7分)【考点】验证幂级数满足微分方程及初始条件,利用解微分方程求幂级数的和函数.【解】(1) 369331()113(3)!(3)!n nn x x x x x y x n n ∞==+++++=+∑L L +!6!9!, 33313111113()(1)(3)!(3)!(3)!(31)!nn n n n n n n x x nx x y x n n n n --∞∞∞∞===='⎛⎫''=+=== ⎪-⎝⎭∑∑∑∑, 321(32)!n n x y n -∞=''=-∑从而 1()()()1!nx n x y x y x y x e n ∞='''++=+=∑ 说明30()(3)!n n x y x n ∞==∑是微分方程xy y y e '''++=的解,并且满足初始条件(0)1,(0)0.y y '==(2)按常规办法,计算出微分方程xy y y e '''++=的通解,为2121[cossin ]223x x y e C x C x e -=++. 从中找出满足初始条件(0)1,(0)0y y '==的解.为此,将初始条件代入通解中,得到111,3C +=12110223C C -++=, 于是得到惟一的一组解:122,0.3C C ==从而得到满足微分方程x y y y e '''++=及初始条件(0)1,(0)0y y '==的解,只有一个,为22133x x y e x e -=+另一方面,由(1)已知30()(3)!n n x y x n ∞==∑也是微分方程xy y y e '''++=及初始条件(0)1,(0)0y y '==的解,由唯一性,所以级数321211().(3)!33xn x n x e x e x n ∞-=+=+-∞<<+∞∑八、(本题满分6分)【考点】证明积分中值定理的推广.【解】方法1:因为()f x 与()g x 在[],a b 上连续,所以存在 max[,]()M a b f x =,min[,]()m a b f x =, ()m f x M ≤≤.又()0g x >,故有 ()()()()mg x f x g x Mg x ≤≤()()()(),b b baaam g x dx f x g x dx M g x dx ≤≤⎰⎰⎰()().()babaf xg x dxm M g x dx≤≤⎰⎰由连续函数的介值定理知,存在[,]a b ξ∈,使()()()()babaf xg x dxf g x dxξ=⎰⎰即有()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.方法2:因为()f x 与()g x 在[],a b 上连续,且()0g x >,故()()baf xg x dx ⎰与()bag x dx⎰都存在,且()0.bag x dx >⎰记()()()babaf xg x dxh g x dx=⎰⎰,于是()()()(),bbbaaaf xg x dxh g x dx hg x dx ==⎰⎰⎰即(())()0baf x hg x dx -=⎰.因此必存在(,)a b ξ∈使()f h ξ=.不然,则在(,)a b 内要么()f x h -恒为正,从而(())()0ba f x h g x dx ->⎰;要么()f x h -恒为负,从而(())()0baf x hg x dx -<⎰,均与(())()0baf x hg x dx -=⎰不符.由此推知存在(,)a b ξ∈使()f h ξ=,从而()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.证毕.九、(本题满分8分)【考点】齐次线性方程组有非零解(仅有零解)的判别,齐次线性方程组的基础解系和通解.【解】方法1:对系数矩阵作初等行变换00A=0000a b b b a b b b b a b b b a a b b b a b b a a b b b b a b aa b ⎛⎫⎛⎫ ⎪⎪-- ⎪ ⎪ ⎪ ⎪→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭L L L LL L M M M M MM M M LL当(0)a b =≠时,()1,0r A AX ==的同解方程组为120n x x x +++=L其基础解系为[][][]1211,1,0,,0,1,0,1,0,,0,1,0,,0,1T TTn ξξξ-=-=-=-L L LL方程组的全部解为112211n n X k k k ξξξ--=+++L ,其中(1,2,1)i k i n =-L 是任意常数.当a b ≠时,则001100A 001010001001(1)110010101001ab b b a b b b b a a bb a a bb a a b a n b b b b ⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪ ⎪ ⎪→→---⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭+-⎛⎫⎪-⎪ ⎪→-⎪ ⎪ ⎪-⎝⎭L L L L L L MM M M MM M M LL LL M M M M L故当a b ≠且(1)a n b ≠--时,(),0r A n AX ==仅有零解当(1)a n b =--时,0AX =的同解方程组是121310,0,0,n x x x x x x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩…… 其基础解系为[]1,1,,1Tξ=L ,方程组的全部解为X k ξ=,其中k 是任意常数.十、(本题满分8分)【考点】矩阵的特征值、正定矩阵 【解】(1)设λ是A 的任意特征值,α是A 的属于λ的特征向量,即,0,A αλαα=≠ ()1 两边左乘A ,得 ()222A A αλαλα==221+()()得 ()()2222A A αλλα+=+因220A A +=,0α≠,从而有220λλ+=,故A 的特征值λ的取值范围为0,2-. 因A 是实对称矩阵,必相似于对角阵Λ,且()()2r A r =Λ=故220A -⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦: 即A 有特征值1232,0λλλ==-=.(2)A kE +是实对称矩阵,由(1)知A kE +的特征值为2,2,k k k --.A kE +正定200k k ->⎧⇔⎨>⎩ 故2k >时A kE +是正定矩阵.十一、(本题满分8分)【考点】二维离散型随机变量的概率分布,两个随机变量函数的分布,随机变量的方差,均匀分布.【解】(,)X Y 只有四个可能值(1,1),(1,1),(1,1)(1,1)----和.{}{}{}{}{}{}{}{}{}{}{}{}1(2)11,11,11;2(2)41,11,10;11,11,111;211,11,11.4P X Y P U U P U P X Y P U U P P X Y P U U P U P X Y P U U P U ---=-=-=≤-≤=≤-==--=-==≤->=∅===-=>-≤=-<≤====>->=>=于是,(,)X Y 分布为(2)X Y +和2()X Y +的分布分别为和所以2224()0,()2442E X Y E X Y +=-+=+==.22()()[()]2D X Y E X Y E X Y +=+-+=.十二、(本题满分8分)【考点】随机变量函数的分布,指数分布.【解】指数分布的X 的分布参数为11,()5E X = 显然,min(,2)Y X =.对于0,()0y F y <=,对于1,()1y F y ≥=.当02y ≤<时{}{}{}5()min(,2)21.y F y P Y y P X y P X e -=≤=≤=≤=- 所以,Y 的分布函数为 50,0()1,021,2y y F y e y y -<⎧⎪⎪=-≤<⎨⎪≤⎪⎩。

相关文档
最新文档