初三年级上数学期终试题011

合集下载

九年级(上)期中数学试卷(答案)

九年级(上)期中数学试卷(答案)

九年级(上)期中数学试卷一、选择题(每小题2分,共20分)1.(2分)抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)2.(2分)下面的四条线段中不能成比例的是()A.3,6,2,4 B.4,6,5,10 C.1,2,3,6 D.2,4,5,103.(2分)如图,在△ABC中,D为AB中点,DE∥BC交AC于E点,则△ADE 与△ABC的面积比为()A.1:1 B.1:2 C.1:3 D.1:44.(2分)将抛物线y=x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣x2B.y=﹣x2+1 C.y=﹣x2﹣1 D.y=x2﹣15.(2分)将抛物线y=﹣3x2平移,得到抛物线y=﹣3 (x﹣1)2﹣2,下列平移方式中,正确的是()A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向下平移2个单位6.(2分)如图,在平面直角坐标系xOy中,以原点O为位似中心,把线段AB 放大后得到线段CD.若点A(1,2),B(2,0),D(5,0),则点A的对应点C 的坐标是()A.(2,5) B.(,5)C.(3,5) D.(3,6)7.(2分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.8.(2分)三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:49.(2分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.10.(2分)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)若=,则=.12.(3分)点A(﹣2,y1),B(3,y2)在抛物线y=x2﹣3x上,则y1y2.(填“>”,“<”或“=”)13.(3分)请写出一个开口向上,并且与y轴交于点(0,﹣1)的抛物线的解析式.14.(3分)如图,为了测量某棵树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端的影子与树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距5m,与树相距10m,则树的高度为m.15.(3分)如图,在△ABC中,D为AC边上的点,∠DBC=∠A,,AC=3,则CD的长为.16.(3分)如下图,正方形ABCD的边AB在x轴上,A(﹣4,0),B(﹣2,0),定义:若某个抛物线上存在一点P,使得点P到正方形ABCD四个顶点的距离相等,则称这个抛物线为正方形ABCD的“友好抛物线”.若抛物线y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好抛物线”,则n的值为.三、解答题(本大题共62分:第17题-23题每题6分,第24题7分,第25题6分,第26题7分)17.(6分)已知抛物线y=x2﹣4x+3.(1)把这个二次函数化为顶点式;(2)在坐标系中利用五点作图法画出它的图象(不需要列表);(3)请结合函数图象直接写出不等式y>0的解集.18.(6分)如图,在平行四边形ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.求证:(1)△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.19.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为.(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为.(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC 对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:.20.(6分)已知:关于x的二次函数y=x2+2x+2k﹣4图象与x轴有两个交点.(1)求k的取值范围;(2)若k为正整数,且抛物线与x轴交点的横坐标为整数,求k的值.21.(6分)廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)22.(6分)如图,已知在△ABC中,BE平分∠ABC交AC于E,点D在BE延长线上,且BA•BC=BD•BE.(1)求证:△ABD∽△EBC;(2)求证:AD2=BD•DE.23.(6分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.24.(7分)在平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x﹣3与x轴交于A、B两点,点A的坐标为(﹣1,0).(1)求B点与顶点D的坐标;=5,求直线l的解析式;(2)经过点B的直线l与y轴正半轴交于点M,S△ADM(3)点P(t,0)为x轴上一动点,过点P作x轴的垂线m,将抛物线在直线m 左侧的部分沿直线m对折,图象的其余部分保持不变,得到一个新图象G.请结合图象回答:当图象G与直线l没有公共点时,t的取值范围是.25.(6分)已知矩形ABCD,AD=3,AB=m,点P是线段CD的中点,点E是线段AD上的一个动点(点E可以和点A、D重合),过点P作线段PE的垂线PF,交矩形的边AB于点F.(1)如图1,若m=,求的值;(2)如图2,若m=8,点M是线段AD上另一动点(不与点E重合),过点P作线段PM的垂线PN交边AB于点N,求的值;(3)如图3,点D关于直线PE的对称点为点N,当点E和点A重合时,点N到直线AB的距离等于1,请你直接写出m的值.26.(7分)在平面直角坐标系xOy中,若P,Q为某个菱形相邻的两个顶点,且该菱形的两条对角线分别与x轴,y轴平行,则称该菱形为点P,Q的“伴随菱形”.图1为点P,Q的“伴随菱形”的一个示意图.(1)已知点A的坐标为(1,4),点B是直线y=﹣1上一点,记点B坐标为(m,﹣1),①若m=﹣1,则R(1,﹣5),S(﹣3,4),T(3,﹣1)中能够成为点A,B的“伴随菱形”顶点的是;②若点A,B的“伴随菱形”为正方形,求直线AB的解析式;(2)已知抛物线y=x2﹣2nx+,过点A(1,4)作垂直于y轴的直线y=4交抛物线于E、F两点,记抛物线在点E和点F之间(包括点E和F)的图象为图象G,若图象G上存在点C,使点A,C的“伴随菱形”为正方形,请你直接写出n 的取值范围.参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:y=﹣(x﹣1)2+3的顶点坐标为(1,3).故选:A.2.(2分)下面的四条线段中不能成比例的是()A.3,6,2,4 B.4,6,5,10 C.1,2,3,6 D.2,4,5,10【解答】解:A、3:6=2:4,则a:b=c:d,即a,b,c,d成比例;B、四条线段中,任意两条的比都不相等,因而不成比例;C、1:3=2:6,则a:c=b:d.故a,c,b,d成比例;D、2:4=5:10,即a:b=c:d,故a,b,c,d成比例.故选:B.3.(2分)如图,在△ABC中,D为AB中点,DE∥BC交AC于E点,则△ADE 与△ABC的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵D是边AB的中点,∴AD:AB=1:2,∴=()2=.故选:D.4.(2分)将抛物线y=x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣x2B.y=﹣x2+1 C.y=﹣x2﹣1 D.y=x2﹣1【解答】解:如图,由于所得函数图象与原函数图象关于原点对称,故所得函数顶点为(0,﹣1),则所得函数为y=﹣x2﹣1.故选:C.5.(2分)将抛物线y=﹣3x2平移,得到抛物线y=﹣3 (x﹣1)2﹣2,下列平移方式中,正确的是()A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向下平移2个单位【解答】解:∵y=﹣3x2的顶点坐标为(0,0),y=﹣3(x﹣1)2﹣2的顶点坐标为(1,﹣2),∴将抛物线y=﹣3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=﹣3(x﹣1)2﹣2.故选:D.6.(2分)如图,在平面直角坐标系xOy中,以原点O为位似中心,把线段AB 放大后得到线段CD.若点A(1,2),B(2,0),D(5,0),则点A的对应点C 的坐标是()A.(2,5) B.(,5)C.(3,5)D.(3,6)【解答】解:∵以原点O为位似中心,把线段AB放大后得到线段CD,且B(2,0),D(5,0),∴=,∵A(1,2),∴C(,5).故选:B.7.(2分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.8.(2分)三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:4【解答】解:如图,∵OA=20cm,OA′=50cm,∴===,∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比==2:5.故选:B.9.(2分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【解答】解:点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b﹣1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个正实数根.∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选:A.10.(2分)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【解答】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.二、填空题(每小题3分,共18分)11.(3分)若=,则=.【解答】解:根据等式的性质:两边都加1,,则=,故答案为:.12.(3分)点A(﹣2,y1),B(3,y2)在抛物线y=x2﹣3x上,则y1>y2.(填“>”,“<”或“=”)【解答】解:由抛物线y=x2﹣3x可知对称轴x=﹣=,∵抛物线开口向上,而点A(﹣2,y1)到对称轴的距离比B(3,y2)远,∴y1>y2.故答案为:>.13.(3分)请写出一个开口向上,并且与y轴交于点(0,﹣1)的抛物线的解析式y=x2﹣1(答案不唯一).【解答】解:抛物线的解析式为y=x2﹣1.故答案为:y=x2﹣1(答案不唯一).14.(3分)如图,为了测量某棵树的高度,小明用长为2m的竹竿作测量工具,移动竹竿,使竹竿顶端的影子与树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距5m,与树相距10m,则树的高度为6m.【解答】解:设树的高度为xm,根据题意得:=,解得:x=6.故答案为:6.15.(3分)如图,在△ABC中,D为AC边上的点,∠DBC=∠A,,AC=3,则CD的长为2.【解答】解:在△BCD和△ACB中,∵∠C=∠C(公共角),∠DBC=∠A(已知),∴△BCD∽△ACB,∴=,∵,AC=3,∴CD=2.16.(3分)如下图,正方形ABCD的边AB在x轴上,A(﹣4,0),B(﹣2,0),定义:若某个抛物线上存在一点P,使得点P到正方形ABCD四个顶点的距离相等,则称这个抛物线为正方形ABCD的“友好抛物线”.若抛物线y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好抛物线”,则n的值为﹣3或6.【解答】解:∵点A(﹣4,0)、B(﹣2,0),∴点C(﹣4,﹣2)、D(﹣2,﹣2),则对角线AC、BD交点P的坐标为(﹣3,﹣1),根据题意,将点P(﹣3,﹣1)代入解析式y=2x2﹣nx﹣n2﹣1,得:18+3n﹣n2﹣1=﹣1,整理,得:n2﹣3n﹣18=0,解得:n=﹣3或n=6,故答案为:﹣3或6.三、解答题(本大题共62分:第17题-23题每题6分,第24题7分,第25题6分,第26题7分)17.(6分)已知抛物线y=x2﹣4x+3.(1)把这个二次函数化为顶点式;(2)在坐标系中利用五点作图法画出它的图象(不需要列表);(3)请结合函数图象直接写出不等式y>0的解集x<1或x>3.【解答】解:(1)y=x2﹣4x+3=(x﹣2)2﹣1;(2)图右图所示;(3)由图象可得,不等式y>0的解集是x<1或x>3,故答案为:x<1或x>3.18.(6分)如图,在平行四边形ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.求证:(1)△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.∴∠B=∠ECF,∠DAE=∠AEB.又∵∠DAE=∠F,∴∠AEB=∠F.∴△ABE∽△ECF;(2)∵△ABE∽△ECF,∴,∵四边形ABCD是平行四边形,∴BC=AD=8.∴EC=BC﹣BE=8﹣2=6.∴.∴19.(6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为(2,8),点C的坐标为(6,6).(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为(a﹣7,b).(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC 对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:(1,4)或(﹣1,﹣4).【解答】解:(1)A点坐标为:(2,8),C点坐标为:(6,6);(2)所画图形如下所示,其中△A1B1C1即为所求,根据平移规律:左平移7个单位,可知M1的坐标(a﹣7,b);(3)所画图形如下所示,其中△A2B2C2即为所求,点A2的坐标为(1,4)或(﹣1,﹣4).20.(6分)已知:关于x的二次函数y=x2+2x+2k﹣4图象与x轴有两个交点.(1)求k的取值范围;(2)若k为正整数,且抛物线与x轴交点的横坐标为整数,求k的值.【解答】解:(1)根据题意知,△=22﹣4×1×(2k﹣4)>0,解得:k<;(2)∵k<,且k为正整数,∴k=1或k=2,当k=1时,函数解析式为y=x2+2x﹣2,不符合题意,舍去;当k=2时,函数解析式为y=x2+2x,与x轴的交点为(0,0)、(﹣2,0),符合题意,故k=2.21.(6分)廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)【解答】解:如图,以AB所在直线为x轴、线段AB的中垂线为y轴建立直角坐标系,由题意知,A(﹣20,0),B(20,0),C(0,10).设过点A、B、C的抛物线方程为:y=a(x+20)(x﹣20)(a<0).把点C(0,10)的坐标代入,得10=a(0+20)(0﹣20),解得:a=﹣,则该抛物线的解析式为:y=﹣(x+20)(x﹣20)=﹣x2+10把y=8代入,得﹣x2+10=8,即x2=80,x1=4,x2=﹣4.所以两盏警示灯之间的水平距离为:EF=|x1﹣x2|=|4﹣(﹣4)|=8(m).22.(6分)如图,已知在△ABC中,BE平分∠ABC交AC于E,点D在BE延长线上,且BA•BC=BD•BE.(1)求证:△ABD∽△EBC;(2)求证:AD2=BD•DE.【解答】证明:(1)∵BE平分∠ABC,∴∠ABD=∠EBC,∵BA•BC=BD•BE.即,∴△ABD∽△EBC;(2)∵△ABD∽△EBC,∴∠BAD=∠BEC,∠ADB=∠BCE,∵∠AED=∠BEC,∴∠BAD=∠AED,∴△ADE∽△BEC,∴△AED∽△ABD,∴,即AD2=BD•DE.23.(6分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52,∴=,解得AB=54.答:建筑物的高为54米.24.(7分)在平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x﹣3与x轴交于A、B两点,点A的坐标为(﹣1,0).(1)求B点与顶点D的坐标;=5,求直线l的解析式;(2)经过点B的直线l与y轴正半轴交于点M,S△ADM(3)点P(t,0)为x轴上一动点,过点P作x轴的垂线m,将抛物线在直线m 左侧的部分沿直线m对折,图象的其余部分保持不变,得到一个新图象G.请结合图象回答:当图象G与直线l没有公共点时,t的取值范围是t>.【解答】解:(1)把点A的坐标(﹣1,0)代入y=ax2﹣(a+1)x﹣3中,得:a+(a+1)﹣3=0,a=1,∴y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4),由对称性得:B(3,0);(2)设直线AD的解析式为:y=kx+b,则,解得:,∴直线AD的解析式为:y=﹣2x﹣2,设AD交y轴于N,∴ON=2,=MN•(﹣x A+x D)=5,∴S△ADM∴(2+OM)×(1+1)=5,OM=3,∴M(0,3),设直线l的解析式为:y=kx+b,则,解得:;直线l的解析式为:y=﹣x+3;(3)如图2,由对折得:OC=3+2(t﹣3)+2=2t﹣1,∴新抛物线的顶点为(2t﹣1,﹣4),解析式为:y=(x﹣2t+1)2﹣4,则,(x﹣2t+1)2﹣4=﹣x+3,x2﹣(4t﹣3)x+4t2﹣4t﹣6=0,当△<0时,图象G与直线l没有公共点,即△=[﹣(4t﹣3)]2﹣4(4t2﹣4t﹣6)<0,t>,故答案为:.25.(6分)已知矩形ABCD,AD=3,AB=m,点P是线段CD的中点,点E是线段AD上的一个动点(点E可以和点A、D重合),过点P作线段PE的垂线PF,交矩形的边AB于点F.(1)如图1,若m=,求的值;(2)如图2,若m=8,点M是线段AD上另一动点(不与点E重合),过点P作线段PM的垂线PN交边AB于点N,求的值;(3)如图3,点D关于直线PE的对称点为点N,当点E和点A重合时,点N到直线AB的距离等于1,请你直接写出m的值.【解答】解:(1)如图1,过点F作FG⊥CD于G,FG=AD=3,∴∠PFG+∠FPG=90°,∵∠EPF=90°,∴∠DPE+∠FPG=90°,∴∠PFG=∠EPD,∵四边形ABCD是矩形,∴∠D=∠FGP=90°,∴△PDE∽△FGP,∴,∵CD=AB=6,而点P是CD的中点,∴DP=3,∴=;(2)如图2,过点F作FG⊥CD于G,同(1)的方法得,∴△PDE∽△FGP,∴,∵CD=AB=8,而点P是CD的中点,∴DP=4,∴;过点N作NQ⊥CD于Q,同理:,∴,∵∠EPF=∠MPN=90°,∴∠MPE=∠NPF,∵,∴△MPE∽△NPF,∴;(3)如图3,∵点N是点D关于PE的对称点,∴AP⊥DN,AN=AD=3,∵点N到直线AB的距离为1,∴NH=1,在Rt△AHN中,AH==2,过点N作NI⊥AD交DA的延长线于I,∴四边形AHNI是矩形,∴IN=AH=2,AI=NH=1,∴DI=AD+AI=3+1=4,∵∠ADN+∠PDN=90°,∠APD+∠PDN=90°,∴∠ADN=∠APD,∵∠DIN=∠PDA=90°,∴△ADP∽△NID,∴,∵点P是CD中点,∴DP=m,∴,∴m=6.26.(7分)在平面直角坐标系xOy中,若P,Q为某个菱形相邻的两个顶点,且该菱形的两条对角线分别与x轴,y轴平行,则称该菱形为点P,Q的“伴随菱形”.图1为点P,Q的“伴随菱形”的一个示意图.(1)已知点A的坐标为(1,4),点B是直线y=﹣1上一点,记点B坐标为(m,﹣1),①若m=﹣1,则R(1,﹣5),S(﹣3,4),T(3,﹣1)中能够成为点A,B的“伴随菱形”顶点的是S、T;②若点A,B的“伴随菱形”为正方形,求直线AB的解析式;(2)已知抛物线y=x2﹣2nx+,过点A(1,4)作垂直于y轴的直线y=4交抛物线于E、F两点,记抛物线在点E和点F之间(包括点E和F)的图象为图象G,若图象G上存在点C,使点A,C的“伴随菱形”为正方形,请你直接写出n 的取值范围.【解答】解:(1)当m=﹣1时,B(﹣1,﹣1).如图1所示:∵点R到B的距离不等于AB,∴点R不能构成点A,B的“伴随菱形”顶点.∵点S为以AS为对角线的菱形的顶点,点为以BT为对角线的菱形的顶点,∴能够成为点A,B的“伴随菱形”顶点的是S、T为.故答案为:S、T.(2)如图2所示:当点B位于点A的右侧时,过点A作AC∥y轴,作BC∥x轴.∵点A,B的“伴随菱形”为正方形,∴∠ABC=45°.设直线AB的解析式为y=﹣x+b,将点(1,4)代入得:﹣1+b=4,解得b=5,∴直线AB的解析式为y=﹣x+5.如图3所示,当点B位于点A的左侧时,过点A作AC∥y轴,作BC∥x轴.同理:∠ABC=45°.设直线AB的解析式为y=x+b,将点(1,4)代入得:1+b=4,解得b=3,∴直线AB的解析式为y=x+3.综上所述,直线AB的解析式为y=﹣x+5或y=x+3.(3)y=x2﹣2nx+=(x﹣n)2+.将y=﹣x+5代入y=x2﹣2nx+得,x2﹣2nx+=﹣x+5,整理得:x2+(1﹣2n)x﹣4+n2=0,当△=0,即(1﹣2n)2﹣4(n2﹣4)=0,图象G上恰好存在点C,使点A,C 的“伴随菱形”为正方形,解得:n=5.将y=x+3代入y=x2﹣2nx+得,x2﹣2nx+=x+3,整理得:x2+(1+2n)x ﹣2+n2=0,当△=0,即(1+2n)2﹣4(n2﹣2)=0,图象G上恰好存在点C,使点A,C的“伴随菱形”为正方形,解得:n=﹣3.∴当﹣3≤n≤5时,图象G上存在点C,使点A,C的“伴随菱形”为正方形.。

北师大版九年级上数学期中试卷及答案

北师大版九年级上数学期中试卷及答案

北师大版九年级上数学期中试卷及答案Revised by Petrel at 2021九年级(上)数学期中测试卷考生须知:全卷满分为150分,考试时间120分钟.试卷共3道大题(计28小题)一、你能填得又快又准吗?(共10小题,每题3分,共30分) 1.方程x 2-3x+2=0的解是 ____________ 。

2.若点(2,1)在双曲线ky x=上,则k 的值为_______。

3.命题“等腰梯形的对角线相等”。

它的逆命题是 。

4. 一块四周镶有宽度相等的花边的地毯如下图,它的长为8m ,宽为5m .地毯中央长方形图案的面积为18m 2,那么花边有多宽?设花边的宽为x, 则可得方程为_________________________.5.菱形的面积为24,其中的一条较短的对角线长为6,则此菱形的周长为_______。

6.已知一元二次方程0437122=-+++-a a ax x a )(有一个根为零,则a 的值 为 _。

7.等腰三角形的底角为15°,腰长为20cm ,则此三角形的面积为 。

8.请写出一个根为1=x ,另一根满足11<<-x 的一元二次方程 。

9.如图,反比例函数图像上一A,过A作AB⊥x轴于B,若S△AOB=5,则反比例函数解析式为______ ___。

10.如下图,边长为3的正方形ABCD绕点C按顺时针方向旋转30o点H,那么DH的长为。

二、你一定能选对!题3分,共30分)11.如右图摆放的几何体的左视图是( )12.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )。

13.图中所示几何体的俯视图是 ( )14.小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是( )A、矩形B、正方形C、等腰梯形D、无法确定15.到三角形各顶点的距离相等的点是三角形()A、三边的垂直平分线的交点B、三条高的交点C、三条角平分线的交点D、三条中线的交点A B C DDB CA HGEF9题图10题图16. 电影院呈阶梯或下坡形状的主要原因是( ).A.为了美观B. 减小盲区C.增大盲区D. 盲区不变17.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是( )A 、9%B 、%C 、%D 、10% 18.已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图像有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( ) A 、 (2,1)B 、 (-1,-2)C 、 (-2,1)D 、 (2,-1)19.甲、乙两地相距60km ,则汽车由甲地行驶到乙地所用时间y (小时)与行驶速度90 趣小组人数为x 人,则可列方程为( )A 、x(x-1)=90B 、x(x-1)=2×90C 、x(x-1)=90÷2D 、x(x+1)=90 三、解答:21.解方程(每题5分,共10分)①22510x x +-= ② (x-3)2=2(3-x)22.(本题10分)如下图,路灯下,一墙墩(用线段AB 表示)的影子是BC ,小明 (用线段DE 表示)的影子是EF ,在M 处有一颗大树,它的影子是MN 。

初三数学上学期期中考试试卷含答案

初三数学上学期期中考试试卷含答案

九年级第一学期期中数学试卷一、选择题:(每小题3分,10小题,共30分)1.(3分)下列各组数中,相等的一组是()A.﹣2和﹣(﹣2)B.﹣|﹣2|和﹣(﹣2)C.2和|﹣2|D.﹣2和|﹣2|2.(3分)下列各式中,正确的是()A.=﹣8B.﹣=﹣8C.=±8D.=±83.(3分)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)4.(3分)某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程﹣=6.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度5.(3分)下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分6.(3分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.77.(3分)已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个8.(3分)如图所示,是反比例函数y=与y=在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于A点和B点,若点P在x轴上运动,则△ABP的面积等于()A.5B.4C.10D.209.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,AE=2,则弦CD的长是()A.4B.6C.8D.1010.(3分)如图所示为二次函数y=ax2+bx+c(a≠0)图象一部分,则以下正确的有:①b>2a;②ax2+bx+c =0的两根分别为﹣3和1;③a﹣2b+c<0;④a+b+c=0;⑤8a+c>0,其中正确的有()A.①②B.②③C.②③④D.②③④⑤二、填空题:(每小题3分,10小题,共30分)11.(3分)在Rt△ABC中,∠C=90°,sin A=,则tan A=.12.(3分)单项式﹣π2x2y的系数是,次数是.13.(3分)若x2+2(m﹣3)x+16是完全平方式,则m的值等于.14.(3分)计算﹣2+7=.15.(3分)在反比例函数y=(x<0)中,函数值y随着x的增大而减小,则m的取值范围是.16.(3分)一条抛物线,顶点坐标为(4,﹣2),且形状与抛物线y=x2+2相同,则它的函数表达式是.17.(3分)若(x+y)(x+2+y)=15,则x+y=.18.(3分)如图,有两个矩形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m﹣n=.19.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).20.(3分)如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=.三、解答题:(本题共7小题,总分60分.其中第21题6分,第22题8分,第23题8分,第24题9分,第25题9分,第26题10分,第27题10分.)21.(6分)计算:()﹣2+|﹣2|﹣+6cos30°+(π﹣3.14)0.22.(8分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k ≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.23.(8分)如图,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB、OC、BD、CD.求证:四边形OBDC是菱形.24.(9分)已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.25.(9分)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙,O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AE的长.26.(10分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)填空:在秒时,△PCQ的面积为△ACB的面积的;(2)经过几秒,以P、C、Q为顶点的三角形与△ACB相似?(3)如图2,设CD为△ACB的中线,则在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.27.(10分)如图,抛物线y=x2+2x﹣3的图象与x轴交于点A、B(A在B左侧),与y轴交于点C,点D 为抛物线的顶点.(1)求△ABC的面积;(2)P是对称轴左侧抛物线上一动点,以AP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,画出图形并求出P点坐标;(3)若抛物线上只有三个点到直线CD的距离为m,求m的值.参考答案与试题解析一、选择题:(每小题3分,10小题,共30分)1.(3分)下列各组数中,相等的一组是()A.﹣2和﹣(﹣2)B.﹣|﹣2|和﹣(﹣2)C.2和|﹣2|D.﹣2和|﹣2|【分析】运用相反数和绝对值的知识,先化简﹣(﹣2)、﹣|﹣2|、|﹣2|,再判断相等的一组.【解答】解:因为﹣(﹣2)=2,﹣|﹣2|=﹣2,|﹣2|=2,所以选项A、B、D中的两个数均不相等,只有选项D中的两个数相等.故选:C.【点评】本题考查了相反数和绝对值的化简,题目难度不大.2.(3分)下列各式中,正确的是()A.=﹣8B.﹣=﹣8C.=±8D.=±8【分析】直接利用二次根式的性质化简得出答案.【解答】解:A、=8,故此选项错误;B、﹣=﹣8,故此选项错正确;C、=8,故此选项错误;D、=8,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质化简,正确化简二次根式是解题关键.3.(3分)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x(1﹣4x2)=x(1+2x)(1﹣2x),故选:C.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.(3分)某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程﹣=6.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度【分析】小宇所列方程是依据相等关系:原计划所用时间﹣实际所用时间=6,可知方程中未知数x所表示的量.【解答】解:设原计划每天铺设管道x米,则实际每天铺设管道(1+10%)x,根据题意,可列方程:﹣=6,所以小宇所列方程中未知数x所表示的量是原计划每天铺设管道的长度,故选:D.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.5.(3分)下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分【分析】根据平行四边形、菱形的判定和性质一一判断即可;【解答】解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;C、菱形的对角线互相垂直,正确,本选项不符合题意;D、平行四边形的对角线互相平分,正确,本选项不符合题意;故选:A.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.7.(3分)已知0<α<45°,关于角α的三角函数的命题有:①0<sinα<,②cosα<sinα,③sin2α=2sinα,④0<tanα<1,其中是真命题的个数是()A.1个B.2个C.3个D.4个【分析】根据锐角函数的正弦是增函数,余弦是减函数,正切是增函数,可得答案.【解答】解:由0<α<45°,得0<sinα<,故①正确;cosα>sinα,故②错误;sin2α=2sinαcosα<2sinα,故③错误;0<tanα<1,故④正确;故选:B.【点评】本题考查了锐角函数的增减性,熟记锐角函数的正弦是增函数,余弦是减函数,正切是增函数是解题关键.8.(3分)如图所示,是反比例函数y=与y=在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于A点和B点,若点P在x轴上运动,则△ABP的面积等于()A.5B.4C.10D.20【分析】设点A(a,),可得点B坐标(﹣,),即可求△ABP的面积.【解答】解:设点A(a,)∵AB∥x轴∴点B纵坐标为,且点B在反比例函数y=图象上,∴点B坐标(﹣,)∴S△ABP=(a+)×=5故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,设点A(a,),利用字母a表示AB的长度和线段AB上的高,是本题的关键.9.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,AE=2,则弦CD的长是()A.4B.6C.8D.10【分析】连接OC,根据题意得出OC=5,再由垂径定理知,点E是CD的中点,CE=CD,在直角△OCE中,由勾股定理得出CE,从而得出CD的长.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD,在Rt△OCE中,OC2=OE2+CE2,∵AE=2,AB=10,∴OC=5,OE=3,∴CE=4,∴CD=8,故选:C.【点评】本题考查了垂径定理,掌握垂径定理的内容是解题的关键.10.(3分)如图所示为二次函数y=ax2+bx+c(a≠0)图象一部分,则以下正确的有:①b>2a;②ax2+bx+c=0的两根分别为﹣3和1;③a﹣2b+c<0;④a+b+c=0;⑤8a+c>0,其中正确的有()A.①②B.②③C.②③④D.②③④⑤【分析】①由抛物线的对称轴为直线x=﹣1,可得出b=2a,结论①错误;②由抛物线的对称轴及抛物线与x轴一个交点的坐标,可求出另一交点坐标,进而可得出ax2+bx+c=0的两根分别为﹣3和1,结论②正确;③由抛物线的开口方向及抛物线与y轴交点的位置可得出a>0,c<0,结合b=2a,即可得出a﹣2b+c=﹣3a+c<0,结论③正确;④由当x=1时y=0,可得出a+b+c=0,结论④正确;⑤由当x =2时y>0结合b=2a,可得出4a+2b+c=8a+c>0,结论⑤正确.综上即可得出结论.【解答】解:①∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,结论①错误;②∵抛物线的对称轴为直线x=﹣1,抛物线与x轴一个交点的坐标为(1,0),∴抛物线与x轴另一交点的坐标为(﹣3,0),∴ax2+bx+c=0的两根分别为﹣3和1,结论②正确;③∵抛物线开口向上,与y轴交于负半轴,∴a>0,c<0,∴a﹣2b+c=a﹣4a+c=﹣3a+c<0,结论③正确;④∵当x=1时,y=0,∴a+b+c=0,结论④正确;⑤∵当x=2时,y>0,∴4a+2b+c=8a+c>0,结论⑤正确.综上所述:正确的结论有②③④⑤.故选:D.【点评】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征以及抛物线与x轴的交点,观察函数图象,逐一分析五个结论的正误是解题的关键.二、填空题:(每小题3分,10小题,共30分)11.(3分)在Rt△ABC中,∠C=90°,sin A=,则tan A=.【分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,运用三角函数的定义解答.【解答】解:由sin A=知,可设a=4x,则c=5x,b=3x.∴tan A=.故答案为:.【点评】本题考查了同角三角函数的关系.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.12.(3分)单项式﹣π2x2y的系数是﹣π2,次数是3.【分析】直接利用单项式的定义分析得出答案.【解答】解:单项式﹣π2x2y的系数是:﹣π2,次数是:3.故答案为:﹣π2,3.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.13.(3分)若x2+2(m﹣3)x+16是完全平方式,则m的值等于7或﹣1.【分析】根据已知完全平方式得出2(m﹣3)x=±2•x•4,求出即可.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴2(m﹣3)x=±2•x•4,解得:m=7或﹣1,故答案为:7或﹣1.【点评】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2.14.(3分)计算﹣2+7=37.【分析】直接化简二次根式进而利用二次根式的加减运算法则计算得出答案.【解答】解:﹣2+7=4﹣2+7×5=37.故答案为:37.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15.(3分)在反比例函数y=(x<0)中,函数值y随着x的增大而减小,则m的取值范围是m>1.【分析】根据反比例函数的性质,构建不等式即可解决问题.【解答】解:∵反比例函数y=(x<0)中,函数值y随着x的增大而减小,∴m﹣1>0,∴m>1,故答案为m>1.【点评】本题考查反比例函数的性质,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.16.(3分)一条抛物线,顶点坐标为(4,﹣2),且形状与抛物线y=x2+2相同,则它的函数表达式是y =±(x﹣4)2﹣2.【分析】直接利用抛物线形状相同,则|a|的值相等,进而结合函数顶点坐标得出答案.【解答】解:由题意可得:顶点坐标为(4,﹣2),且形状与抛物线y=x2+2相同,它的函数表达式是:y=±(x﹣4)2﹣2.故答案为:y=±(x﹣4)2﹣2.【点评】此题主要考查了二次函数的性质,正确得出a的值是解题关键.17.(3分)若(x+y)(x+2+y)=15,则x+y=﹣5或3.【分析】令x+y=a,将原等式变形为a2+2a﹣15=0,解此一元二次方程可得答案.【解答】解:令x+y=a,则a(a+2)=15,∴a2+2a﹣15=0,∴(a+5)(a﹣3)=0,则a+5=0或a﹣3=0,解得:a=﹣5或a=3,即x+y=﹣5或x+y=3,故答案为:﹣5或3.【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及换元思想的运用.18.(3分)如图,有两个矩形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m﹣n=17.【分析】设阴影部分面积为x,根据空白部分面积表示出两个矩形的面积,相减即可求出所求.【解答】解:设阴影部分面积为x,根据题意得:m+x=26,n+x=9,∴m﹣n=17,故答案为:17【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.20.(3分)如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=2﹣..【分析】探究规律,利用规律即可解决问题;【解答】解:∵∠MON=45°,∴△C1B2C2为等腰直角三角形,∴C1B2=B2C2=A2B2.∵正方形A1B1C1A2的边长为2,∴OA3=AA3=A2B2=A2C1=1.OA1=4,OM=OB1==2同理,可得出:OA n=A n﹣1A n=A n﹣2A n﹣1=,∴OA2018=A2018A2017=,∴A2018M=2﹣.故答案为2﹣.【点评】本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.三、解答题:(本题共7小题,总分60分.其中第21题6分,第22题8分,第23题8分,第24题9分,第25题9分,第26题10分,第27题10分.)21.(6分)计算:()﹣2+|﹣2|﹣+6cos30°+(π﹣3.14)0.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=9+2﹣﹣2+6×+1=12.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k ≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)根据函数图象,写出反比例函数的图象在菱形内部的自变量的取值范围即可;【解答】解:(1)∵点E(﹣4,)在y=上,∴k=﹣2,∴反比例函数的解析式为y=﹣,∵F(m,2)在y=上,∴m=﹣1.(2)函数y=图象在菱形ABCD内x的取值范围为:﹣4<x<﹣1或1<x<4.【点评】本题考查反比例函数图象上点的特征、菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(8分)如图,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB、OC、BD、CD.求证:四边形OBDC是菱形.【分析】连接OD,证明△BOD和△COD都是等边三角形,得OB=BD=DC=OC,所以四边形OBDC 是菱形.【解答】证明:连接OD,∵∠BAC=60°,∴∠BOC=120°,∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠CAD,∴,∴∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD和△COD都是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形.【点评】此题考查圆周角定理、角平分线的定义、等边三角形的判定、菱形的判定,关键是熟知有一个角是60度的等腰三角形是等边三角形以及菱形的判定解答.24.(9分)已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.【分析】(1)根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围;(2)根据根与系数的关系结合x1+x2=x1x2+2,即可得出关于k的分式方程,解之经检验后即可得出k值.【解答】解:(1)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根,∴,解得:k≤且k≠﹣1.(2)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=﹣4,经检验,k=﹣4是原分式方程的解,∴k=﹣4.【点评】本题考查了根的判别式、根与系数的关系以及一元二次方程的定义,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x1+x2=x1x2+2,找出关于k的分式方程.25.(9分)如图,Rt△APE,∠AEP=90°,以AB为直径的⊙,O交PE于C,且AC平分∠EAP.连接BC,PB:PC=1:2.(1)求证:PE是⊙O的切线;(2)已知⊙O的半径为,求AE的长.【分析】(1)连接OC,由AC平分∠EAP,得到∠DAC=∠OAC,由等腰三角形的性质得到∠CAO=∠ACO,等量代换得到∠DAC=∠ACO,根据平行线的性质得到∠E=∠OCP=90°,于是得到结论;(2)设PB=x,PC=2x,根据勾股定理得到PC=,PB=,求得AP=,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OC,∵AC平分∠EAP,∴∠DAC=∠OAC,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=∠ACO,∴AE∥OC,∴∠E=∠OCP=90°,∴PE是⊙O的切线;(2)∵PB:PC=1:2,∴设PB=x,PC=2x,∵OC2+PC2=OP2,即()2+(2x)2=(+x)2,∴x=,∴PC=,PB=,∴AP=,∵OC∥AE,∴△PCO∽△PEA,∴,∴AE=4.【点评】本题考查了切线的判定,相似三角形的判定和性质,勾股定理,熟记切线的判定是解题的关键.26.(10分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)填空:在2或4秒时,△PCQ的面积为△ACB的面积的;(2)经过几秒,以P、C、Q为顶点的三角形与△ACB相似?(3)如图2,设CD为△ACB的中线,则在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ=S△ABC列出方程求解;(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ =∠B,则有或,分别代入可得到关于t的方程,可求得t的值;(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么,依此列出比例式,解方程即可.【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,由题意得:PC=2xm,CQ=(6﹣x)m,则×2x(6﹣x)=××8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ的面积为△ACB的面积的;故答案为:2或4;(2)设运动时间为ts,△PCQ与△ACB相似.当△PCQ与△ACB相似时,则有或,所以,或,解得t=,或t=.因此,经过秒或秒,△OCQ与△ACB相似;(3)有可能.在Rt△ABC中,∠C=90°,AC=8m,BC=6m,由勾股定理得AB==10.∵CD为△ACB的中线,∴∠ACD=∠A,∠BCD=∠B,又∵PQ⊥CD,∴∠CPQ=∠B,∴△PCQ∽△BCA,∴,,解得y=.因此,经过秒,PQ⊥CD.【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,在(2)中体现了分类讨论的思想.27.(10分)如图,抛物线y=x2+2x﹣3的图象与x轴交于点A、B(A在B左侧),与y轴交于点C,点D 为抛物线的顶点.(1)求△ABC的面积;(2)P是对称轴左侧抛物线上一动点,以AP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,画出图形并求出P点坐标;(3)若抛物线上只有三个点到直线CD的距离为m,求m的值.【分析】(1)先求出点A,B,C坐标,最后用三角形的面积公式即可得出结论;(2)①当点P在第三象限时,先作出图形,再构造出全等三角形,设出点M的坐标,进而表示出点P 坐标,即可得出结论,当点P在第二象限时,同①的方法即可得出结论;(3)先判断出直线CD下方的抛物线上只有一个点到直线CD的距离为m,再求出直线CD解析式,进而求出直线EG的解析式,最后判断出△CFE∽△COH,即可得出结论.【解答】解:(1)针对于抛物线y=x2+2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x2+2x﹣3=0,∴x=﹣3或x=1,∴A(﹣3,0),B(1,0),∴S△ABC=AB×|y C|=6;(2)如图,①点P在第三象限时,∵抛物线y=x2+2x﹣3的对称轴为直线x=﹣1,∴AQ=2过点P作PG⊥DM于G,∴∠PGM=∠MQA=90°,∴∠MPG+∠PMG=90°,∵∠AMP=90°,∴∠PMG+∠AMQ=90°,∴∠MPG=∠AMQ,在△PGM和△MQA中,,∴△PGM≌△MQA(AAS),∴MG=AQ=2,PG=QM,设M(﹣1,m)(m<0),∴QM=﹣m,∴PG=﹣m,QG=QM+MG=2﹣m,∴P(m﹣1,m﹣2),∵点P在抛物线y=x2+2x﹣3上,∴(m﹣1)2+2(m﹣1)﹣3=m﹣2,∴m﹣1=﹣2或m﹣1=1(舍),∴P(﹣2,﹣3).②当点P在第二象限时,同①的方法得,P(﹣4,5);(3)∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),∵C(0,﹣3),∴直线CD的解析式为y=x﹣3,如图1,作直线EG∥CD交y轴于E,交x轴于G,设直线EG的解析式为y=x+b①,∵抛物线上只有三个点到直线CD的距离为m,∴在直线CD下方的抛物线上只有一个点到直线CD的距离为m,即直线EG与抛物线y=x2+2x﹣3②只有一个交点,联立①②得,x2+2x﹣3=x+b,∴x2+x﹣3﹣b=0,∴△=1+4(b+3)=0,∴b=﹣,∴直线EG的解析式为y=x﹣,∴E(0,﹣),∴OE=,∵直线CD的解析式为y=x﹣3,∴H(3,0),∴OH=3,OC=3,∴CH=3,CE=﹣3=,直线过点E作EF⊥CD于F,∴∠CFE=∠COH,∵∠ECF=∠HCO,∴△CFE∽△COH,∴,∴,∴EF=,即:m=.【点评】此题是二次函数综合题,主要考查了三角形的面积公式,全等三角形的判定和性质,相似三角形的判定和性质,利用方程的思想解决问题是解本题的关键.。

北师大版九年级上册数学期中考试试卷附答案详解

北师大版九年级上册数学期中考试试卷附答案详解

北师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列命题中,真命题是( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形 2.如图,菱形ABCD 中,B 60∠=,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .173.若关于x 的一元二次方程kx 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 A .k >1 B .k <1 C .k >1且k≠0 D .k <1且k≠0 4.一个袋子里装有8个球,其中6个黄球2个红球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个红球的概率是( ) A .18 B .16 C .14 D .345.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是( )A 、250(1+x)=182B .50+50(1+x)+250(1+x)=182C 、50(1+2x)=182D .50+50(1+x)(1+2x)=1826.矩形具有而菱形不具有的性质是( )A .对角线相等B .两组对边分别平行C .对角线互相平分D .两组对角分别相等7.顺次连接菱形各边中点所得的四边形一定是( )A .等腰梯形B .正方形C .平行四边形D .矩形 8.用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 9.如图,下列条件之一能使平行四边形ABCD 是菱形的为( )①AC BD ⊥;②90BAD ∠=;③AB BC =;④AC BD =.A .①③B .②③C .③④D .①②③二、填空题 10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm . 11.方程(x +2)(x -1)=0的解为___________________.12.已知23m p n q ==(n+q≠0),则m p n q++=_______________. 13.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2.5,则AC 的长为 。

九年级(上)期中数学试题(含答案)

九年级(上)期中数学试题(含答案)

九年级上数学期中测试题新洲中学 高新民一、选择题:(每小题3 分,共30分)1.下列方程中,是一元二次方程的是 ( ) (A )01624=-x (B )0)1(2=-x(C )22)1()1(+=-x x (D ))21(2122x x x +=-2.使式子3342-+-x x x 的值为0的x 的值为 ( )(A )3或1 (B )3 (C )1 (D )-3或-1 3.下面解了三道方程:(1)解方程.432=x 解:3x=±2,∴x=±32. (2)解方程.22x x =解:方程的两边同除以x,得x=2.(3)解方程.1)3)(2(=--x x 解:由12=-x 得x=3,由13=-x 得x=4.上述三题的解法正确的个数是 ( ) (A )0 (B )1 (C )2 (D )3`4.一个数的平方与这个数的3倍相等,则这个数为 ( ) (A )0 (B )3 (C )0或3 (D )35.下列各组条件中,不能用来判定ABC ∆≌DEF ∆的是 ( ) (A )AB=DE ,BC=EF ,∠B=∠E (B )AB=DE ,AC=DF ,∠C=∠F(C )BC=EF ,∠B=∠E ,∠C=∠F (D )AB=DE ,AC=DF ,ABC ∆与DEF ∆的周长相等 6.下列命题中,正确的是 ( ) (A )四边相等的四边形是正方形 (B )四角相等的四边形是正方形 (C )对角线垂直且相等的四边形是正方形(D )对角线相等的菱形是正方形7.平行四边形ABCD 中,若AB=8cm, 则对角线AC 、BD 的长可能是 ( ) (A )6cm,10cm (B)6cm,12cm (C)12cm,4cm (D)10cm,4cm8.等腰三角形有一个角为︒100,则另外两个角为 ( ) (A )︒︒50,50 (B )︒︒50,40 (C )︒︒40,80 (D )︒︒40,409.如图,AB ⊥BC ,AD ⊥CD ,垂足分别为B 、D ,若CB=CD ,则ABC ∆≌ACD ∆,理由是( )(A )SAS (B )AAS (C )HL (D )ASA10.如图,有一块直角三角形纸片,两条直角边AC=6cm ,BC=8cm.若将直角边AC 沿直线折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于 ( ) (A )2cm (B )3cm (C)4cm (D)5cm第9题图 第10题图二、填空题:(每小题3 分,共24分)11.一元二次方程2)2)(1(=++x x 的一般形式是____________,它的常数项是______.12.22_____)(_____-=+-x x x .13.已知菱形的周长为20cm ,一条对角线的长是6cm ,那么它的另一条对角线长是______,面积是_______.14.在三角形ABC 中,AB=AC ,DE 是AB 的垂直平分线交AC 于E ,若AB=13cm,BC=10cm,则三角形BCE 的周长为_________cm.15.两个连续整数的积为132,则这两个数为__________.16.正方形的对角线长为cm 22,则它的周长为______cm,面积为_______2cm .17.依次连接矩形四边的中点得到的四边形是__________.18.在一次体育考试中,小刚推铅球时,铅球行进高度h(m)与水平距离s(m)之间的函数关系式是35321212++-=s s h ,则本次考试中,小刚推出的铅球的距离为_______m.三、解答题:(19题10分,其它每题6分,共46 分) 19.用指定的方法解方程:(1)0982=-+x x (配方法) (2)1342=-x x (公式法)(3)x x x 24)2(3-=-(因式分解法) (4)9)3(222-=-x xDCBAE DCA20.(1)填空①等腰三角形两腰上的高________;②等腰三角形上的中线_________; ③等腰三角形底角的平分线________.(2)对上述三个命题,选择其中的一个,画图并写出已知、求证、证明过程.21.如图,在ABC ∆中,AB=AC ,D 是底边BC 的中点,作DE ⊥AB 于E ,DF ⊥AC 于F求证:DE=DF. 证明:C B AC AB ∠=∠∴=, ①.在∆BDE 和CDF ∆中,CD BD CFD BED C B =∠=∠∠=∠,,,BDE ∆∴≌CDF ∆②.DF DE =∴③.⑴上面的证明过程是否正确?若正确,请写出①、②和③的推理根据. ⑵请你写出另一种证明此题的方法.FE DCBA22.已知:直线AO 、BO 表示两条互相交叉的公路,Q 是一个大型货物批发站,现在要建一个货物中转站P.要求它到AO 、BO 的距离相等,且PO=PQ.在图上画出满足条件的点P (保留作图痕迹)并写作法.23.已知关于x 的一元二次方程032)1(22=+--+-m m x x m 有一根是0,求m 的值及这个方程的另一个根.24.如图,在平行四边形ABCD 中,∠BAD 的平分线与BC 边相交于 E ,∠ABC 的平分线与AD边相交于点F.四边形ABEF 是什么四边形?试证明你的结论.F EDCBA25.某厂规定,该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月该户只A 要交10元用电费,如果超过A度,则这个月仍要交10元用电费外,超过部分还要按每度100元交费.(1)该厂某户居民2月份用电90度,超过了规定的度,则超过部分应交费________元.(用含A的式子表示);(参考答案1-10.BCACB ,DBDCB 11.032=+x x ,0 12.21,41 13.224,8cm cm 14.2315.11,12或-11,-12 16.8,4 17.菱形 18.1019.(1)9,121-==x x (2)41,121-==x x (3)32,221==x x (4)9,321==x x 20.(1)相等;相等;相等。

新九年级(上)期中考试数学试题(含答案)

新九年级(上)期中考试数学试题(含答案)

新九年级(上)期中考试数学试题(含答案)一、选择(共10小题,每小题3分,共30分)1.方程x(x+5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.12.抛物线y=﹣5(x+2)2﹣6的对称轴和顶点分别是()A.x=2和(2,﹣6)B.x=2和(﹣2,﹣6)C.x=﹣2和(﹣2,﹣6)D.x=﹣2和(2,﹣6)3.下列几何图形中不是中心对称图形的是()A.圆B.平行四边形C.正三角形D.正方形4.不解方程,判断方程x2﹣4x+9=0的根的情况是()A.无实根B.有两个相等实根C.有两个不相等实根D.以上三种况都有可能5.抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为()A.y=﹣(x+3)2+2B.y=﹣(x﹣3)2+2C.y=﹣(x+3)2﹣2D.y=﹣(x﹣3)2﹣26.青山村种的水稻2016年平均每公项产7500kg,2018年平均每公顷产8500kg,求每公顷产量的年平均增长率.设年平均增长率为x,则可列方程为()A.7500(1﹣x)2=8500B.7500(1+x)2=8500C.8500(1﹣x)2=7500D.8500(1+x)2=75007.如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A.192°B.120°C.132°D.l508.下列说法正确的是()A.平分弦的直径垂直于弦B.圆是轴对称图形,任何一条直径都是圆的对称轴C.相等的弧所对弦相等D.长度相等弧是等弧9.如图,AB是⊙O的直径,AB=4,E是上一点,将沿BC翻折后E点的对称点F落在OA中点处,则BC 的长为()A.B.2C.D.10.抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD 和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为()A.2B.﹣2或﹣4C.﹣2D.﹣4二、填空题(共6小题,每小题3分,共18分11.如果x=2是方程x2﹣c=0的一个根,那么c的值是.12.与点P(3,4)关于原点对称的点的坐标为.13.如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为.14.汽车刹车后行驶的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=﹣6t2+15t,则汽午刹车后到停下来需要秒.15.二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,则a的值为.16.如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为.三、解答题(共8小题,共72分)17.(8分)解方程:x2﹣4x﹣4=0.(用配方法解答)18.(8分)如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC ≌△BOD.19.(8分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.20.(8分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.21.(8分)如图,⊙O的半径OA⊥弦BC于H,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,OB=,AB=5.(1)求证:∠AOB=2∠ADC.(2)求AE长.22.(10分)名闻遐迩的采花毛尖明前茶,成本每厅400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.23.(10分)(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应①请证明△ABC为等边三角形;②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为.(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.24.(12分)如图1,抛物线y=ax2﹣2x﹣3与x轴交于点A、B(3,0),交y轴于点C(1)求a的值.(2)过点B的直线1与(1)中的抛物线有且只有一个公共点,则直线1的解析式为.(3)如图2,已知F(0,﹣7),过点F的直线m:y=kx﹣7与抛物线y=x2﹣2x﹣3交于M、N两点,当S△CMN =4时,求k的值.2018-2019学年湖北省武汉市东湖高新区九年级(上)期中数学试卷参考答案与试题解析一、选择(共10小题,每小题3分,共30分)1.方程x(x+5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.1【分析】根据题目中的式子,将括号去掉化为一元二次方程的一般形式,从而可以解答本题.【解答】解:∵x(x+5)=0∴x2+5x=0,∴方程x(x+5)=0化成一般形式后,它的常数项是0,故选:C.【点评】本题考查一元二次方程的一般形式,形式ax2+bx+c=0(a≠0)这种形式的方程叫一元二次方程的一般形式.2.抛物线y=﹣5(x+2)2﹣6的对称轴和顶点分别是()A.x=2和(2,﹣6)B.x=2和(﹣2,﹣6)C.x=﹣2和(﹣2,﹣6)D.x=﹣2和(2,﹣6)【分析】根据题目中抛物线的顶点式,可以直接写出它的对称轴和顶点坐标,本题得以解决.【解答】解:∵抛物线y=﹣5(x+2)2﹣6,∴该抛物线的对称轴是直线x=﹣2,顶点坐标为(﹣2,﹣6),故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.下列几何图形中不是中心对称图形的是()A.圆B.平行四边形C.正三角形D.正方形【分析】根据中心对称图形的概念结合圆、平行四边形、正三角形、正方形的特点求解.【解答】解:A、圆是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项错误;C、正三角形不是中心对称图形,故本选项正确;D、正方形是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.不解方程,判断方程x2﹣4x+9=0的根的情况是()A.无实根B.有两个相等实根C.有两个不相等实根D.以上三种况都有可能【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.【解答】解:∵a=1,b=﹣4,c=9,∴△=(﹣4)2﹣4×1×9=32﹣36=﹣4<0,则方程x2﹣4x+9=0无实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为()A.y=﹣(x+3)2+2B.y=﹣(x﹣3)2+2C.y=﹣(x+3)2﹣2D.y=﹣(x﹣3)2﹣2【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=﹣x2先向上平移2个单位得到抛物线的解析式为:y=﹣x2+2,再向左平移3个单位得到解析式:y=﹣(x+3)2+2;故选:A.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律,解决本题的关键是熟记“左加右减,上加下减”.6.青山村种的水稻2016年平均每公项产7500kg,2018年平均每公顷产8500kg,求每公顷产量的年平均增长率.设年平均增长率为x,则可列方程为()A.7500(1﹣x)2=8500B.7500(1+x)2=8500C.8500(1﹣x)2=7500D.8500(1+x)2=7500【分析】设年平均增长率为x,根据青山村种的水稻2016年及2018年平均每公项的产量,即可得出关于x的一元二次方程,此题得解.【解答】解:设年平均增长率为x,根据题意得:7500(1+x)2=8500.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A.192°B.120°C.132°D.l50【分析】如图作圆周角∠ADB,根据圆周角定理求出∠D的度数,再根据圆内接四边形性质求出∠C即可.【解答】解:如图做圆周角∠ADB,使D在优弧上,∵∠AOB=96°,∴∠D=∠AOB=48°,∵A、D、B、C四点共圆,∴∠ACB+∠D=180°,∴∠ACB=132°,故选:C.【点评】本题考查了圆周角定理和圆内接四边形性质的应用,正确作辅助线是解此题的关键.8.下列说法正确的是()A.平分弦的直径垂直于弦B.圆是轴对称图形,任何一条直径都是圆的对称轴C.相等的弧所对弦相等D.长度相等弧是等弧【分析】根据垂径定理,等弧的定义,圆的性质一一判断即可;【解答】解:A、错误.需要添加此弦非直径的条件;B、错误.应该是圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴;C、正确.D、错误.长度相等弧是不一定是等弧,等弧的长度相等;故选:C.【点评】本题考查垂径定理,等弧的定义,圆的有关性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,AB是⊙O的直径,AB=4,E是上一点,将沿BC翻折后E点的对称点F落在OA中点处,则BC 的长为()A.B.2C.D.【分析】连接OC.由△AFC∽△ACO,推出AC2=AF•OA,可得AC=,再利用勾股定理求出BC即可解决问题;【解答】解:连接OC.由翻折不变性可知:EC=CF,∠CBE=∠CBA,∴=,∴AC=CE=CF,∴∠A=∠AFC,∵OA=OC=2,∴∠A=∠ACO,∴∠AFC=∠ACO,∵∠A=∠A,∴△AFC∽△ACO,∴AC2=AF•OA,∵AF=OF=1,∴AC2=2,∵AC>0,∴AC=,∵AB是直径,∴∠ACB=90°,∴BC===,故选:D.【点评】本题考查翻折变换,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.10.抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD 和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为()A.2B.﹣2或﹣4C.﹣2D.﹣4【分析】根据题意和函数图象,利用二次函数的性质和等腰三角形的性质,可以求得b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx+1,∴x=0时,y=1,∴点C的坐标为(0,1),∴OC=1,∵△OBC为等腰直角三角形,∴OC=OB,∴OB=1,∴抛物线y=ax2+bx+1与x轴的一个交点为(1,0),∴a+b+1=0,得a=﹣1﹣b,设抛物线y=ax2+bx+1与x轴的另一个交点A为(x1,0),∴x1×1=,∵△ABD为等腰直角三角形,∴点D的纵坐标的绝对值是AB的一半,∴,∴﹣,解得,b=﹣2或b=﹣4,当b=﹣2时,a=﹣1﹣(﹣2)=1,此时y=x2﹣2x+1=(x﹣1)2,与x轴只有一个交点,故不符合题意,当b=﹣4时,a=﹣1﹣(﹣4)=3,此时y=3x2﹣4x+1,与x轴两个交点,符合题意,故选:D.【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.二、填空题(共6小题,每小题3分,共18分11.如果x=2是方程x2﹣c=0的一个根,那么c的值是4.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,知x=2是方程的根,代入方程即可求解.【解答】解:∵x=2是方程的根,由一元二次方程的根的定义代入可得,4﹣c=0,∴c=4.故答案为:4.【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.12.与点P(3,4)关于原点对称的点的坐标为(﹣3,﹣4).【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:点P(3,4)关于中心对称的点的坐标为(﹣3,﹣4).【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.13.如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为m≠1.【分析】一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:(m﹣1)x2+2x﹣3=0是一元二次方程,得m≠1,故答案为:m≠1.【点评】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.14.汽车刹车后行驶的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=﹣6t2+15t,则汽午刹车后到停下来需要秒.【分析】根据二次函数的解析式可得出汽车刹车时的初速度以及刹车时的加速度,由“刹车时间=初速度÷刹车加速度”求出刹车后汽车行驶的时间.【解答】解:∵汽车刹车后行驶的距离s关于行驶的时间t的函数解析式是s=15t﹣6t2,∴刹车前的初速度为15m/s,刹车的加速度为﹣12m/s2,∴汽车刹车后行驶的时间为:15÷12=s,故答案为:.【点评】本题考查了二次函数的应用,根据二次函数关系式找出刹车的初速度以及加速度后计算出刹车时间是解题的关键.15.二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,则a的值为4或﹣2.【分析】根据二次函数图象的开口方向知道,当x=0或x=4时,函数值的最小值是4,结合函数图象得到当x≤0或x≥4时,符合题意.【解答】解:∵二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,=4.∴当x=0或x=4时,y最小值=4.如图,当x≤0或x≥4时,y最小值∵2﹣a≤x≤4﹣a,∴a=4或a=﹣2.故答案是:4或﹣2.【点评】考查了二次函数的最值,解题时,采用了“数形结合”的数学思想,使问题变得直观化.16.如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为2.【分析】如图,在DO上取一点H,使得DH=CD.设AH交BC于点K.只要证明△ACH≌△BCD(SAS),推出∠CAH=∠CBD,AH=BD,由∠AKC=∠BKH,推出∠KHB=∠ACB=60°,求出AH即可解决问题;【解答】解:如图,在DO上取一点H,使得DH=CD.设AH交BC于点K.∵BA=BC,∠ABC=60°,∴△ABC是等边三角形,∵DC=DH,∠CDH=60°,∴△CDH是等边三角形,∴CA=CB,CH=CD,∠ACB=∠HCD=60°,∴∠ACH=∠BCD,∴△ACH≌△BCD(SAS),∴∠CAH=∠CBD,AH=BD,∵∠AKC=∠BKH,∴∠KHB=∠ACB=60°,在Rt△AOH中,∵OA=3,∴AH==2,∴BD=AH=2.故答案为2.【点评】本题考查坐标与图形变化﹣旋转,等边三角形的性质和判定,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(共8小题,共72分)17.(8分)解方程:x2﹣4x﹣4=0.(用配方法解答)【分析】移项后两边配上一次项系数一半的平方后求解可得.【解答】解:∵x2﹣4x=4,∴x2﹣4x+4=4+4,即(x﹣2)2=8,∴x﹣2=±2,则x=2±2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC ≌△BOD.【分析】根据角的和差得到∠AOC=∠BOD,根据全等三角形的判定定理即可得到结论.【解答】证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC与△BOD中,,∴△AOC≌△BOD(SAS).【点评】本题考查了全等三角形的判定,熟练全等三角形的判定定理是解题的关键.19.(8分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.【分析】设所围矩形ABCD的长AB为x米,则宽AD为(20﹣x)米,根据矩形面积的计算方法列出方程求解.【解答】解:设矩形与墙平行的一边长为xm,则另一边长为(20﹣x)m.根据题意,得(20﹣x)x=50,解方程,得x=10.当x=10时,(20﹣x)=5.答:矩形的长为10m,宽为5m.【点评】此题不仅是一道实际问题,考查了一元二次方程的应用,解答此题要注意以下问题:(1)矩形的一边为墙,且墙的长度不超过45米;(2)根据矩形的面积公式列一元二次方程并根据根的判别式来判断是否两边长相等.20.(8分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【分析】(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.【解答】(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21.(8分)如图,⊙O的半径OA⊥弦BC于H,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,OB=,AB=5.(1)求证:∠AOB=2∠ADC.(2)求AE长.【分析】(1)根据垂径定理可得,可得∠AOC=∠AOB,根据圆周角定理可得∠AOB=2∠ADC;(2)由题意可证AB=BE=5,根据勾股定理可求AH=3,即可求EH的长,根据勾股定理可得AE的长.【解答】证明:(1)如图,连接OC,∵OA⊥BC,∴,∴∠AOC=∠AOB,∵∠AOC=2∠ADC,∴∠AOB=2∠ADC(2)∵DC=DE∴∠DCE=∠DEC∵∠DCE=∠DAB,∠DEC=∠AEB,∴∠AEB=∠DAB,∴AB=BE=5∵AH2+BH2=AB2,OH2+BH2=OB2,∴AB2﹣AH2=BH2=OB2﹣(AO﹣AH)2,∴25﹣AH2=﹣(﹣AH)2,∴AH=3,∴BH=4,∴EH=BE﹣BH=1,∴AE==【点评】本题考查圆的有关知识、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.22.(10分)名闻遐迩的采花毛尖明前茶,成本每厅400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.【分析】(1)利用待定系数法求解可得依次函数解析式;(2)根据“总利润=每斤的利润×周销售量”可得函数解析式,再利用二次函数的性质结合x的取值范围可得答案;【解答】解:(1)设y与x之间的函数关系式为y=kx+b,根据题意,得:,解得:,则y=﹣x+800;(2)w=(x﹣400)(﹣x+500)=﹣x2+1200x﹣320000,令w=30000得:30000=﹣x2+1200x﹣320000,解得:x=500或x=700,∵a=﹣1<0,∴500≤x≤700时w不小于30000,∵x﹣400≤400×40%,∴x≤560,∴500≤x≤560.【点评】本题主要考查一次函数的应用及一元二次方程的应用的知识,解题的关键是掌握待定系数法求函数解析式、理解题意找到相等关系并列出函数解析式.23.(10分)(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应①请证明△ABC为等边三角形;②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为2.(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.【分析】(1)由旋转的性质可得:AB=AC,∠BAC=60°,即可证△ABC为等边三角形;(2)过点E作EG⊥直线a,延长GE交直线c于点H,可得GH=7,AD=2,由旋转的性质可得AD=AE=2,∠DAE=60°,可求GE=1,EH=6,由锐角三角函数可求CE=4,根据勾股定理可求等边△ABC的边AC的长;(3)过点A作∠AHO=60°,交OQ于点G,交OP于点H,根据特殊三角函数值可求AH=4,通过证明△OBC ≌△HCA,可求AH=OC=4,CE=1,根据勾股定理可求△ABC的边AC的长.【解答】解:(1)∵将△AEC绕点A顺时针旋转60°得到△ADB,∴AB=AC,∠BAC=60°,∴△ABC为等边三角形.(2)过点E作EG⊥直线a,延长GE交直线c于点H,∵a∥b∥c,∴EH⊥直线c,∵直线a、c之间的距离为7,∴GH=7∵将△AEC绕点A顺时针旋转60°得到△ADB,∴AD=AE,∠ADB=∠AEC=90°,∠DAE=60°,∵直线a、b之间的距离为2,∴AD=2=AE,∵∠GAE=∠GAD﹣∠DAE=90°﹣60°=30°,∴GE=AE=1,∠AEG=60°,∴EH=7﹣1=6,∵∠CEH=180°﹣∠AEC﹣∠AEG,∴∠CEH=30°,∴cos∠CEH=∴CE=4在Rt△ACE中,AC===2,故答案为:2(3)过点A作∠AHO=60°,交OQ于点G,交OP于点H,∵AE⊥OP,∠AHO=60°∴sin∠AHO=∴AH=4∵△ABC是等边三角形,∴AB=AC=BC,∠ACB=60°=∠POQ,∵∠POQ+∠OBC+∠OCB=180°,∠ACB+∠OCB+∠ACH=180°,∴∠ACH =∠OBC ,且BC =AC ,∠O =∠AHC =60°, ∴△OBC ≌△HCA (AAS ) ∴AH =OC =4,∴CE =OE ﹣OC =5﹣4=1,在Rt △ACE 中,AC ===,∴△ABC 的边长为.【点评】本题是几何变换综合题,考查等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,本题的关键是添加恰当的辅助线构造全等三角形.24.(12分)如图1,抛物线y =ax 2﹣2x ﹣3与x 轴交于点A 、B (3,0),交y 轴于点C(1)求a 的值.(2)过点B 的直线1与(1)中的抛物线有且只有一个公共点,则直线1的解析式为 x =3或y =4x ﹣12 . (3)如图2,已知F (0,﹣7),过点F 的直线m :y =kx ﹣7与抛物线y =x 2﹣2x ﹣3交于M 、N 两点,当S △CMN=4时,求k 的值.【分析】(1)把(3,0)代入y =ax 2﹣2x ﹣3,即可求解;(2)当直线与y 轴平行时,直线l 的解析式为:x =﹣3;当直线与y 轴不平行时,设:直线1的解析式为:y =kx +b ,由△=0即可求解;(3)联立得:x 2﹣(2+k )x +4=0,由S △CMN =|S △CFN ﹣S △CFM |=×CF ×|x M ﹣x N |=4,即可求解.【解答】解:(1)把(3,0)代入y =ax 2﹣2x ﹣3, 得:0=9a ﹣6﹣3,∴a =1;(2)当直线与y 轴平行时,直线l 的解析式为:x =﹣3 当直线与y 轴不平行时,设:直线1的解析式为:y =kx +b , 将点B 坐标代入上式,解得:b =﹣3k 则直线的表达式为:y =kx ﹣3k …①, 抛物线的表达式为:y =x 2﹣2x ﹣3…②,联立①②并整理得:x 2﹣(k +2)x +(3k ﹣3)=0, △=b 2﹣4ac =(k +2)2﹣4(3k ﹣3)=0, 解得:k =4,故:直线的表达式为:x =3或y =4x ﹣12;(3)联立得:x 2﹣(2+k )x +4=0,x M +x N =k +2,x M •x N =4,∵S △CMN =|S △CFN ﹣S △CFM |=×CF ×|x M ﹣x N |=4,∴×4×=4,即:(k +2)2=20, 解得:k =﹣2±2.【点评】本题考查的是二次函数综合应用,涉及到一次函数、根的判别式、三角形面积等知识点,其中韦达定理的运用是处理数据的重要方法.新九年级(上)数学期中考试题(含答案)一、选择题(每小题 4 分,共 40 分)1、圆内接四边形 A BCD 中,已知∠A =70°,则∠C =( ) A .20°B .30°C .70°D .110°2、⊙O 的半径为 5c m ,点 A 到圆心 O 的距离 O A =3cm ,则点 A 与圆 O 的位置关系为( )A .点 A 在圆上B .点 A 在圆内C .点 A 在圆外D .无法确定3、将抛物线 y =x 2+1 向右平移 2 个单位,再向上平移 3 个单位后,抛物线的解析式为( )A .y =(x +2)2+4B .y =(x ﹣2)2﹣4C .y =(x ﹣2)2+4D .y =(x +2)2﹣44、若圆锥的母线长是 12,侧面展开图的圆心角是 120°,则它的底面圆的半径为( )A .2B .4C .6D .85.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与 △CDE 对应边的比为 k ,则位似中心的坐标和 k 的值分别为()A .(0,0),2B .(2,2),12C .(2,2),2D .(2,2),3 6、如图,在△ABC 中,点 D 是 A B 边上的一点,若∠ACD =∠B ,AD =1,AC =3,△ADC 的面积为 1,则△ABC 的面积为( ) A .9B .8C .3D .27、如图,若二次函数 y =ax 2+bx +c (a ≠0)图象的对称轴为 x =1,与 y 轴交于 点 C ,与 x 轴交于点 A 、点 B (﹣1,0),则①二次函数的最大值为 a +b +c ②a ﹣b +c <0;③b 2﹣4ac <0;④当 y >0 时,﹣1<x <3.其中正确的个数是( )A .1B .2C .3D .48、如图,在平行四边形A BCD 中,点E在C D 上,若D E:CE=1:2,则△CEF 与△ABF 的周长比为()A.1:2 B.1:3 C.2:3 D.4:99、圆心角为60°的扇形面积为S,半径为r,则下列图象能大致描述S与r的函数关系的是()A.B.C.D.10、对某一个函数给出如下定义:如果存在常数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数;在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,函数y=﹣(x+1)2+2,y≤2,因此是有上界函数,其上确界是2,如果函数y=﹣2x+1(m≤x≤n,m<n)的上确界是n,且这个函数的最小值不超过2m,则m的取值范围是()A.m≤13B.m13<C.1312m<≤D.m12≤二、填空题(每题4分,共24 分)11 如图,△ABC 中,点D、E 分别在边A B、BC 上,DE∥AC.若B D=4,DA=2,BE=3,则E C=.12、在二次函数y=-x2 +2x+1的图像中,若y随x增大而增大,则x的取值范围是.13、如图,⊙O 与△ABC 的边A B、AC、BC 分别相切于点D、E、F,如果A B=4,AC=5,AD=1,那么B C的长为.第8题第11 题第13 题14、高4m 的旗杆在水平地面上的影子长6m,此时,旗杆旁教学楼的影长24m,则教学楼高m.15、若关于x的一元二次方程x2 -2x-k = 0 (k 为常数)在- 2 <x <3范围内有解,则k的取值范围是。

九年级数学上册期中考试试卷(含答案)

九年级数学上册期中考试试卷(含答案)

九年级数学上册期中考试试卷初三数学初三( )班学号_________ 姓名_________ 成绩________一、填空题(每空2分,共22分)1.方程x2-5x=0的根是______________.2.若a2-2a-3=0,则2a2-4a=_______________.3.若关于x的方程x2-(m+1)x+m=0有两个相等的实数根,则m的值为________.4.二次函数y=-x2+2x+3的图象开口向_________,顶点坐标是_________.5.若将抛物线y=3x2-1向左平移1个单位后,则得到的新抛物线解析式为__________.6.若抛物线y=ax2+4ax-3与x轴的一个交点为A(-1,0),则抛物线与x轴的另一个交点B的坐标为______________.7.若抛物线y=x2+bx+c的对称轴为直线x=1,且经过两点(-1,y1),(-2,y2),试比较y1和y2的大小:y1________y2.(填“>”,“<”或“=”)8.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),小孔顶点N距水面4.5 m(即NC=4.5m).当水位上涨刚好淹没小孔时,借助图中的平面直角坐标系,则此时大孔的水面宽度EF为_________m.9.抛物线y=ax2-3x+a2-1的一部分如图,则a的值是__________.10.若抛物线y=x2+(m-1)x+m-2与x轴的两个交点之间的距离为2,则m=________.二、选择题(每小题3分,共30分)题号11 12 13 14 15 16 17 18 19 20 答案11.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的一个根为0,则m的值为( ) A.0 B.1或2 C.1 D.212.关于x的一元二次方程x2+bx-1=0的根的情况为 ( ) A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.不能确定13.某外贸公司受全球金融危机影响,今年五月份销售额为450万元,从六月份起经济有所复苏,销售额逐月上升,七月份销售额达到648万元.则该公司六、七两月份销售额平均增长率为 ( )A.10% B.20% C.19% D.25%14.用配方法将二次函数y=3x2-4x-2写成形如y=a(x+m)2+n的形式,则m,n的值分别是( )A.23m=,103n= B.23m=-,103n=- C.m=2,n=6 D.m=2,n=-215.抛物线y=ax2+bx+c如图所示,则下列关系式不正确...的是 ( ) A.a<0 B.abc>0 C.a+b+c>0 D.b2-4ac>016.已知函数y=x2-2x-2的图象如图所示,根据图中提供的信息,可求得使y≥1成立的x的取值范围是 ( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥3 17.对于二次函数y=ax 2+bx+c(a ≠0),我们把使函数值等于0的实数x 叫做这个函数的 零点..,则二次函数232y x mx m =-+-的零点..的个数是 ( ) A .1 B .2 C .0 D .不能确定 18.如图,在同一平面直角坐标系中,一次函数y=ax+b 和二次函数y=ax 2+bx 的图象 可能为 ( )19.抛物线y=x 2-4x -5与x 轴交于点A 、B ,点P 在抛物线上,若△PAB 的面积为27,则满足条件的点P 有 ( ) A .1个 B .2个 C .3个 D .4个20.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:x … -1 0 1 3 … y…-3131…则下列判断中正确的是 ( ) A .抛物线与y 轴交于负半轴 B .抛物线开口向上C .当x=4时,y>0D .方程ax 2+bx+c=0的正根在3与4之间 三、解答题(本题共8小题,共48分) 21.解下列方程(每小题3分,共6分) (1)2x 2-x -1=0 (2)212111x x x -=--22.根据下列条件,求二次函数的解析式(每小题3分,共6分) (1)图象的顶点为(2,3),且过点(3,1):(2)图象经过点(1,-2)、(0,-1)、(一2,-11).23.若关于x 的一元二次方程kx 2+2(k -2)x+k -3=0有两个不相等的实数根,试求实数 k 的取值范围.(本题5分)24.若关于x 的一元二次方程x 2-(2m+1)x+m 2+m -2=0的两个实数根x 1,x 2满足:12112x x +=,求m 的值. (本题5分)25.如图,在平面直角坐标系中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴的负半轴相交于点C,若点C的坐标为(0,-3),且BO=CO.(1)求这个二次函数的解析式;(2)求当y<0时,x的取值范围.(本题6分)26.如图,长方形鸡场的一边靠墙(墙长18m),墙对面有一个2m宽的门:另三边用竹篱笆围成,篱笆总长33m.(1)若鸡场面积为150m2,求鸡场的长和宽各为多少m?(2)求围成的鸡场的最大面积.(本题6分)27.某公司经销某品牌运动鞋,年售量为10万双,每双鞋按250元销售,可获利25%,设每双鞋的成本价为a元.(1) a=___________;(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y与x之间的关系如图所示,可近似看作是抛物线的一部分.①根据图象提供的信息,求y与x之间的函数关系式;②求年利润S(万元)与广告费x(万元)之间的函数关系式,并请回答广告费x(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?(注:年利润S=年销售总额-成本费-广告费) (本题7分)28.如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).(1)试求抛物线的解析式;(2)设点D是该抛物线的顶点,试求直线CD的解析式:(3)若直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上、下平移,使抛物线与线段......试探究:抛物线向上最多可平移多少个.......EF..总有公共点单位长度? 向下最多可平移多少个单位长度? (本题7分)。

初三数学上册期中考试试卷及答案

初三数学上册期中考试试卷及答案

第一学期九年级数学期中考试题卷一、选择题:(每小题4分;共32分) 1、下列图形中;是中心对称图形的是2、下列等式成立的是() A .9494+=+ B .3327= C . 3333=+ D .4)4(2-=-3、下列各式中是一元二次方程的是( ) A .x x 112=+ B .1)1)(1(2+=--+x x x x C .1322-+x x D .1212=+x x 4、下列二次根式中属于最简二次根式的是( )A .44+aB .48C .14D .ba5有意义;则x 的取值范围是( ) ≥﹣25 ≤25 C. x ≥25 D. x ≤- 256、关于关于x 的一元二次方程220x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断7、三角形两边的长分别是8和6;第三边的长是方程x ²-12x +20=0的一个实数根;则三角形的周长是( )A . 24B . 26或16C . 26D . 168、某旅游景点三月份共接待游客25万人次;五月份共接待游客64万人次;设每月的平均增长率为x ;则可列方程为( )A 、225(1)64x +=B 、225(1)64x -=C 、264(1)25x +=D 、264(1)25x -=二、填空题二填空(每小题4分;共20分)9、若点A (a –2;3)与点B (4;–3)关于原点对称;10、已知x =‐1是方程x 2-ax +6=0的一个根;11.若2<x<3;化简x x -+-3)2(212.如图(11);△ABC 绕点A 旋转后到达△ADE 若∠BAC =120°;∠BAD =30°;则∠DAE =__________;∠CAE =__________。

A B DC13、对于任意不相等的两个数a ;b ;定义一种运算※如下:a ※b =ba ba -+;如3※2=52323=-+.那么12※4= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三年级上数学期终试题011
一. 选择题:
1.下列各式中,正确的是( ).
(A )4222a a a =+; (B )a a a =-2
3
; (C )5
3
2
a a a =⋅; (D )2
2
2
)(b a b a +=+. 2.下列各数中,是无理数的为( ).
(A )6; (B )38; (C )0π; (D )︒60cos . 3.关于二次函数122+-=x y 的图像,下列说法中,正确的是( ). (A )对称轴为直线1=x ; (B )顶点坐标为(2-,1);
(C )可以由二次函数22x y -=的图像向左平移1个单位得到; (D )在y 轴的左侧,图像上升,在y 轴的右侧,图像下降.
4.已知△ABC ∽△DEF ,顶点A 、B 、C 分别与D 、E 、F 对应,若△ABC 和△DEF 的周长 分别为24、36,又BC =8,则下列判断正确的是( ).
(A )12=DE ; (B )12=EF ; (C )18=DE ; (D )18=EF .
5.飞机在空中测得地面上某观测目标A 的俯角为α,且飞机与目标A 相距12千米,那么这时飞机离地面的高度为
( ).
(A )αsin 12; (B )αcos 12; (C )αtan 12; (D )αcot 12. 6.下列关于向量的说法中,不.正确..
的是( ). (A )33a a = ; (B )3()33a b a b +=+

(C )若b k a =(k 为实数),则a ∥b ; (D
=,则b a 3=或b a 3-=. 二.填空题: 7.计算:=-2
3
. 8.分解因式:=-+224x x .
9.已知向量a 、满足x a x a +=
-)(3
1,则
= .(用向量a 表示)
10.已知抛物线1)1(2+-=x a y 的顶点是它的最高点,则a 的取值范围是 . 11.如图1,已知抛物线2
x y =,把该抛物线沿y 轴方向平移,若平移后的抛物线经过点A (2,2),那么平移后的抛物线的表达式是 .
12.已知抛物线222
++-=x x y 的顶点为A ,与y 轴交于点B ,C 是其对称轴上的一点,O 为原点,若四边形ABOC 是等腰梯形,则点C 的坐标为 . 13.如图2,已知平行四边形ABCD ,E 是边AB 的中点,联结AC 、DE 交于点O . 则
OC
AO
的值为 . 14.已知一个斜坡的坡角为α,坡度为3:1,则αcot 的值为 .
15.如图3,ABC ∆中,点D 、E 、F 分别在边BC 、AC 、AB 上,且DE ∥AB ,DF ∥AC ,若2:1:=DC BD ,ABC ∆的
面积为92cm ,则四边形AEDF 的面积为 2cm .
16.如图4,已知梯形ABCD 中,AB ∥CD ,AB ⊥BC ,且AD ⊥BD ,若AB =3,CD=1,那么A ∠的正弦值为 . 17.如图5,已知△ABC 中,点D 、E 分别在边AB 、AC 上,且DB AD 2=,EC AE =.若设a AB =,b BC =,则
= .(用向量、表示)
18.已知△ABC 中,∠C=90°,AB=9,3
2
cos =
A ,把△ABC 绕着点C 旋转,使得点A 落在点A ’,点
B 落在点B ’. 若点A ’在边AB 上,则点B 、B ’的距离为 .
(图2)
D
(图3)
(图4)
A
B
C
D
第23题图 三、解答题
19.计算:2cos 45tan 60tan 30cos60︒
+︒︒⋅︒

20.已知二次函数215322
y x x =-
+-. (1)用配方法求出该函数图像的顶点坐标和对称轴;
(2)在平面直角坐标系中画出该函数的大致图像.
21.已知:如图,AB =AC ,∠DAE =∠B .
求证:△ABE ∽△DCA .
22.
如图是某货站传送货物的平面示意图, AD 与地面的夹角为60°.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°成为37°, 因此传送带的落地点由点B 到点C 向前移动了2米. (1)求点A 与地面的高度;
(2)如果需要在货物着地点C 的左侧留出2米,那么请判断距离D 点14米的货物Ⅱ是否需要挪走,并说明理由.
(参考数据:sin37°取0.6,cos37°取0.8,tan37°取
23.如图,在Rt ACB △中,90ACB ∠=°,
点D 在边AB 上,DE 平分CDB ∠交边BC 于点E
,EM 是线段BD 的垂直平分线.
(1)求证:CD BE
BC BD
=
; (2)若4
10cos 5
AB B ==,,求CD 的长.
A B D E
C 第21题图
第22题图
24.如图,在平面直角坐标系xOy 中,已知抛物线2
y x bx c =++经过(0,3)A ,(1,0)B 两点,顶点为M . (1)求b 、c 的值;
(2)将OAB △绕点B 顺时针旋转90°后,点A 落到点C 的位置,该抛物线沿y 轴上下平移后经过点C ,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y 轴的交点为1A ,顶点为1M ,若点P 在平移后的抛物线上,且满足△
1PMM 的面积是△1PAA 面积的3倍,求点P 的坐标.
25.如图,已知梯形ABCD ,AD ∥BC ,AB =AD =5,3tan 4
DBC ∠=.E 为射线BD 上一动点,过点E 作EF ∥DC
交射线BC 于点F .联结EC ,设BE = x ,
ECF
BDC
S y S ∆∆=. (1)求BD 的长; (2)当点E 在线段BD 上时,求y 关于x 的函数关系式,并写出自变量x 的取值范围;
B C E F 第25题图 A
D。

相关文档
最新文档