二项分布与正态分布习题理含答案 精编
专题17.5 二项分布与正态分布(精讲精析篇)(解析版)

专题17.5 二项分布与正态分布(精讲精析篇)提纲挈领点点突破热门考点01 独立重复试验的概率n次独立重复试验(1)定义一般地,在相同条件下重复地做n次试验,各次试验的结果相互独立,称为n次独立重复试验.(2)公式一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k,(k=0,1,2,…,n).【典例1】(2015·全国高考真题(理))投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【答案】A【解析】该同学通过测试的概率为,故选A.【典例2】(多选题)(2020·襄阳市第一中学月考)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为80243;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627. 则其中正确命题的序号是()A .①B .②C .③D .④【答案】ABD 【解析】一袋中有大小相同的4个红球和2个白球,①从中任取3球,恰有一个白球的概率是21423635C C p C ==故正确; ②从中有放回的取球6次,每次任取一球,每次抽到白球的概率为2163p ==,则恰好有两次白球的概率为4226218033243p C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故正确; ③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为1143114535C C C C =,故错误; ④从中有放回的取球3次,每次任取一球,每次抽到红球的概率为4263p ==:则至少有一次取到红球的概率为3031261327p C ⎛⎫=-= ⎪⎝⎭,故正确.故选:ABD. 【总结提升】 1独立重复试验的特点(1)每次试验中,事件发生的概率是相同的.(2)每次试验中的事件是相互独立的,其实质是相互独立事件的特例.2.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解;在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.3.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验; 4.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.热门考点02 二项分布及其应用1.若将事件A 发生的次数设为X ,发生的概率为P ,不发生的概率q =1-p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是P (X =k )=C k n p k qn -k(k =0,1,2,…,n ) 于是得到X 的分布列(q +p )n =C 0n p 0q n +C 1n p 1q n -1+…+C k n p k qn -k +…+C n n p n q 0各对应项的值,称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).【典例3】(2020·科尔沁左翼后旗甘旗卡第二高级中学高二期末(理))已知随机变量ξ服从二项分布14,3B ξ⎛⎫~ ⎪⎝⎭,则(3)P ξ==( ).A .3281B .1681C .2481D .881【答案】D 【解析】14,3B ξ⎛⎫~ ⎪⎝⎭表示做了4次独立实验,每次试验成功概率为13,则31341228(3)4338181P C ξ⎛⎫⎛⎫==⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.选D .【典例4】为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省于2018年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2 160度以下(含2 160度),执行第一档电价0.565 3元/度;第二阶梯电量:年用电量2 161至4 200度(含4 200度),执行第二档电价0.615 3元/度;第三阶梯电量:年用电量4 200度以上,执行第三档电价0.865 3元/度.某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:(1)试计算表中编号为10的用电户本年度应交电费多少元?(2)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列; (3)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到k 户用电量为第一阶梯的可能性最大,求k 的值.【答案】见解析【解析】(1)因为第二档电价比第一档电价多0.05元/度,第三档电价比第一档电价多0.3元/度,编号为10的用电户一年的用电量是4 600度,则该户本年度应交电费为4 600×0.565 3+(4 200-2 160)×0.05+(4 600-4 200)×0.3=2 822.38(元).(2)由题表可知,10户中位于第二阶梯电量的有4户,设取到第二阶梯电量的用户数为ξ,则ξ可取0,1,2,3,4.P (ξ=0)=C 04C 46C 410=114,P (ξ=1)=C 14C 36C 410=821,P (ξ=2)=C 24C 26C 410=37,P (ξ=3)=C 34C 16C 410=435,P (ξ=4)=C 44C 06C 410=1210,故ξ的分布列为(3)由题意可知从全市中抽取10户,用电量为第一阶梯的户数满足X ~B ⎝⎛⎭⎫10,25,可知P (X =k )=C k 10⎝⎛⎭⎫25k ·⎝⎛⎭⎫3510-k (k =0,1,2,3,…,10).由⎩⎨⎧C k 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k +110⎝⎛⎭⎫25k +1⎝⎛⎭⎫359-k ,Ck 10⎝⎛⎭⎫25k ⎝⎛⎭⎫3510-k ≥C k -110⎝⎛⎭⎫25k -1⎝⎛⎭⎫3511-k,解得175≤k ≤225.又k ∈N *,所以当k =4时概率最大,故k =4.【规律方法】1.判断随机变量X 服从二项分布的条件(X ~B (n ,p )) (1)X 的取值为0,1,2,…,n . (2)P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ,p 为试验成功的概率).提醒:在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为独立重复试验,进而判定是否服从二项分布. 2. 二项分布满足的条件(1)每次试验中,事件发生的概率是相同的. (2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生. (4)随机变量是这n 次独立重复试验中事件发生的次数. 3.二项展开式的通项与二项分布的概率公式的“巧合”一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0p A p =>.我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.在n 次独立重复试验中,每次试验事件A 发生的概率均为()01p p <<,即()p A p =,()1p A p q =-=.由于试验的独立性,n 次试验中,事件A 在某指定的k 次发生,而在其余n k -次不发生的概率为k n kp q -.而在n 次试验中,事件A 恰好发生()0k k n ≤≤次的概率为()kkn kn n P k C p q-=,0,1,2,,k n =.它恰好是()np q +的二项展开式中的第1k +项.4. 牢记且理解事件中常见词语的含义: (1) A 、B 中至少有一个发生的事件为A B ;(2) A 、B 都发生的事件为AB ; (3) A 、B 都不发生的事件为AB ; (4) A 、B 恰有一个发生的事件为AB AB ; (5) A 、B 至多一个发生的事件为ABABAB .热门考点03 与二项分布有关的均值与方差二项分布的期望、方差: 若(),X B n p ,则()E X np =. 若(),XB n p ,则()()1D X np p =-.【典例5】(2019·天津高考真题(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(Ⅰ)见解析;(Ⅱ)20243【解析】(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23, 故2~3,3X B ⎛⎫ ⎪⎝⎭,从面()()33210,1,2,333k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以,随机变量X 的分布列为:X0 1 2 3P127 2949 827随机变量X 的数学期望2()323E X =⨯=. (Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫ ⎪⎝⎭. 且{3,1}{2,0}M X Y X Y =====.由题意知事件{}3,1X Y ==与{}2,0X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立, 从而由(Ⅰ)知:{}{}()()3,12,0P M P X Y X Y =====()()3,12,0P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 【典例6】(2019·河北高二期末(理))互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占23,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率; (2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望. 【答案】(1)291494;(2)440 【解析】(1)设事件A 表示至少有1人的年龄低于45岁,则()3303402911494C P A C =-=.(2)由题意知,以手机支付作为首选支付方式的概率为6031005=.设X 表示销售的10件商品中以手机支付为首选支付的商品件数,则3~10,5X B ⎛⎫ ⎪⎝⎭, 设Y 表示销售额,则()40501050010Y X X X =+-=-, 所以销售额Y 的数学期望35001050010104405EY EX =-=-⨯⨯=(元). 【总结提升】与二项分布有关的期望、方差的求法(1)求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B (n ,p ),则用公式E (ξ)=np ,D (ξ)=np (1-p )求解,可大大减少计算量.(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E (aξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (aξ+b ),同样还可求出D (aξ+b ).热门考点04 正态曲线及其性质1.正态曲线及其性质 (1)正态曲线:函数φμ,σ(x )=12πσe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ,σ(σ>0)为参数,我们称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值12πσ; ④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中,如图乙所示:甲 乙 2.正态分布一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x ,则称随机变量X 服从正态分布(normal distribution).正态分布完全由参数μ和σ确定,因此正态分布常记作N (μ,σ2).如果随机变量X 服从正态分布,则记为X ~N (μ,σ2). 3.正态总体三个特殊区间内取值的概率值 ①P (μ-σ<X ≤μ+σ)=0.6826; ②P (μ-2σ<X ≤μ+2σ)=0.9544; ③P (μ-3σ<X ≤μ+3σ)=0.9974. 4.3σ原则通常服从正态分布N (μ,σ2)的随机变量X 只取(μ-3σ,μ+3σ)之间的值.【典例7】(2020·湖北十堰·期末)设某地胡柚(把胡柚近似看成球体)的直径(单位:)mm 服从正态分布(75,16)N ,则在随机抽取的1000个胡柚中,直径在(79,83]内的个数约为( ) 附:若2~(,)X N μσ,则()0.6827P X μσμσ-<+=,(22)0.9545P X μσμσ-<+=. A .134 B .136 C .817 D .819【答案】B 【解析】由题意,75μ=,4σ=,则1(7983)[(22)()]2P X P X P X μσμσμσμσ<=-<+-+<+1(0.95450.6827)0.13592=⨯-=. 故直径在(79,83]内的个数约为0.135********.9136⨯=≈. 故选:B .【典例8】(多选题)(2020·辽宁省本溪满族自治县高级中学高二期末)若随机变量()0,1N ξ,()()x P x φξ=≤,其中0x >,下列等式成立有( )A .()()1x x φφ-=-B .()()22x x φφ=C .()()21P x x ξφ<=- D .()()2P x x ξφ>=-【答案】AC 【解析】随机变量ξ服从标准正态分布(0,1)N ,∴正态曲线关于0ξ=对称,()(x P x φξ=,0)x >,根据曲线的对称性可得:A.()()1()x x x φφξφ-=≥=-,所以该命题正确;B.(2)(2),2()2()x x x x φφξφφξ=≤=≤,所以()()22x x φφ=错误;C.(||)=()12()12[1()]2()1P x P x x x x x ξξφφφ<-≤≤=--=--=-,所以该命题正确;D.(||)(P x P x ξξ>=>或)=1()()1()1()22()x x x x x x ξφφφφφ<--+-=-+-=-,所以该命题错误. 故选:AC . 【规律方法】1.求正态曲线的两个方法(1)图解法:明确顶点坐标即可,横坐标为样本的均值μ,纵坐标为12πσ. (2)待定系数法:求出μ,σ便可. 2.正态分布下2类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个. 3.正态总体在某个区间内取值概率的求解策略(1)充分利用正态曲线对称性和曲线与x 轴之间面积为1.(2)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值. (3)注意概率值的求解转化: ①P (X <a )=1-P (X ≥a ); ②P (X <μ-a )=P (X ≥μ+a );③若b <μ,则P (X <b )=1-P μ-b <X <μ+b2.特别提醒:正态曲线,并非都关于y 轴对称,只有标准正态分布曲线才关于y 轴对称.热门考点05 正态分布及其应用【典例9】(2020·开封模拟)某商场经营的某种包装的大米质量ξ(单位:kg)服从正态分布N (10,σ2),根据检测结果可知P (9.9≤ξ≤10.1)=0.96,某公司为每位职工购买一袋这种包装的大米作为福利,若该公司有1 000名职工,则分发到的大米质量在9.9 kg 以下的职工数大约为( )A .10B .20C .20D .40【答案】B【解析】由已知得P (ξ<9.9)=1-P 9.9≤ξ≤10.12=1-0.962=0.02,所以分发到的大米质量在9.9 kg 以下的职工数大约为1 000×0.02=20.故选B.【典例10】(2020·全国高三其他(理))某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测100株树苗的高度,经数据处理得到如图(1)所示的频率分布直方图,其中最高的16株树苗的高度的茎叶图如图(2)所示,以这100株树苗的高度的频率估计整批树苗高度的概率.(1)求这批树苗的高度高于1.60米的概率,并求图(1)中a ,b ,c 的值;(2)若从这批树苗中随机选取3株,记ξ为高度在(]1.40,1.60的树苗数量,求ξ的分布列和数学期望; (3)若变量S 满足()06826P S μσμσ-<≤+>.且()220.9544P S μσμσ-<≤+>,则称变量S 满足近似于正态分布()2,N μσ的概率分布.如果这批树苗的高度满足近似于正态分布()1.5,0.01N 的概率分布,则认为这批树苗是合格的,将顺利被签收,否则,公司将拒绝签收.试问:该批树苗能否被签收? 【答案】(1)概率为0.15,0.2a =, 1.3b =, 3.5c =;(2)分布列答案见解析,数学期望2.1;(3)被签收. 【解析】(1)由题图(2)可知,100株样本树苗中高度高于1.60米的共有15株, 以样本的频率估计总体的概率,可得这批树苗的高度高于1.60米的概率为0.15. 记X 为树苗的高度,结合题图(1)(2)可得:()()21.20 1.30 1.70 1.800.02100P X P X ≤≤=<≤==, ()()131.30 1.40 1.60 1.700.13100P X P X <≤=<≤==,()()()11.40 1.50 1.50 1.60120.0220.130.352P X P X <≤=<≤=-⨯-⨯=. 因为组距为0.1,所以0.2a =, 1.3b =, 3.5c =.(2)以样本的频率估计总体的概率,可得:从这批树苗中随机选取1株,高度在(]1.40,1.60的概率为()()()1.40 1.60 1.40 1.50 1.50 1.600.7P X P X P X <≤=<≤+<≤=.因为从这批树苗中随机选取3株,相当于三次独立重复试验, 所以随机变量ξ服从二项分布()3,0.7B , 故ξ的分布列为()()330.30.70,1,2,3nnn P n C n ξ-==⨯⨯=,即ξ0 1 2 3()P ξ0.027 0.189 0.441 0.343()00.02710.18920.44130.343 2.1E x =⨯+⨯+⨯+⨯=(或()30.7 2.1E ξ=⨯=).(3)由()1.5,0.01N ,取 1.50μ=,0.1σ=,由(2)可知,()()1.40 1.600.70.6826P X P X μσμσ-<≤+=<≤=>, 又结合(1),可得()()22 1.30 1.70P X P X μσμσ-<≤+=<≤()()2 1.60 1.70 1.40 1.60P X P X =⨯<≤+<≤ 0.960.9544=>,所以这批树苗的高度满足近似于正态分布()1.5,0.01N 的概率分布, 应认为这批树苗是合格的,将顺利被该公司签收. 【规律方法】1.在解决有关问题时,通常认为服从正态分布N (μ,σ2)的随机变量X 只取(μ-3σ,μ+3σ)之间的值.如果服从正态分布的随机变量的某些取值超出了这个范围就说明出现了意外情况.2.求正态变量X 在某区间内取值的概率的基本方法: (1)根据题目中给出的条件确定μ与σ的值.(2)将待求问题向(μ-σ,μ+σ],(μ-2σ,μ+2σ],(μ-3σ,μ+3σ]这三个区间进行转化; (3)利用X 在上述区间的概率、正态曲线的对称性和曲线与x 轴之间的面积为1求出最后结果. 3.假设检验的思想(1)统计中假设检验的基本思想:根据小概率事件在一次试验中几乎不可能发生的原则和从总体中抽测的个体的数值,对事先所作的统计假设作出判断:是拒绝假设,还是接受假设.(2)若随机变量ξ服从正态分布N (μ,σ2),则ξ落在区间(μ-3σ,μ+3σ]内的概率为0.9974,亦即落在区间(μ-3σ,μ+3σ]之外的概率为0.0026,此为小概率事件.如果此事件发生了,就说明ξ不服从正态分布. (3)对于小概率事件要有一个正确的理解:小概率事件是指发生的概率小于3%的事件.对于这类事件来说,在大量重复试验中,平均每试验大约33次,才发生1次,所以认为在一次试验中该事件是几乎不可能发生的.不过应注意两点:一是这里的“几乎不可能发生”是针对“一次试验”来说的,如果试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,也有3%犯错的可能性.巩固提升1.(2020·山东济宁·期末)若随机变量()23,X N σ,且()50.2P X ≥=,则()15P X ≤≤等于( )A .0.6B .0.5C .0.4D .0.3【答案】A【解析】 由于()23,XN σ,则正态密度曲线关于直线3x =对称,所以()()15125120.20.6P X P X ≤≤=-≥=-⨯=,故选A.2.(2020·四川泸州·期末(理))设()()1122~,,~,X N Y N μσμσ,这两个正态分布密度曲线如图所示,则下列结论中正确的是( )A .1212,μμσσ><B .1212,μμσσ<<C .1212,μμσσ<>D .1212,μμσσ>>【答案】B 【解析】由图可得:X 的正态分布密度曲线更“瘦高”,且对称轴偏左, 结合正态分布密度曲线性质可得:1212,μμσσ<<. 故选:B3.(2020·江苏苏州·高二期末)现有5个人独立地破译某个密码,已知每人单独译出密码的概率均为p ,且112p <<,则恰有三个人译出密码的概率是( ) A .335C p B .2235(1)C p p -C .3325(1)C p p -D .2251(1)C p --【答案】C 【解析】由题意可知,恰有三个人译出密码的概率为3325(1)P C p p =-故选:C4.(2019·广东高二期末(理))从分别标有1,2,…,9的9张卡片中有放回地随机抽取5次,每次抽取1张.则恰好有2次抽到奇数的概率是( )A .235499⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ B .23255499C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .234599⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .32355499C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】每次抽到奇数的概率都相等,为59, 故恰好有2次抽到奇数的概率是25C •259⎛⎫ ⎪⎝⎭•349⎛⎫ ⎪⎝⎭, 故选:B .5.(多选题)(2020·江苏省海头高级中学高二月考)海头高级中学高二年级组织了一次调研考试,考试后统计的数学成绩服从正态分布,其密度函数2(100)200(),x P x x R --=∈,则下列命题正确的是( )A .这次考试的数学平均成绩为100B .分数在120分以上的人数与分数在90分以下的人数相同C .分数在130分以上的人数与分数在70分以下的人数大致相同D .这次考试的数学成绩方差为10 【答案】AC 【解析】因为数学成绩服从正态分布,其密度函数()2(100)200--=x P x ,x ∈R ,所以100μ=,22200σ=,即10σ=.所以这次考试的平均成绩为100,标准差为10,故A 正确,D 错误. 因为正态曲线的对称轴为100x =,所以分数在120分以上的人数与分数在90分以下的人数不相同,故B 错误; 分数在130分以上的人数与分数在70分以下的人数大致相同,故C 正确.6.(2020·黑龙江爱民·牡丹江一中开学考试(理))2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,已知某工厂生产口罩的质量指标()~15,0.0025N ξ,单位为g ,该厂每天生产的质量在()14.9,15.05g g 的口罩数量为818600件,则可以估计该厂每天生产的质量在15.15g 以上的口罩数量为( ) 参考数据:若()2~,N ξμσ,则()0.6827P μσξμσ-<<+=,()220.9545P μσξμσ-<<+=,()330.9973P μσξμσ-<<+=.A .158 700B .22 750C .2 700D .1 350【答案】D 【解析】由题意知,()~15,0.0025N ξ,即15μ=,20.0025σ=,即0.05σ=; 所以()()0.68270.954514.915.0520.81862P P ξμσξμσ+<<=-<<+==,所以该厂每天生产的口罩总量为8186000.81861000000÷=(件), 又()()10.997315.1532P P ξξμσ->=>+=, 所以估计该厂每天生产的质量在15.15g 以上的口罩数量为10.9973100000013502-⨯=(件). 故选:D7.(2020·营口市第二高级中学高二期末)荷花池中,有一只青蛙在成“品”字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A .23B .14C .13D .34【答案】C 【解析】设按照顺时针跳的概率为p ,则逆时针方向跳的概率为2p ,则p +2p =3p =1,解得p =13,即按照顺时针跳的概率为13,则逆时针方向跳的概率为23, 若青蛙在A 叶上,则跳3次之后停在A 叶上, 则满足3次逆时针或者3次顺时针,①若先按逆时针开始从A →B ,则对应的概率为23×23×23=827, ②若先按顺时针开始从A →C ,则对应的概率为13×13×13=127,则概率为827+127=927=13, 故选:C.8.(2020·江苏张家港·期中)某篮球运动员每次投篮投中的概率是45,每次投篮的结果相互独立,那么在他10次投篮中,记最有可能投中的次数为m ,则m 的值为( ) A .5 B .6C .7D .8【答案】D 【解析】记投篮命中的次数为随机变量X , 由题意,410,5XB ⎛⎫ ⎪⎝⎭, 则投篮命中m 次的概率为()10101010101044441155555mmm mm mm m C P X m C C --⋅⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅-=⋅⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 由1110101010111010101044554455m m m m m m m m C C C C ++--⎧⋅⋅≥⎪⎪⎨⋅⋅⎪≥⎪⎩得110101101044m m m m C C C C +-⎧≥⎨≥⎩,即1101011110101144m m m m m m m m m m mm A A A A A A A A +++---⎧≥⎪⎪⎨⎪≥⎪⎩,即()()4101141011m m m m ⎧-≥⎪⎪+⎨-+⎪≥⎪⎩, 解得394455m ≤≤,又m N ∈, 因此8m =时,()101045mmC P X m ⋅==取最大值. 即该运动员10次投篮中,最有可能投中的次数为8次. 故选:D.9.(2019·湖北高二期末)NBA 总决赛采用7场4胜制,2018年总决赛两支球队分别为勇士和骑士,假设每场比赛勇士获胜的概率为0.6,骑士获胜的概率为0.4,且每场比赛的结果相互独立,则恰好5场比赛决出总冠军的概率为_______. 【答案】0.2688 【解析】恰好5场比赛决出总冠军的情况有两种:一种情况是前4局勇士队3胜一负,第5局勇士胜, 另一种情况是前4局骑士队3胜一负,第5局骑士胜,∴恰好5场比赛决出总冠军的概率为:331344060.40.60.6040.40.2688p C C =⨯⋅⨯⨯+⨯⨯⋅⨯=.故答案为:0.2688.10.(2020·天津南开�高三一模)甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45;乙第一次射击的命中率为78,若第一次未射中,则乙进行第二次射击,射击的命中率为34,如果又未中,则乙进行第三次射击,射击的命中率为12.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为_____,乙射中的概率为_____. 【答案】125 6364【解析】甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45, 则甲击中的次数43,5XB ⎛⎫ ⎪⎝⎭, ∴甲三次射击命中次数的期望为()412355E X =⨯=, 乙第一次射击的命中率为78, 第一次未射中,则乙进行第二次射击,射击的命中率为34, 如果又未中,则乙进行第三次射击,射击的命中率为12, 乙若射中,则不再继续射击, 则乙射中的概率为:7131116388484264P =+⨯+⨯⨯=. 故答案为:125,6364.11.(2018·浙江下城·杭州高级中学高三其他)一个盒子中有大小形状完全相同的m 个红球和6个黄球,现从中有放回的摸取5次,每次随机摸出一个球,设摸到红球的个数为X ,若()3E X =,则m =________,(2)P X ==________.【答案】9 144625【解析】由题意知每次随机抽出1个球为红球的概率为6m m +,所以~5,6m X B m ⎛⎫ ⎪+⎝⎭,则由()3E X =,得536m m ⋅=+,解得9m =,所以365m m =+, 所以232533144(2)155625P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:9;14462512.(2019·浙江高三其他)已知随机变量()~X B n p ,,且X 的数学期望()2E X =,方差()23D X =,则p =____________,()2P X == ____________.【答案】23 49【解析】由二项分布的期望和方差的计算公式知,()2,2()(1),3E X np D X np p ==⎧⎪⎨=-=⎪⎩解得2,33,p n ⎧=⎪⎨⎪=⎩ 则223214(2)339P X C ⎛⎫==⨯= ⎪⎝⎭. 故答案为:23;49. 13.(2019·济南市学习质量评估)某医药公司研发生产一种新的保健产品,从一批产品中随机抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:(1)求a,并试估计这200盒产品的该项指标值的平均值.(2)①由样本估计总体,结合频率分布直方图认为该产品的该项质量指标值ξ服从正态分布N(μ,102),计算该批产品该项指标值落在(180,220]上的概率;②国家有关部门规定每盒产品该项指标值不低于150均为合格,且按该项指标值从低到高依次分为:合格、优良、优秀三个等级,其中(180,220]为优良,不高于180为合格,高于200为优秀,在①的条件下,设该公司生产该产品1万盒的成本为15万元,市场上各等级每盒该产品的售价(单位:元)如表,求该公司每万盒的平均利润.等级合格优良优秀售价102030附:若ξ~N(μ,δ2),则P(μ-δ<ξ≤μ+δ)≈0.682 7,P(μ-2δ<ξ≤μ+2δ)≈0.954 5.【答案】见解析【解析】(1)由10×(2×0.002+0.008+0.009+0.022+0.024+a)=1,解得a=0.033,则平均值x=10×0.002×170+10×0.009×180+10×0.022×190+10×0.033×200+10×0.024×210+10×0.008×220+10×0.002×230=200,即这200盒产品的该项指标值的平均值约为200.(2)①由题意可得μ=x=200,δ=10,则P(μ-2δ<ξ≤μ+2δ)=P(180<ξ≤220)≈0.954 5,则该批产品指标值落在(180,220]上的概率为0.954 5.②设每盒该产品的售价为X元,由①可得X的分布列为X 102030P 0.022 750.954 50.022 75则每盒该产品的平均售价为E(X)=10×0.022 75+20×0.954 5+30×0.022 75=20,故每万盒的平均利润为20-15=5(万元).14.(辽宁高考真题(理))一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; (2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ). 【答案】(1)0.108.(2) 1.8,0.72. 【解析】(1)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯=. 2()0.003500.15P A =⨯=. ()0.60.60.1520.108P B =⨯⨯⨯=.(2)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=, 123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为因为()~3,0.6X B ,所以期望为()30.6 1.830.610.60.72E X D X =⨯==⨯⨯-=,方差()().15.(2020·浙江)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每21 次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率; (2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算?【答案】(1)114400;(2)选择第二种方案更合算.【解析】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则()21213101120C C P A C ==,所以两位顾客均享受到免单的概率为()()114400P P A P A =⋅=;(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0、500、700、1000.()212131010120C C P X C ===,()21273107500120C C P X C ===,()12173********C C P X C ===,()177911000112012040120P X ==---=.故X 的分布列为,所以()0500700100091012012040120E X =⨯+⨯+⨯+⨯=(元).若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~3,10Y B ⎛⎫ ⎪⎝⎭,故()3931010E Y =⨯=,所以()()()10002001000200820E Z E Y E Y =-=-=(元).因为()()E X E Z >,所以该顾客选择第二种抽奖方案更合算.。
高考数学(人教a版,理科)题库:二项分布与正态分布(含答案).

第8讲二项分布与正态分布一、选择题1.甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A.0.6 B.0.7C.0.8 D.0.66解析甲市为雨天记为事件A,乙市为雨天记为事件B,则P(A)=0.2,P(B)=0.18,P(AB)=0.12,∴P(B|A)=P ABP A=0.120.2=0.6.答案 A2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( )A.512B.12C.712D.34解析本题涉及古典概型概率的计算.本知识点在考纲中为B级要求.由题意得P(A)=12,P(B)=16,则事件A,B至少有一件发生的概率是1-P(A)·P(B)=1-12×56=712.答案 C3.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是().A.[0.4,1] B.(0,0.4]C.(0,0.6] D.[0.6,1]解析设事件A发生的概率为p,则C14p(1-p)3≤C24p2(1-p)2,解得p≥0.4,故选A.答案 A4.设随机变量X 服从正态分布N (2,9),若P (X >c +1)=P (X <c -1),则c 等于( ). A .1B .2C .3D .4解析 ∵μ=2,由正态分布的定义,知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2. 答案 B5.在正态分布N ⎝ ⎛⎭⎪⎫0,19中,数值前在(-∞,-1)∪(1,+∞)内的概率为( ).A .0.097B .0.046C .0.03D .0.0026 解析 ∵μ=0,σ=13∴P (X <1或x >1)=1-P (-1≤x ≤1)=1-P (μ-3σ≤X ≤μ+3σ)=1-0.997 4=0.002 6. 答案 D6.已知三个正态分布密度函数φi (x )=12πσi·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则 ( ).A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3解析 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3. 答案 D 二、填空题7.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局胜者对第一局的败者,第四局是第三局胜者对第二局败者,则乙队连胜四局的概率为________.解析设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6;第二局中乙胜丙(A2),其概率为0.5;第三局中乙胜甲(A3),其概率为0.6;第四局中乙胜丙(A4),其概率为0.50,因各局比赛中的事件相互独立,故乙队连胜四局的概率为:P(A)=P(A1A2A3A4)=0.62×0.52=0.09.答案 0.098.设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=________.解析∵P(X≤1)=0.841 3,∴P(X>1)=1-P(X≤1)=1-0.841 3=0.158 7.∵X~N(0,1),∴μ=0.∴P(X<-1)=P(X>1)=0.158 7,∴P(-1<X<1)=1-P(X<-1)-P(X>1)=0.682 6.∴P(-1<X<0)=12P(-1<X<1)=0.341 3.答案0.341 39.设随机变量ξ服从正态分布N(0,1),记Ф(x)=P(ξ<x),给出下列结论:①Φ(0)=0.5;②Φ(x)=1-Φ(-x);③P(|ξ|<2)=2Φ(2)-1.则正确结论的序号是________.答案①②③10.商场经营的某种包装大米的质量(单位:kg)服从正态分布X~N(10,0.12),任选一袋这种大米,质量在9.8~10.2 kg的概率是________.解析P(9.8<X<10.2)=P(10-0.2<X<10+0.2)=0.954 4.答案0.954 4三、解答题11.设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分以上)的人数和130分以上的人数.解由题意得μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μ<-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=2P(X-μ<-σ)+0.682 6=1,∴P(X-μ<-σ)=0.158 7,∴P(X≥90)=1-P(X-μ<-σ)=1-0.158 7=0.841 3.∴54×0.841 3≈45(人),即及格人数约为45人.∵P(X≥130)=P(X-110≥20)=P(X-μ≥σ),∴P(X-μ≤-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=0.682 6+2P(X-μ≥σ)=1,∴P(X-μ≥σ)=0.158 7.∴54×0.158 7≈9(人),即130分以上的人数约为9人.12.在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上的学生有13人.(1)求此次参加竞赛的学生总数共有多少人?(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?解设学生的得分情况为随机变量X,X~N(60,100).则μ=60,σ=10.(1)P(30<X≤90)=P(60-3×10<X≤60+3×10)=0.997 4.∴P(X>90)=12[1-P(30<X≤90)]=0.001 3∴学生总数为:130.001 3=10 000(人).(2)成绩排在前228名的学生数占总数的0.022 8. 设分数线为x.则P(X≥x0)=0.022 8.∴P(120-x0<x<x0)=1-2×0.022 8=0.954 4. 又知P(60-2×10<x<60+2×10)=0.954 4.∴x0=60+2×10=80(分).13.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P(X=1)=15100=320,P(X=1.5)=30100=310,P(X=2)=25100=14,P(X=2.5)=20100=15,P(X=3)=10100=110.X的分布列为X的数学期望为E(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为980.14.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).解 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意,知P (B )=34,P (C )=P (D )=23, 由于A =B C - D -+B -C D -+B - C -D , 根据事件的独立性和互斥性,得 P (A )=P (B C - D -+B -C D -+B - C -D ) =P (B C - D -)+P (B -C D -)+P (B - C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,知X 的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性,得P (X =0)=P (B - C - D -) =[1-P (B )][1-P (C )][1-P (D )] =⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136; P (X =1)=P (B C - D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112;P (X =2)=P (B - C D -+B - C - D )=P (B - C D -)+P (B - C -D ) =⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19; P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D ) =34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13;P (X =4)=P (B -CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19,P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.。
二项分布与正态分布 练习题

二项分布与正态分布1.用电脑每次可以自动生成一个(0,1)内的实数,且每次生成每个实数都是等可能的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为( )A.127 B.23 C.827D.49解析:选C 由题意可得,用该电脑生成1个实数,且这个实数大于13的概率为P =1-13=23,则用该电脑连续生成3个实数,这3个实数都大于13的概率为⎝ ⎛⎭⎪⎫233=827.故选C.2.(2019·汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )A.34B.23C.57D.512解析:选D 根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是23×⎝ ⎛⎭⎪⎫1-34+34×⎝ ⎛⎭⎪⎫1-23=512,故选D.3.(2018·厦门二模)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25B.35C.18125D.54125解析:选D 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率为35,∴3次中恰有2次抽到黄球的概率是P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35=54125. 4.(2018·唐山二模)甲、乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( )A.29B.49C.23D.79解析:选D 甲不跑第一棒共有A 13·A 33=18种情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有A 33=6种情况;(2)乙不跑第一棒,共有A 12·A 12·A 22=8种情况,∴甲不跑第一棒的条件下,乙不跑第二棒的概率为6+818=79.故选D.5.(2019·福建四校联考)某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩X 近似服从正态分布N (100,a 2)(a >0),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( )A .400B .500C .600D .800解析:选A 由题意得,P (X ≤90)=P (X ≥110)=110,所以P (90≤X ≤110)=1-2×110=45,所以P (100≤X ≤110)=25,所以此次数学考试成绩在100分到110分之间的人数约为 1 000×25=400.故选A.6.(2018·河北“五个一名校联盟”二模)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A.110B.15C.25D.12解析:选C 设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P ABP A =1512=25.故选C.7.(2019·淄博一模)设每天从甲地去乙地的旅客人数为随机变量X ,且X ~N (800,502),则一天中从甲地去乙地的旅客人数不超过900的概率为( )(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4 )A.0.977 2 B.0.682 6C.0.997 4 D.0.954 4解析:选 A ∵X~N(800,502),∴P(700≤X≤900)=0.954 4,∴P(X>900)=1-0.954 42=0.022 8,∴P(X≤900)=1-0.022 8=0.977 2.故选A.8.(2019·茂名一模)设X~N(1,1),其正态分布密度曲线如图所示,那么向正方形ABCD中随机投掷10 000个点,则落入阴影部分的点的个数的估计值是( )(注:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=68.26%,P(μ-2σ<X<μ+2σ)=95.44%)A.7 539 B.6 038C.7 028 D.6 587解析:选D ∵X~N(1,1),∴μ=1,σ=1.∵P(μ-σ<X<μ+σ)=68.26%,∴P(0<X<2)=68.26%,则P(1<X<2)=34.13%,∴阴影部分的面积为1-0.341 3=0.658 7.∴向正方形ABCD中随机投掷10 000个点,则落入阴影部分的点的个数的估计值是10 000×0.658 7=6 587.故选D.9.(2019·珠海一模)夏秋两季,生活在长江口外浅海域的中华鱼回游到长江,历经三千多公里的溯流博击,回到金沙江一带产卵繁殖,产后待幼鱼长大到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为( )A.0.05 B.0.007 5C.13D.16解析:选C 设事件A为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件B 为该雌性个体成功溯流产卵繁殖,由题意可知P(A)=0.15,P(AB)=0.05,∴P(B|A)=P AB P A =0.050.15=13.故选C.10.(2019·江西名校联考)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 6,P (μ-2σ<X <μ+2σ)=0.954 4.A .1 193B .1 359C .2 718D .3 413解析:选B 对于正态分布N (-1,1),可知μ=-1,σ=1,正态曲线关于直线x =-1对称,故题图中阴影部分的面积为12×[P (-3<X <1)-P (-2<X <0)]=12×[P (μ-2σ<X <μ+2σ)-P (μ-σ<X <μ+σ)]=12×(0.954 4-0.682 6)=0.135 9,所以点落入题图中阴影部分的概率P =0.135 91=0.135 9,投入10 000个点,落入阴影部分的个数约为10 000×0.135 9=1 359.故选B.11.(2019·南昌模拟)口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,已知第一次取得红球,则第二次取得白球的概率为________.解析:口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,设事件A 表示“第一次取得红球”,事件B 表示“第二次取得白球”,则P (A )=26=13,P (AB )=26×35=15,∴第一次取得红球后,第二次取得白球的概率为P (B |A )=P ABP A =1513=35. 答案:3512.(2019·郑州一中月考)科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为________.解析:甲第3次考试才通过科目二,则前2次都未通过,第3次通过,故所求概率为⎝ ⎛⎭⎪⎫1-342×34=364. 答案:36413.(2019·合肥名校联考)已知随机变量X ~N (1,σ2),若P (X >0)=0.8,则P (X ≥2)=________.解析:随机变量X 服从正态分布N (1,σ2),∴正态曲线关于x =1对称,∴P (X ≥2)=P (X ≤0)=1-P (X >0)=0.2.答案:0.214.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局的胜者对第一局的败者,第四局是第三局的胜者对第二局的败者,则乙队连胜四局的概率为________.解析:设乙队连胜四局为事件A ,有下列情况:第一局中乙胜甲(A 1),其概率为1-0.4=0.6;第二局中乙胜丙(A 2),其概率为0.5;第三局中乙胜甲(A 3),其概率为0.6;第四局中乙胜丙(A 4),其概率为0.5,因各局比赛中的事件相互独立,故乙队连胜四局的概率为:P (A )=P (A 1A 2A 3A 4)=0.62×0.52=0.09.答案:0.0915.九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:(1)若购进这批九节虾35 000 g ,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X ,求X 的分布列.解:(1)由表中数据可以估计每只九节虾的质量为140×(4×10+12×20+11×30+8×40+5×50)=29.5(g),因为35 000÷29.5≈1 186(只),所以这批九节虾的数量约为1 186只.(2)由表中数据知,任意挑选1只九节虾,质量在[5,25)间的概率p =4+1240=25,X的所有可能取值为0,1,2,3,4,则P (X =0)=⎝ ⎛⎭⎪⎫354=81625,P (X =1)=C 14×25×⎝ ⎛⎭⎪⎫353=216625, P (X =2)=C 24×⎝ ⎛⎭⎪⎫252×⎝ ⎛⎭⎪⎫352=216625, P (X =3)=C 34×⎝ ⎛⎭⎪⎫253×35=96625,P (X =4)=⎝ ⎛⎭⎪⎫254=16625.所以X 的分布列为16.(2019·惠州模拟)某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p =23,记该班级完成n首背诵后的总得分为S n .(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的分布列及数学期望.解:(1)当S 6=20时,即背诵6首后,正确的有4首,错误的有2首.由S i ≥0(i =1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率P =⎝ ⎛⎭⎪⎫232×C 24⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132+23×13×23×C 23⎝ ⎛⎭⎪⎫232×13=1681. (2)由题意知ξ=|S 5|的所有可能的取值为10,30,50,又p =23,∴P (ξ=10)=C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133=4081,P (ξ=30)=C 45⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231×⎝ ⎛⎭⎪⎫134=3081, P (ξ=50)=C 55⎝ ⎛⎭⎪⎫235×⎝ ⎛⎭⎪⎫130+C 05⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫135=1181, ∴ξ的分布列为ξ 10 30 50 P408130811181∴E (ξ)=10×4081+30×3081+50×1181=1 85081.17.(2018·濮阳二模)近年来“双十一”已成为中国电子商务行业的年度盛事,并且逐渐影响到国际电子商务行业.某商家为了准备2018年“双十一”的广告策略,随机调查了1 000名客户在2017年“双十一”前后10天内网购所花时间T (单位:时),并将调查结果绘制成如图所示的频率分布直方图.由频率分布直方图可以认为,这10天网购所花的时间T 近似服从N (μ,σ2),其中μ用样本平均值代替,σ2=0.24.(1)计算μ,并利用该正态分布求P (1.51<T <2.49).(2)利用由样本统计获得的正态分布估计整体,将这10天网购所花时间在(2,2.98)小时内的人定义为目标客户,对目标客户发送广告提醒.现若随机抽取10 000名客户,记X 为这10 000人中目标客户的人数.(ⅰ)求EX ;(ⅱ)问:10 000人中目标客户的人数X 为何值的概率最大? 附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4,P (μ-3σ<Z <μ+3σ)=0.997 4.0.24≈0.49.解:(1)μ=0.4×(0.050×0.8+0.225×1.2+0.550×1.6+0.825×2.0+0.600×2.4+0.200×2.8+0.050×3.2)=2,从而T 服从N (2,0.24), 又σ=0.24≈0.49,从而P (1.51<T <2.49)=P (μ-σ<T <μ+σ)=0.682 6. (2)(ⅰ)任意抽取1名客户,该客户是目标客户的概率为P (2<T <2.98)=P (μ<T <μ+2σ) =12P (μ-2σ<T <μ+2σ)=12×0.954 4=0.477 2. 由题意知X 服从B (10 000,0.477 2), 所以EX =10 000×0.477 2=4 772. (ⅱ)X 服从B (10 000,0.477 2),P (X =k )=C k 10 0000.477 2k (1-0.477 2)10 000-k = C k 10 0000.477 2k ·0.522 810 000-k (k =0,1,2,…,10 000). 设当X =k (k ≥1,k ∈N)时概率最大,则有⎩⎨⎧P X =k >P X =k +1,P X =k >P X =k -1,得⎩⎨⎧0.522 8C k10 000>0.477 2C k +110 000,0.477 2C k 10 000>0.522 8C k -110 000,解得k =4 772.故10 000人中目标客户的人数为4 772的概率最大.。
专题11 概率与统计第三十二讲 二项分布与正态分布(解析版)

专题11 概率与统计第三十二讲 二项分布及其应用、正态分布答案部分1.C 【解析】由正态分布密度曲线的性质可知,211(,)X N μσ:,222(,)Y N μσ:的密度曲线分别关于直线1x μ=,2x μ=对称,因此结合题中所给图象可得,12μμ<,所以21()()P Y P Y μμ<≥≥,故A 错误.又211(,)X N μσ:得密度曲线较222(,)Y N μσ:的密度曲线“瘦高”,所以12σσ<,所以21()()P X P X σσ>≤≤,B 错误.对任意正数t ,()()P X t P Y t ≤≥≤,()()P X t P Y t ≥≥≥,C 正确,D 错误. 2.B 【解析】1(36)(95.44%68.26%)13.59%2P ξ<<=-=. 3.1.96【解析】由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=4.32【解析】同时抛掷两枚质地均匀的硬币,可能的结果有(正正),(正反),(反正),(反反),所以在1次试验中成功次数ξ的取值为0,1,2,其中111(0),(1),(2),424P P P ξξξ====== 在1次试验中成功的概率为113(1)424P ξ=+=≥,所以在2次试验中成功次数X 的概率为12313(1)448P X C ==⨯=,239(2)()416P X ===,393128162EX =⨯+⨯=.解法2由题意知,实验成功的概率34p =,故3(2,)4X B :,所以33()242E X =⨯=.5.13【解析】由30(1)20np np p =⎧⎨-=⎩,得13p =. 6.【解析】(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97x =,0.212s ≈,得μ的估计值为ˆ9.97μ=,σ的估计值为 ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为 1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为 221(1591.1349.221510.02)0.00815--⨯≈,因此σ0.09≈.7.【解析】(Ⅰ)设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.(Ⅱ)设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. (Ⅲ)解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯0.2550.150.250.30.1750.1 1.23a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.8.【解析】(Ⅰ)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球},1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥, 且1B =12A A ,2B =12A A +12A A ,C=1B +2B .因P (1A )=410=25,P (2A )=510=12, 所以P (1B )=P (12A A )=P (1A )P (2A )=25⨯12=15, P (2B )=P (12A A +12A A )=P (12A A )+P (12A A )=P (1A ) (1-P (2A ))+(1-P (1A ))P (2A )=25⨯(1-12)+(1-25)⨯12=12, 故所求概率为P (C)= P (1B +2B )=P (1B )+P (2B )=15+12=710.(Ⅱ)顾客抽奖3次独立重复试验,由(I )知,顾客抽奖1次获一等奖的概率为15, 所以1(3,)5X B :.于是 P (X =0)=003314()()55C =64125,P (X =1)=112314()()55C =48125, P (X =2)=221314()()55C =12125,P (X =3)=330314()()55C =1125 . 故X 的分布列为X 的数学期望为 E (X )=3⨯5=5.9.【解析】(Ⅰ)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩(1)目标函数为10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200zy x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=. 当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D .将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=. 故最大获利Z 的分布列为因此,(Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=, 由二项分布,3天中至少有1天最大获利超过10000元的概率为3311(1)10.30.973p p =--=-=.10.【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下第9题解答图1 第9题解答图2第9题解答图3通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (Ⅱ)记1A C 表示事件:“A 地区用户满意度等级为满意或非常满意”;2A C 表示事件:“A 地区用户满意度等级为非常满意”; 1B C 表示事件:“B 地区用户满意度等级为不满意”; 2B C 表示事件:“B 地区用户满意度等级为满意”.则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,1122B A B A C C C C C =U .1122()()B A B A P C P C C C C =U 1122()()B A B A P C C P C C =+ 1122()()()()B A B A P C P C P C P C =+.由所给数据得1A C ,2A C ,1B C ,2B C 发生的概率分别为1620,420,1020,820. 故1()A P C 16=20,2()=A P C 420,1()=B P C 1020,2()B P C 8=20,故101684()=+0.4820202020P C ⨯⨯=.。
2025高考数学一轮复习-10.8-二项分布与正态分布-专项训练【含解析】

2025高考数学一轮复习-10.8-二项分布与正态分布-专项训练【原卷版】1.已知随机变量X 服从二项分布B (n ,p ).若E (X )=2,D (X )=43,则p =()A .34B .23C .13D .142.某高三学生进行心理素质测试,场景相同的条件下每次通过测试的概率为45,则连续测试4次,至少有3次通过的概率为()A .512625B .256625C .64625D .641253.为加强体育锻炼,让运动成为习惯,某校进行了一次体能测试,这次体能测试满分为100分,从高三年级抽取1000名学生的测试结果,已知测试结果ξ服从正态分布N (70,σ2).若ξ在(50,70)内取值的概率为0.4,则ξ在90分以上取值的概率为()A .0.05B .0.1C .0.2D .0.44.已知随机变量ξ,η满足ξ~B (2,p ),η+2ξ=1,且P (ξ≤1)=34,则D (η)的值为()A .0B .1C .2D .35.(多选)袋子中有2个黑球,1个白球,现从袋子中有放回地随机取球4次,取到白球记0分,黑球记1分,记4次取球的总分数为X ,则()A .X ~B .P (X =2)=881C .E (X )=83D .D (X )=896.(多选)甲、乙两类水果的质量(单位:kg)分别服从正态分布N (μ1,σ21),N (μ2,σ22),其态分布密度曲线正态分布密度曲线是函数f (x )=12πσ,x ∈(-∞,+∞)如图所示,则下列说法正确的是()A .甲类水果的平均质量为0.4kgB .甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右C .平均质量分布在[0.4,0.8]时甲类水果比乙类水果占比大D .σ2=1.997.已知随机变量ξ~B (6,p ),且E (ξ)=2,则D (3ξ+2)=________.8.一台仪器每启动一次都随机地出现一个5位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数字中,a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23,则启动一次出现的数字A 中恰有两个0的概率为________.9.在某市2021年6月的高中质量检测考试中,高二年级学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市高二年级学生约100000人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第________名.(参考数值:P (μ-σ≤X ≤μ+σ)≈0.6827,P (μ-2σ≤X ≤μ+2σ)≈0.9545,P (μ-3σ≤X ≤μ+3σ)≈0.9973)10.羽毛球是一项隔着球网,使用长柄网状球拍击打用羽毛和软木刷制作而成的一种小型球类的室内运动项目.羽毛球比赛的计分规则:采用21分制,即双方分数先达21分者胜,3局2胜.每回合中,取胜的一方加1分.每局中一方先得21分且领先至少2分即算该局获胜,否则继续比赛;若双方打成29平后,一方领先1分,即算该局取胜.某次羽毛球比赛中,甲选手在每回合中得分的概率为34,乙选手在每回合中得分的概率为14.(1)在一局比赛中,若甲、乙两名选手的得分均为18,求再经过4回合比赛甲获胜的概率;(2)在一局比赛中,记前4回合比赛甲选手得分为X ,求X 的分布列及数学期望E (X ).11.假设某射手每次射击命中率相同,且每次射击之间相互没有影响.若在两次射击中至多命中一次的概率是1625,则该射手每次射击的命中率为()A .925B .25C .35D .3412.如图,在网格状小地图中,一机器人从A (0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是23,向右的概率是13,则6秒后到达B (4,2)点的概率为()A .16729B .80243C .4729D .2024313.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求E (X );②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?2025高考数学一轮复习-10.8-二项分布与正态分布-专项训练【解析版】1.已知随机变量X 服从二项分布B (n ,p ).若E (X )=2,D (X )=43,则p =()A .34B .23C .13D .14解析:C由随机变量X 服从二项分布B (n ,p ).又E (X )=2,D (X )=43,所以np =2,np (1-p )=43,解得p =13,故选C .2.某高三学生进行心理素质测试,场景相同的条件下每次通过测试的概率为45,则连续测试4次,至少有3次通过的概率为()A .512625B .256625C .64625D .64125解析:A4次独立重复实验,故概率为C ·15+C =512625.3.为加强体育锻炼,让运动成为习惯,某校进行了一次体能测试,这次体能测试满分为100分,从高三年级抽取1000名学生的测试结果,已知测试结果ξ服从正态分布N (70,σ2).若ξ在(50,70)内取值的概率为0.4,则ξ在90分以上取值的概率为()A .0.05B .0.1C .0.2D .0.4解析:B∵ξ服从正态分布N (70,σ2),∴正态曲线的对称轴是直线x =70,∴ξ在(70,100)内取值的概率为0.5.∵ξ在(50,70)内取值的概率为0.4,∴ξ在(70,90)内取值的概率为0.4,则ξ在90分以上取值的概率为0.5-0.4=0.1.故选B .4.已知随机变量ξ,η满足ξ~B (2,p ),η+2ξ=1,且P (ξ≤1)=34,则D (η)的值为()A .0B .1C .2D .3解析:C因为随机变量ξ满足ξ~B (2,p ),P (ξ≤1)=34,所以有P (ξ≤1)=C 02(1-p )2+C 12p (1-p )=1-p 2=34,即p =12.则D (ξ)=2×12=12,η=1-2ξ,D (η)=4D (ξ)=2.故选C .5.(多选)袋子中有2个黑球,1个白球,现从袋子中有放回地随机取球4次,取到白球记0分,黑球记1分,记4次取球的总分数为X ,则()A .X ~B .P (X =2)=881C .E (X )=83D .D (X )=89解析:ACD从袋子中有放回地随机取球4次,则每次取球互不影响,并且每次取到的黑球概率相等,又取到黑球记1分,取4次球的总分数,即为取到黑球的个数,所以随机变量X 服从二项分布X ~故A 正确;X =2,则其概率为P (X =2)=C =827,故B 错误;因为X ~所以X 的期望E (X )=4×23=83,故C 正确;因为X ~所以X 的方差D (X )=4×23×13=89,故D 正确.故选A 、C 、D .6.(多选)甲、乙两类水果的质量(单位:kg)分别服从正态分布N (μ1,σ21),N (μ2,σ22),其正态分布密度曲线正态分布密度曲线是函数f (x )=12πσ,x ∈(-∞,+∞)说法正确的是()A .甲类水果的平均质量为0.4kgB .甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右C .平均质量分布在[0.4,0.8]时甲类水果比乙类水果占比大D .σ2=1.99解析:ABC由题图可知,甲类水果的平均质量为μ1=0.4kg ,故A 正确;由图可知,甲类水果的质量分布比乙类水果的质量更集中于平均值左右,故B 正确;由图可看出平均质量分布在[0.4,0.8]时甲类水果比乙类水果占比大,故C 正确;乙类水果的质量服从的正态分布的参数满足12πσ2=1.99,则σ2≠1.99,故D 错误,故选A 、B 、C .7.已知随机变量ξ~B (6,p ),且E (ξ)=2,则D (3ξ+2)=________.解析:因为ξ~B (6,p ),所以E (ξ)=n ·p =6·p =2,解得p =13D (ξ)=n ·p ·(1-p )=2·23=43,所以D (3ξ+2)=9D (ξ)=12.答案:128.一台仪器每启动一次都随机地出现一个5位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数字中,a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23,则启动一次出现的数字A 中恰有两个0的概率为________.解析:根据题意,A 中恰有两个0的概率,即在a 2,a 3,a 4,a 5四个数中恰好有2个0,2个1,则A 中恰有两个0的概率P =C =827.答案:8279.在某市2021年6月的高中质量检测考试中,高二年级学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市高二年级学生约100000人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第________名.(参考数值:P (μ-σ≤X ≤μ+σ)≈0.6827,P (μ-2σ≤X ≤μ+2σ)≈0.9545,P (μ-3σ≤X ≤μ+3σ)≈0.9973)解析:因为考试的成绩X 服从正态分布N (98,100),所以μ=98,σ=10,所以,108=μ+σ,则P (X ≥108)=P (X ≥μ+σ)=1-P (μ-σ≤X ≤μ+σ)2=0.15865,数学成绩为108分的学生大约排在全市第100000×0.15865=15865名.答案:1586510.羽毛球是一项隔着球网,使用长柄网状球拍击打用羽毛和软木刷制作而成的一种小型球类的室内运动项目.羽毛球比赛的计分规则:采用21分制,即双方分数先达21分者胜,3局2胜.每回合中,取胜的一方加1分.每局中一方先得21分且领先至少2分即算该局获胜,否则继续比赛;若双方打成29平后,一方领先1分,即算该局取胜.某次羽毛球比赛中,甲选手在每回合中得分的概率为34,乙选手在每回合中得分的概率为14.(1)在一局比赛中,若甲、乙两名选手的得分均为18,求再经过4回合比赛甲获胜的概率;(2)在一局比赛中,记前4回合比赛甲选手得分为X ,求X 的分布列及数学期望E (X ).解:(1)记再经过4回合比赛,甲获胜为事件A ,可知甲在第4回合胜,前3回合胜2场,所以P (A )=34×C =81256.(2)易知X 的取值为0,1,2,3,4,且X ~P (X =0)=C =1256,P (X =1)=C ×34=364,P (X =2)=C =27128,P (X =3)=C =2764,P (X =4)=C =81256,所以X 的分布列为X 01234P125636427128276481256数学期望E (X )=np =4×34=3.11.假设某射手每次射击命中率相同,且每次射击之间相互没有影响.若在两次射击中至多命中一次的概率是1625,则该射手每次射击的命中率为()A .925B .25C .35D .34解析:C设该射手射击命中的概率为p ,两次射击命中的次数为X ,则X ~B (2,p ),由题可知:P (X =0)+P (X =1)=1625,即C 02p 0(1-p )2+C 12p (1-p )=1625,解得p =35.故选C .12.如图,在网格状小地图中,一机器人从A (0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是23,向右的概率是13,则6秒后到达B (4,2)点的概率为()A .16729B .80243C .4729D .20243解析:D根据题意可知,机器人每秒运动一次,则6秒共运动6次,若其从A (0,0)点出发,6秒后到达B (4,2),则需要向右走4步,向上走2步,故其6秒后到达B 的概率为C 26=60729=20243.13.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解:(1)因为20件产品中恰有2件不合格品的概率为f(p)=C220p2·(1-p)18,所以f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.由于E(X)>400,故应该对余下的产品作检验.。
新高考一轮复习人教版 二项分布与正态分布 作业1

11.3 二项分布与正态分布一、选择题1.(2022届成都蓉城名校联盟联考一,4)若随机事件A,B 满足P(A)=13,P(B)=12,P(A+B)=34,则P(A|B)=( )A.29B.23C.14D.16答案 D 因为P(A+B)=P(A)+P(B)-P(AB),所以P(AB)=P(A)+P(B)-P(A+B)=13+12-34=112,所以P(A|B)=P(AB)P(B)=16,故选D.2.(2022届昆明一中双基检测三,8)某同学从家到学校要经过三个十字路口,设各路口信号灯工作相互独立,该同学在各路口遇到红灯的概率分别为12,13,14,则该同学从家到学校至少遇到一次红灯的概率为( )A.124B.1124C.23D.34答案 D 该同学从家到学校至少遇到一次红灯的概率为1-(1-12)×(1-13)×(1-14)=34,故选D.3.(2022届成都蓉城名校联盟联考一,7)已知随机变量X~B(n,p),E(X)=2,D(X)=23,则P(X ≥2)=( )A.2027B.23C.1627D.1327答案 A 由题意知E(X)=np=2,D(X)=np(1-p)=23,联立解得n=3,p=23,所以P(X ≥2)=C 32×(23)2×(1-23)+C 33×(23)3=2027,故选A.4.(2022届河南重点中学模拟一,7)2021年国庆节期间,小李报名参加市电视台举办的“爱我祖国”有奖竞答活动,活动分两轮回答问题.第一轮从5个题目中随机选取2个题目回答,若2个回答都正确,则本轮得奖金500元;若仅有1个回答正确,则本轮得奖金200元;若两个回答都不正确,则没有奖金且被淘汰.有资格进入第二轮者,最多回答两个问题,先从5个题目中随机选取1个题目回答,若回答错误,则本轮奖金为零且被淘汰;若回答正确,则本题回答得奖金2000元,再从剩余4个题目中随机选1个,回答正确,本题得奖金3000元,回答错误,本题没有奖金.已知小李第一轮5个题目中3个能回答正确,第二轮每个题目回答正确的概率为25(每轮选题相互独立),则小李获得2500元的概率为( ) A.54625 B.9125 C.18125 D.925答案 B 若小李获得2500元奖金,则第一轮2个题目回答都正确,第二轮第1个题目回答正确,第2个题目回答错误,所以所求概率为C 32C 52×25×(1-25)=9125,故选B.5.(2021安徽宣城调研,8)围棋起源于中国,据先秦典籍《世本》记载:“尧造围棋,丹朱善之”.围棋至今已有四千多年历史,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,甲、乙两人进入最后决赛.比赛采取五局三胜制,即先胜三局的一方获得比赛冠军(假设没有平局),比赛结束.假设每局比赛乙胜甲的概率都为23,且各局比赛的胜负互不影响,则在不超过4局的比赛中甲获得冠军的概率为( ) A.19 B.1781 C.827 D.1627答案 A 在不超过4局的比赛中甲获得冠军包含两种情况: ①甲前三局全胜,概率为P 1=(13)3=127;②前三局甲两胜一负,第四局甲胜,概率为P 2=C 32(13)2×23×13=227.∴在不超过4局的比赛中甲获得冠军的概率为P=P 1+P 2=127+227=19.6.(2022届长春外国语学校期中,4)已知服从正态分布N(μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别约为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布N(165,52),则适合身高在155~175cm 范围内的校服大约要定制( ) A.683套 B.954套 C.972套 D.997套答案 B 因为学生的身高(单位:cm)服从正态分布N(165,52),所以μ=165,σ=5,身高在155~175cm 范围内即在(μ-2σ,μ+2σ)内,可知概率约为95.4%,所以身高在155~175cm 范围内的校服大约要定制1000×95.4%=954套.故选B.7.(2022届河南部分名校阶段测,10)已知随机变量X,Y,Z 满足X~N(3,σ2),Y~N(1,σ2),Z=Y-1,且P(X>4)=0.1,则P(Z 2<1)的值为( )A.0.1B.0.2C.0.8D.0.9答案 C 因随机变量X,Y 满足X~N(3,σ2),Y~N(1,σ2),则随机变量X 和Y 所对应的正态曲线的形状相同,曲线的对称轴分别为直线x=3和x=1,因此,P(Y>2)=P(X>4)=0.1,而Z=Y-1,则P(Z>1)=P(Y-1>1)=P(Y>2)=0.1,于是得P(Z 2<1)=P(-1<Z<1)=1-0.1×2=0.8,所以P(Z 2<1)的值为0.8.故选C.8.(2021安徽蚌埠二模,6)已知随机变量X 服从正态分布N(2,σ2),且P(X<1)·P(X>3)=19,则P(1<X<2)=( )A.16B.14C.13D.12答案 A 由正态分布X~N(2,σ2)知,对称轴为μ=2,由对称性,知P(X<1)=P(X>3)=13,则P(1<X<2)=12P(1<X<3)=12×(1-13-13)=16.9.(多选)(2021山东青岛调研,12)在国家精准扶贫政策的支持下,某农户贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰,若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布N(μ,302)和N(280,402),则下列选项正确的是( )附:若随机变量X 服从正态分布N(μ,σ2),则P(μ-σ<X≤μ+σ)≈0.6827)A.若红玫瑰日销售量范围在(μ-30,280]的概率是0.6827,则红玫瑰日销售量的平均数约为250B.红玫瑰日销售量比白玫瑰日销售量更集中C.白玫瑰日销售量比红玫瑰日销售量更集中D.白玫瑰日销售量范围在(280,320]的概率约为0.34135答案ABD 对于A,由μ+30=280,得μ=250,故A 正确;对于B 和C,σ越小数据越集中,因为30<40,所以红玫瑰日销售量比白玫瑰日销售量更集中,故B 正确,C 不正确.对于D,P(280<X ≤320)≈0.6827×12=0.34135,故D 正确,故选ABD.二、填空题10.(2021江西九所重点中学联考,13)已知随机变量ξ服从正态分布N(3,σ2),P(ξ≤6)=0.84,则P(ξ≤0)= . 答案 0.16解析 由正态分布ξ~N(3,σ2)知,对称轴为μ=3,由对称性,得P(ξ≥0)=P(ξ≤6)=0.84,则P(ξ≤0)=1-0.84=0.16.11.(2022届成都七中期中,16)已知某品牌电子元件的使用寿命X(单位:天)服从正态分布N(98,64). (1)该品牌一个电子元件的使用寿命超过100天的概率为 ;(2)由三个该品牌的电子元件组成的一条电路(如图所示)在100天后仍能正常工作(要求K 能正常工作,A,B 中至少有一个能正常工作,且每个电子元件能否正常工作相互独立)的概率为 . (参考公式:若X~N(μ,σ2),则P(μ-0.25σ<X≤μ+0.25σ)≈0.2)答案 (1)25 (2)32125解析 (1)由题设知μ=98,σ=8,∴P(X>100)=1-P(μ-0.25σ<X≤μ+0.25σ)2≈1-0.22=25.(2)由题意知电路能正常工作的概率P=25×25×25+25×(1-25)×25+25×25×(1-25)=32125.12.(2022届北京十三中开学考试,14)人们为了解一只股票未来一定时期内价格的变化,往往会去分析影响股票价格的基本因素,比如利率的变化.现假设人们经分析估计利率下调的概率为60%,利率不变的概率为40%.根据经验,人们估计,在利率下调的情况下,该只股票价格上涨的概率为80%,而在利率不变的情况下,其价格上涨的概率为40%,则该只股票将上涨的概率为 . 答案 64%解析 记“利率下调”为事件A,则“利率不变”为事件A ,“价格上涨”为事件C, 由题意知P(A)=60%,P(A )=40%,P(C|A)=80%,P(C|A )=40%, ∴P(C)=P(A)P(C|A)+P(A )P(C|A )=48%+16%=64%.13.(2021北京十三中开学测试,12)100件产品中有5件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是 . 答案9599解析 在第1次抽到次品后,还有4件次品,95件正品,则第二次抽到正品的概率为P=9599,故答案为9599.三、解答题14.(2021安徽安庆一模,20)某商超为庆祝店庆十周年,准备举办一次有奖促销活动,若顾客一次消费达到400元,则可参加一次抽奖活动,主办方设计了两种抽奖方案:方案①:一个不透明的盒子中装有12个质地均匀且大小相同的小球,其中3个红球,9个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球,则顾客获得80元的返金券,若抽到白球,则获得20元的返金券,且顾客有放回地抽取3次.方案②:一个不透明的盒子中装有12个质地均匀且大小相同的小球,其中3个红球,9个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球,则顾客获得100元的返金券,若抽到白球,则未中奖,且顾客有放回地抽取3次.(1)现有一位顾客消费了420元,获得一次抽奖机会,试求这位顾客获得180元返金券的概率; (2)如果某顾客获得一次抽奖机会,那么他选择哪种方案更划算?解析 (1)在一次抽奖机会的情况下,要想获得180元返金券,只能选择方案①,且摸到两次红球,一次白球,而每一次摸到红球的概率P=312=14.设“这位顾客获得180元返金券”为事件A, 则P(A)=C 3134(14)2=964.故这位顾客获得180元返金券的概率为964. (2)若选择抽奖方案①,则每一次摸到红球的概率为14,每一次摸到白球的概率为34.设获得返金券金额为X 元,则X 可能的取值为60,120,180,240.则P(X=60)=C 30(34)3=2764,P(X=120)=C 31(14)1·(34)2=2764,P(X=180)=C 32(14)234=964,P(X=240)=C 33(14)3=164.所以选择抽奖方案①,该顾客获得返金券金额的数学期望为E(X)=60×2764+120×2764+180×964+240×164=105(元). 若选择抽奖方案②,设三次摸球的过程中,摸到红球的次数为Y,最终获得返金券的金额为Z 元,则Y~B (3,14),故E(Y)=3×14=34.所以选择方案②,该顾客获得返金券金额的数学期望为E(Z)=E(100Y)=100×34=75(元),从而有E(X)>E(Z),所以选择方案①更划算.15.(2021四川南充重点高中月考,18)为了了解扬州市高中生周末运动时间,随机调查了3000名学生,统计了他们的周末运动时间,制成如下的频率分布表:周末运动时间t(分钟) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90]人数300600900450450300(1)从周末运动时间在[70,80)的学生中抽取3人,在[80,90]的学生中抽取2人,现从这5人中随机推荐2人参加体能测试,记推荐的2人中来自[70,80)的人数为X,求X 的分布列和数学期望;(2)由频率分布表可认为:周末运动时间t 服从正态分布N(μ,σ2),其中μ为周末运动时间的平均数t ,σ近似为样本的标准差s,并已求得s ≈14.6.可以用该样本的频率估计总体的概率,现从扬州市所有高中生中随机抽取10名学生,记周末运动时间在(43.9,87.7]之外的人数为Y,求P(Y=2)的值.(精确到0.001) 参考数据1:当t~N(μ,σ2)时,P(μ-σ<t<μ+σ)=0.6827,P(μ-2σ<t<μ+2σ)=0.9545,P(μ-3σ<t<μ+3σ)=0.9973. 参考数据2:0.81868≈0.202,0.18142≈0.033.解析 (1)随机变量X 的可能取值为0,1,2,P(X=0)=C 30C 22C 52=110,P(X=1)=C 31C 21C 52=35,P(X=2)=C 32C 20C 52=310,所以X 的分布列为X 012P110 35 310所以E(X)=0×110+1×35+2×310=65.(2)μ=t =13000×(35×300+45×600+55×900+65×450+75×450+85×300)=58.5, 又43.9=58.5-14.6=μ-σ,87.7=58.5+14.6×2=μ+2σ,所以P(43.9<t ≤87.7)=P(μ-σ<t≤μ+2σ)=0.6827+0.95452=0.8186,所以P(t ≤μ-σ或t>μ+2σ)=1-0.8186=0.1814, 所以Y~B(10,0.1814),所以P(Y=2)=C 102×0.18142×0.81868≈45×0.033×0.202≈0.300.16.(2022届河南许昌一模,19)某省2021年开始全面实施新高考方案.在6门选择性考试科目中,物理、历史这两门科目采用原始分计分;思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为A,B,C,D,E 共5个等级,各等级人数所占比例分别为15%,35%,35%,13%和2%,并按给定的公式进行转换赋分.该省组织了一次高一年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.(1)某校思想政治学科获得A 等级的共有10名学生,其原始分及转换分如表:原始分 91 90 89 88 87 85 83 82 转换分 100 99 97 95 94 91 88 86 人数11211211现从这10名学生中随机抽取3名,设这3名学生中思想政治转换分不低于94分的人数为X,求X 的分布列和数学期望;(2)假设该省此次高一学生思想政治学科原始分Y 服从正态分布N(76.3,25).若Y~N(μ,σ2),令η=Y -μσ,则η~N(0,1).若以此次高一学生思想政治学科原始分C 等级的最低分为实施分层教学的划线分,试估计该划线分为多少分.(结果保留整数,附:若η~N(0,1),则P(η≤1.04)≈0.85)解析 (1)由题意知这10名学生中思想政治转换分不低于94分的人数为6,低于94分的人数为4,则随机变量X 所有可能的取值为0,1,2,3, P(X=0)=C 60C 43C 103=130,P(X=1)=C 61C 42C 103=310,P(X=2)=C 62C 41C 103=12,P(X=3)=C 63C 40C 103=16,则随机变量X 的分布列为X 0123P130 310 12 16E(X)=0×130+1×310+2×12+3×16=95.(2)设该划线分为m,由Y~N(76.3,25)得μ=76.3,σ=5,则η=Y -μσ=Y -76.35,则Y=5η+76.3,依题意,P(Y ≥m)=15%+35%+35%=0.85,即P(5η+76.3≥m)=P (η≥m -76.35)=0.85,因为当η~N(0,1)时,P(η≤1.04)≈0.85,所以P(η≥-1.04)≈0.85,所以m -76.35=-1.04,故m ≈71.综上,估计该划线分为71分.17.(2022届北京一七一中学10月月考,19)在新冠病毒疫情防控期间,北京市中小学开展了“优化线上教育与学生线下学习相结合”的教育教学实践活动.为了解某区教师对A,B,C,D,E 五类线上教育软件的使用情况(每位教师都使用这五类教育软件中的某一类且每位教师只选择一类教育软件),从该区教师中随机抽取了100人,统计数据如下表,其中a>b,a,b ∈N.教育软件类型 A B C D E 选用的教师人数 1015a30b假设所有教师选择使用哪类教育软件相互独立.(1)若某校共有300名教师,试估计该校教师中使用教育软件C 或E 的人数; (2)从该区教师中随机抽取3人,估计这3人中至少有2人使用教育软件D 的概率;(3)设该区有3000名教师,从中随机抽取1人,记该教师使用教育软件C 或D 的概率估计值为P 1;该区学校M 有600名教师,其中有200人使用教育软件C,100人使用教育软件D,从学校M 中随机抽取1人,该教师使用教育软件C 或D 的概率为P 2;从该区其他教师(除学校M 外)中随机抽取1人,该教师使用教育软件C 或D 的概率估计值为P 3.试比较P 1,P 2和P 3的大小.(结论不要求证明)解析 (1)由表格数据可知,10+15+a+30+b=100,则a+b=45,所以样本中教师使用教育软件C 或E 的人数为45,故估计该校教师中使用教育软件C 或E 的人数为300×45100=135.(2)设事件F 为“从该区教师中随机抽取3人,至少有2人使用教育软件D ”.由题意知,样本中100名教师使用软件D 的频率为30100=310.用频率估计概率,从该区教师中随机抽取一名教师,估计该教师使用教育软件D 的概率为310. 记被抽取的3人中使用教育软件D 的人数为X,则X~B (3,310). 所以P(X=2)=C 32(310)2×(1-310)=1891000, P(X=3)=C 33(310)3×(1-310)0=271000, 所以P(F)=P(X=2)+P(X=3)=2161000=27125. (3)P 2<P 1<P 3.详解:由(1)及已知知,a>b 且a+b=45,则a ≥23,即100个人中使用教育软件C 或D 的至少有23+30=53(人),则P 1=a+30100≥53100>12,P 2=200+100600=12,P 3=3000×P 1-(200+100)3000-600=a+2080.因为a+2080-a+30100=a -20400,且a ≥23,所以P 3>P 1恒成立,故P 2<P 1<P 3.。
第5讲 二项分布与正态分布(1)

第5讲 二项分布与正态分布一、选择题1.(2014·全国Ⅱ卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8B.0.75C.0.6D.0.45解析 记事件A 表示“一天的空气质量为优良”,事件B 表示“随后一天的空气质量为优良”,P (A )=0.75,P (AB )=0.6.由条件概率,得P (B |A )=P (AB )P (A )=0.60.75=0.8. 答案 A2.(2017·衡水模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是( ) A.18B.38C.58D.78解析 三次均反面朝上的概率是⎝ ⎛⎭⎪⎫123=18,所以至少一次正面朝上的概率是1-18=78. 答案 D3.(2016·青岛一模)设随机变量X 服从正态分布N (1,σ2),则函数f (x )=x 2+2x +X 不存在零点的概率为( ) A.14B.13C.12D.23解析 ∵函数f (x )=x 2+2x +X 不存在零点,∴Δ=4-4X <0,∴X >1,∵X ~N (1,σ2),∴P (X >1)=12,故选C. 答案 C4.(2017·武昌区模拟)某居民小区有两个相互独立的安全防范系统A 和B ,系统A和系统B 在任意时刻发生故障的概率分别为18和p ,若在任意时刻恰有一个系统不发生故障的概率为940,则p =( ) A.110B.215C.16D.15解析 由题意得18(1-p )+⎝ ⎛⎭⎪⎫1-18p =940,∴p =215,故选B.答案 B5.(2016·天津南开调研)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A.C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B.C 912⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238 C.C 911⎝ ⎛⎭⎪⎫582⎝ ⎛⎭⎪⎫382D.C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582 解析 由题意知第12次取到红球,前11次中恰有9次红球2次白球,由于每次取到红球的概率为38, 所以P (X =12)=C 911⎝ ⎛⎭⎪⎫389×⎝ ⎛⎭⎪⎫582×38. 答案 D 二、填空题6.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽又成活为幼苗). 依题意P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72. 答案 0.727.假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,记一天中从甲地去乙地的旅客人数800<X≤900的概率为p0,则p0=________.解析由X~N(800,502),知μ=800,σ=50,又P(700<X≤900)=0.954 4,则P(800<X≤900)=12×0.954 4=0.477 2.答案0.477 28.设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)=59,则P(Y≥1)=________.解析∵X~B(2,p),∴P(X≥1)=1-P(X=0)=1-C02(1-p)2=59,解得p=13.又Y~B(3,p),∴P(Y≥1)=1-P(Y=0)=1-C03(1-p)3=19 27.答案19 27三、解答题9.(2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列.解(1)记事件A1为“从甲箱中摸出的1个球是红球”,A2为“从乙箱中摸出的1个球是红球”,B为“顾客抽奖1次能获奖”,则B表示“顾客抽奖1次没有获奖”.由题意A1与A2相互独立,则A1与A2相互独立,且B=A1·A2,因为P (A 1)=410=25,P (A 2)=510=12,所以P (B )=P (A 1·A 2)=⎝ ⎛⎭⎪⎫1-25·⎝ ⎛⎭⎪⎫1-12=310,故所求事件的概率P (B )=1-P (B )=1-310=710. (2)设“顾客抽奖一次获得一等奖”为事件C , 由P (C )=P (A 1·A 2) =P (A 1)·P (A 2)=15,顾客抽奖3次可视为3次独立重复试验,则X ~B ⎝ ⎛⎭⎪⎫3,15,于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125, P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为10.复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解 (1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B C )+P (A B C )+P (A B C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)甲被录取的概率为P 甲=0.5×0.6=0.3,同理P乙=0.6×0.5=0.3,P丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X 的可能取值为0,1,2,3,其中P (X =k )=C k 3(0.3)k ·(1-0.3)3-k.故P (X =0)=C 03×0.30×(1-0.3)3=0.343, P (X =1)=C 13×0.3×(1-0.3)2=0.441, P (X =2)=C 23×0.32×(1-0.3)=0.189, P (X =3)=C 33×0.33=0.027,故X 的分布列为11.(2016·郑州二模)先后掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为“x +y 为偶数”,事件B 为“x ≠y ”,则概率P (B |A )=( ) A.12B.14C.13D.23解析 若x +y 为偶数,则x ,y 两数均为奇数或均为偶数.故P (A )=2×3×36×6=12,又A ,B 同时发生,基本事件一共有2×3×3-6=12个,∴P (AB )=126×6=13,∴P (B |A )=P (AB )P (A )=1312=23.答案 D12.(2017·长沙模拟)排球比赛的规则是5局3胜制(无平局),甲在每局比赛获胜的概率都为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( ) A.49B.827C.1927D.4081解析 乙队3∶0获胜的概率为13,乙队3∶1获胜的概率为23×13=29,乙队3∶2获胜的概率为⎝ ⎛⎭⎪⎫232×13=427.∴最后乙队获胜的概率为P =13+29+427=1927,故选C. 答案 C13.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.解析 设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000小时的事件为(AB +AB +AB )C ,∴该部件的使用寿命超过1 000小时的概率 P =⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38.答案 3814.(2016·山东卷节选)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星对”得3分;如果只有一人猜对,则“星对”得1分;如果两人都没猜对,则“星对”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (1)“星队”至少猜对3个成语的概率; (2)“星队”两轮得分之和X 的分布列.解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D . 由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D ) =P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+ P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144, P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的分布列为。
2020届高考数学一轮复习第十篇 第7节二项分布与正态分布课时作业理(含解析)新人教A版

第7节 二项分布与正态分布课时作业基础对点练(时间:30分钟)1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )=( )(A)12 (B)14 (C)16(D)18A 解析:事件A 的概率为P (A )=12,事件AB 发生的概率为P (AB )=14,由公式可得P (B |A )=P ABP A =1412=12,选A. 2.已知ξ~N (3,σ2),若P (ξ≤2)=0.2,则P (ξ≤4)等于( ) (A)0.2 (B)0.3 (C)0.7(D)0.8D 解析:由ξ~N (3,σ2),得μ=3,则正态曲线的对称轴是x =3,所以P (ξ≤4)=1-P (ξ≤2)=0.8.故选D.3.若某人每次射击击中目标的概率均为35,此人连续射击三次,至少有两次击中目标的概率为( )(A)81125 (B)54125 (C)36125(D)27125A 解析:本题考查概率的知识.至少有两次击中目标包含仅有两次击中,其概率为C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35;若三次都击中,其概率为C 33⎝ ⎛⎭⎪⎫353,根据互斥事件的概率公式可得,所求概率为P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35+C 33⎝ ⎛⎭⎪⎫353=81125,故选A. 4.(2019江西鹰潭一中模拟)端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( )(A)5960 (B)35 (C)12(D)160B 解析:“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A )=23,P (B )=34,P (C →)=45.由题知A ,B ,C 为相互独立事件,所以三人都不回老家过节的概率P (A B C )=P (A →)P (B )P (C →)=23×34×45=25,所以至少有一人回老家过节的概率P =1-25=35.5.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )(A)1 (B)12 (C)13(D)14B 解析:设事件A :第一次抛出的是偶数点,B :第二次抛出的是偶数点,则P (B |A )=P ABP A =12×1212=12.故选B. 6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为( )(A)0 (B)1 (C)2(D)3C 解析:根据题意,本题为独立重复试验,由概率公式得: C k 512k×125-k =C k +1512k +1×124-k , 解得k =2.故选C.7.(创新题)某电脑配件公司的技术员对某种配件的某项功能进行检测,已知衡量该功能的随机变量X 服从正态分布N (2,σ2)且P (X ≤4)=0.9,该变量X ∈(0,4)时为合格产品,则该产品是合格产品的概率为( )(A)0.1 (B)0.2 (C)0.9(D)0.8D 解析:∵P (X ≤4)=0.9,∴P (X >4)=1-0.9=0.1,又此正态曲线关于直线x =2对称,故P (X ≤0)=P (X ≥4)=0.1,∴P (0<X <4)=1-P (X ≤0)-P (X ≥4)=0.8,故该产品合格的概率为0.8,故选D. 8.(2019济宁一中)已知随机变量X ~N (2,2),若P (X >t )=0.2,则P (X >4-t )=( ) (A)0.1 (B)0.2 (C)0.7(D)0.8D 解析:P (X >4-t )=1-P (X <4-t )=1-P (X >t )=1-0.2=0.8.故选D. 9.我国的植树节定于每年的3月12日,是我国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境,通过立法确定的节日.为宣传此活动,某团体向市民免费发放某种花卉种子.假设这种种子每粒发芽的概率都为0.99,若发放了10 000粒,种植后,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.解析:根据题意显然有X 2-B (10 000,0.01),所以E (X2)=10 000×0.01=100,故E (X )=200.答案:20010.某高三毕业班的8次数学周练中,甲、乙两名同学在连续统计解答题失分的茎叶图如图所示.(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.解析:(1)x 甲=18(7+9+11+13+13+16+23+28)=15,x 乙=18(7+8+10+15+17+19+21+23)=15,s 2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s 2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12,两人失分均超过15分的概率为P 1P 2=316,X 的所有可能取值为0,1,2 .依题意,X ~B ⎝⎛⎭⎪⎫2,316,P (X =k )=C k 2⎝ ⎛⎭⎪⎫316k ⎝ ⎛⎭⎪⎫13162-k,k =0,1,2, 则X 的分布列为:X 的均值E (X )=2×316=38.能力提升练(时间:15分钟)11.已知ξ~Bn ,12,η~Bn ,13,且E (ξ)=15,则E (η)等于( )(A)5 (B)10 (C)15(D)20B 解析:因为ξ~Bn ,12,所以E (ξ)=n2,又E (ξ)=15,则n =30. 所以η~B 30,13,故E (η)=30×13=10.故选B.12.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )(A)1127 (B)1124 (C)827(D)924C 解析:设“从1号箱取到红球”为事件A ,“从2号箱取到红球”为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49, 所以P (AB )=P (B |A |)·P (A )=49×23=827,所以两次都取到红球的概率为827,故选C.13.设随机变量X -N (3,σ2),若P (X >m )=0.3,则P (X >6-m )=________. 解析:∵随机变量X ~N (3,σ2),∴P (X >3)=P (X <3)=0.5, ∵P (X >m )=0.3,∴P (X >6-m )=P (X <m )=1-P (X >m )=1-0.3=0.7. 答案:0.714.(2019林州一中质检)某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,该部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2,那么该部件能正常工作的时间超过9年的概率为________.解析:由P (0<ξ<3)=P (ξ>9)=0.2,可得在9年内每个电子元件能正常工作的概率为0.2,因此在9年内这个部件不能正常工作的概率为0.83=0.512,故该部件能正常工作的概率为1-0.512=0.488.答案:0.48815.(2019南昌模拟)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为ξ,求随机变量ξ的分布列和数学期望E (ξ).解:(1)由题知,P (80≤X <85)=12-P (X <75)=0.2,P (85≤X <95)=0.3-0.1=0.2,所以所求概率P =A 33×0.2×0.2×0.1=0.024. (2)P (75≤X ≤85)=1-2P (X <75)=0.4, 所以ξ服从二项分布B (3,0.4),P (ξ=0)=0.63=0.216,P (ξ=1)=3×0.4×0.62=0.432, P (ξ=2)=3×0.42×0.6=0.288,P (ξ=3)=0.43=0.064,所以随机变量ξ的分布列是ξ 0 1 2 3 P0.2160.4320.2880.064E (ξ)=3×0.4=1.2.16.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作多少个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个)的数据,得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.(1)若蛋糕店一天制作17个生日蛋糕,(ⅰ)求当天的利润y (单位:元)关于当天需求量n (单位:个,n ∈N *)的函数解析式; (ⅱ)在当天的利润不低于750元的条件下,求当天需求量不低于18个的概率. (2)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的期望值为决策依据,判断应该制作16个还是17个?解:(1)(ⅰ)当n ≥17时y =17×(100-50)=850; 当n ≤16时,y =50n -50(17-n )=100n -850.所以y =⎩⎪⎨⎪⎧100n -850n ≤16,n ∈N *,850n ≥17,n ∈N *.(ⅱ)设当天的利润不低于750元为事件A ,当天需求量不低于18个为事件B , 由(ⅰ)得,日利润不低于750元等价于日需求量不低于16个,则P (A )=710,P (B |A )=P AB P A =0.15+0.13+0.10.7=1935.(2)蛋糕店一天应制作17个生日蛋糕,理由如下:若蛋糕店一天制作17个生日蛋糕,X 表示当天的利润(单位:元),X 的分布列为X 550 650 750 850 P0.10.20.160.54E (X )=550×0.1+650×0.2+750×0.16+850×0.54=764.若蛋糕店一天制作16个生日蛋糕,Y 表示当天的利润(单位:元),Y 的分布列为:Y 600 700 800 P0.10.20.7E (Y )=600×0.1+700×0.2+800×0.7=760.由以上的计算结果可以看出,E (X )>E (Y ),即一天制作17个生日蛋糕的利润大于一天制作16个生日蛋糕的利润,所以蛋糕店一天应该制作17个生日蛋糕.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.某人参加一次考试,4道题中解对3道即为及格,已知他的解题正确率为0.4,则他能及格的概率是()A.0.18B.0.280.48.DC.0.37A][答案43A.=]C0.40.1792.·0.6+C·0.4故应选[解析次准确的概率次预报中至少有42.某气象站天气预报的准确率为80%,则5)为(0.41 .A.0.2 B0.67 .DC.0.74C]答案[次准确=A[解析]设事件为“预报一次,结果准确”P=P(A)0.8,至少有4次这一事件是下面两个互斥事件之和:5次预报,恰有次预报,恰有54次准确;54+×=C0.80.2×(5)(4)次预报,至少有准确,故54次准确的概率为P+P5505C.故应选≈0.8C×0.74.×0.22,湖北理,3.(2011·5)已知随机变量ξ=,且)P(ξ<4)0.8服从正态分布N(2,σ)(P(0<ξ<2)则=0.4 .B0.6 .A0.2 C.D.0.3C]答案[本题考查利用正态分布求随机变量的概率.]解析[∵P(ξ<4)=0.8,∴P(ξ≥4)=0.2,又μ=2,∴P(0<ξ<2)=P(2<ξ<4)=0.5-P(ξ≥4)=0.5-0.2=0.3.4.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率是.质点P移动五次后位于点(2,3)的概率是()55.BA.()C()53 CC() ..CC()DB[答案]由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后[解析]23=·(),所以质点位于点(2,3)P必须向右移动二次,向上移动三次,故其概率为C()55B.故应选C().=C()次的概率不大于其恰好发恰好发生15.在4次独立重复试验中,随机事件A)在一次试验中发生的概率P的取值范围是(生两次的概率,则事件A(0,0.6] BA.[0.4,1) .[0.6,1) .DC.(0,0.4]A[答案]2,32,0.46P≤,P≥,又0<P<1[解析]CP(1-P)≤CP(1-P)4(1-P)P<1.0.4≤∴2的图像,那么的三种正态曲线、σ6.如图是当σ取三个不同值、σσN(0,σ)312σ)(σ的大小关系是、σ、312<1<σ>σ>1>σ<σ.0<σB>0 σA.322131<σ>σ>1>σ.D.Cσ=>01<σ0<σ321321.[答案]D[解析]当μ一定时,曲线由σ确定,当σ越小,曲线越高瘦,反之越矮胖.故选D.二、填空题2)(σ>0).若X在(0,1)内取σ7.在某项测量中,测量结果X服从正态分布N(1,值的概率为0.4,则X在(0,2)内取值的概率为________.[答案]0.82),,σ]∵X~N(1[解析X在(0,1)内取值概率为0.4,∴X在(1,2)内取值的概率也为0.4.∴X在(0,2)内取值的概率为0.8.8.在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐,已知只有5发子弹备用,首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是,每次命中与否互相独立,求油罐被引爆的概率______.[答案]4+C()()P()=”“油罐被引爆的事件为事件A,其对立事件为,则[解析]记5 ()45]=+()-∴P(A)=1[C()().三、解答题9.2011年12月底,一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道被该考生正确做出的概率都是.求该考生首次做错一道题时,已正确做出了两道题的概率;(1).(2)若该考生至少正确做出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.[解析](1)记“该考生正确做出第i道题”为事件A(i=1,2,3,4),则P(A)=,ii由于每一道题能否被正确做出是相互独立的,所以这名考生首次做错一道题时,已正确做出了两道题的概率为P(AA)=P(A)·P(A)·P() 323112=××=.(2)记“这名考生通过书面测试”为事件B,则这名考生至少正确做出3道题,34=.CC×××+道题或即正确做出34道题,故P(B)=一、选择题2),P(X>2)=,σ0.023,则1.(2010·山东理)已知随机变量X服从正态分布N(0P(-2≤X≤2)=()A.0.477 B.0.628D0.954 .0.977C.C[答案],0.023-2)==[解析]∵P(X>2)0.023,∴P(X<0.954.2)=P(X<X2≤≤2)=1-P(X>2)--P(故-.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,2 :{a定义数列}n)的概率为(3项和,那么}Sa=,如果为数列{a的前nS=7nnn2525 A·.B.CC ·2255 D.C·CC.·B]答案[[解析]有放回地每次摸取一个球,摸到红球的概率为,摸到白球的概率为,这是一个独立重复试验.S=3,说明共摸7次,摸到白球比摸到红球多3次,即摸7到白球5次,摸到红球2次,52·.的概率为C所以S=37二、填空题3.将1枚硬币连续抛掷5次,如果出现k次正面的概率与出现k+1次正面的概率相同,则k的值是________.[答案]2k5kk14k,得k由]C=2.=C[解析-+-4.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;3×0.1;②他恰好击中目标3次的概率是0.94.0.11-③他至少击中目标1次的概率是其中正确结论的序号是________(写出所有正确结论的序号).[答案]①③[解析]本小题主要考查独立事件的概率.“射手射击1次,击中目标的概率是0.9”是指射手每次射击击中目标的概率都是0.9,由于他各次射击是否击中目标相互之间没有影响,因此他在连续射击4次时,第1次、第2次、第3次、第4次击中目标的概率都是0.9,①正确;“他恰好3×0.1,×次发生,其概率是次独立重复试验中有是在次击中目标3”43C0.9②不正确;“他至少击中目标1次”的反面是“1次也没有击中”,而“1次也没有击中”44,③正确.1-0.10.1的概率是,故至少击中目标1次的概率是三、解答题5.有甲、乙、丙3批饮料,每批100箱,其中各有一箱是不合格的,从3批饮料中各抽出一箱,求:(1)恰有一箱不合格的概率;(2)至少有一箱不合格的概率.[解析]记抽出“甲饮料不合格”为事件A,“乙饮料不合格”为事件B,“丙饮料不合格”为事件C,则P(A)=0.01,P(B)=0.01,P(C)=0.01.(1)从3批饮料中,各抽取一箱,恰有一箱不合格的概率为P=P(BC)+P(AC)+P(AB)222 0.99+0.01+0.01×0.99×0.99=0.01×≈0.029.(2)各抽出一箱都合格的概率为0.99×0.99×0.99≈0.97.所以至少有一箱不合格的概率为1-0.97≈0.03.6.(2010·全国卷Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.篇稿件被录用的概率;1求投到该杂志的(1).(2)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列及期望.[分析]本题主要考查等可能性事件、互斥事件、独立事件、相互独立试验、分布列、数学期望等知识,以及运用概率知识解决实际问题的能力,考查分类与整合思想、化归与转化思想.(1)“稿件被录用”这一事件转化为事件“稿件能通过两位初审专家的评审”和事件“稿件能通过复审专家的评审”的和事件,利用加法公式求解.(2)X服从二项分布,结合公式求解即可.[解析](1)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B·C,而P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3故P(D)=P(A+B·C)=P(A)+P(B)·P(C)=0.25+0.5×0.3=0.4.(2)X~B(4,0.4),X的可能取值为0,1,2,3,4且4=0.4)0.1296 -=0)=(1P(X3=0.4)0.3456 ×(1-=P(X=1)C×0.422=0.3456 -×C0.40.4)×(1=P(X2)=3×(1-0.4)=0.43)P(X==C×0.15364=0.0256 0.4P(X=4)=故其分布列为4321X P0.12960.34560.34560.15360.0256期望EX=4×0.4=1.6.7.甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击.问:乙恰好射击5次后,被中止射击的概率是多少?[解析](1)记“甲连续射击4次至少有1次未击中目标”为事件A.由题意,射1击4次相当于作4次独立重复试验.4=,-()1-P()=1故P(A)=1所以甲连续射击4次至少有一次未击中目标的概率为.(2)记“甲射击4次,恰有2次击中目标”为事件A,“乙射击4次,恰有3次2击中目标”为事件B,则2242=;-) =C×()(1×)P(A-2343=). ×()×(1-P(B)=C-2由于甲、乙射击相互独立,故P(AB)=P(A)·P(B)=×=.2222所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为.(3)记“乙恰好射击5次后被中止射击”为事件A,“乙第i次射击未击中”为3事件D(i=1,2,3,4,5),则i A=DD(+D+D),且P(D.=)i21453.由于各事件相互独立,故P(A)=P(D)P(D)P()P(+D+D) 25431=×××(1-×)=. .次后被中止射击的概率为5所以乙恰好射击。