2004年考研数学一真题
2004考研数学一真题

2004考研数学一真题2004年考研数学一真题是考研数学备考中的经典之一。
这套试卷的题目设计精巧,涵盖了数学的各个领域,给考生们提供了一个全面检验数学能力的机会。
下面将从试卷的难度、题型特点以及备考策略等方面进行分析和讨论。
首先,我们来看一下这套试卷的难度水平。
整体而言,2004年考研数学一真题的难度适中,既有简单的基础知识题,也有较为复杂的综合应用题。
这种难度分布合理,能够全面考察考生的数学素养和解题能力。
例如,在选择题中,有一道关于函数极值的题目,要求考生根据函数的定义域和导数的符号来判断函数的极值情况。
这道题目需要考生对函数极值相关的概念和定理有一定的理解和掌握,但难度并不高。
而在解答题中,有一道关于微分方程的题目,要求考生根据给定的条件求解特定的微分方程。
这道题目需要考生对微分方程的解法有较深入的了解和熟练运用,难度相对较大。
因此,这套试卷的难度设置既考察了考生对基础知识的掌握,又考察了考生的解题能力,具有一定的挑战性。
其次,我们来分析一下这套试卷的题型特点。
2004年考研数学一真题的题型涵盖了选择题和解答题两种类型。
其中,选择题占据了较大的比重,涉及了代数、几何、概率与统计等多个数学领域。
这些选择题在形式上较为简单,但需要考生对数学概念和定理有清晰的认识,并能够准确运用。
而解答题则更加注重考察考生的综合应用能力,需要考生能够将所学的数学知识灵活运用于实际问题的解决过程中。
例如,有一道解答题要求考生根据已知条件求解一个三角方程,并给出其解的范围。
这道题目既考察了考生对三角函数的理解和运用,又考察了考生的解方程能力。
因此,这套试卷的题型设计既注重了基础知识的考察,又注重了解题能力的锻炼,具有一定的综合性和灵活性。
最后,我们来探讨一下备考策略。
针对这套试卷的备考,考生可以从以下几个方面进行准备。
首先,要掌握数学的基础知识,包括代数、几何、概率与统计等各个领域的概念和定理。
这些基础知识是解题的基础,只有牢固掌握才能在考试中灵活运用。
考研数学高数部分试卷与解答2004

《考研数学试卷》2004高数部份一、填空题[2004.三.1.4][2004.四.1.4]若()0sin limcos 5xx x x b e a→-=-,则a =1,b=4-[2004.二.1.4]设()()21lim1n n xf x nx →∞-=+,则()f x 的间断点为x =0[2004.一.1.4]曲线ln y x =上与直线1x y +=垂直的切线方程为1y x =-[2004.二.2.4]设函数()y x 由参数方程333131x t t y t t ⎧=++⎪⎨=-+⎪⎩确定,则曲线()y y x =向上凸的x 取值范围为(,1]-∞[2004.四.3.4]设arctan lnxy e =-1x dy dx==211e e -+[2004.一.2.4]已知()x x f e xe -'=,且()10f =,则()f x =()21ln 2x[2004.三.3.4][2004.四.2.4]设()211,2211,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩,则()2121f x dx -=⎰12-[2004.二.3.4]1+∞=⎰2π[2004.三.2.4]函数(),f u v 由关系式()(),f xg y y x g y =+⎡⎤⎣⎦确定,其中函数()g y 可微,且()0g y ≠,则2f u v∂=∂∂()()2g v g v '-⎡⎤⎣⎦[2004.二.4.4]设函数(,)z z x y =由方程232x zz ey -=+确定,则3z z xy∂∂+=∂∂2[2004.一.3.4]设L 为正向圆周222x y +=在第一象限中的部分,则曲线积分2Lxdy ydx -⎰的值为32π[2004.一.4.4]欧拉方程()2224200d y dy xxy x dxdx++=>的通解为122c c yxx=+[2004.二.5.4]微分方程()320y x dx xdy +-=满足()615y =的解为315y x =+二、单项选择题[2004.三.7.4][2004.四.7.4]函数()()()()2sin 212x x f x x x x -=--在下列那个区间内有界(A )A.(1,0)-B.()0,1C.()1,2D. ()2,3 [2004.三.8.4][2004.四.8.4]设()f x 在(),-∞+∞内有定义,且()()1,0lim ,0,0x f x f x a g x x x →∞⎧⎛⎫≠⎪ ⎪==⎝⎭⎨⎪=⎩,则(D ) A.0x =必是()g x 的第一类间断点 B. 0x =必是()g x 的第二类间断点 C. 0x =必是()g x 的连续点 D. ()g x 在点0x =处的连续性与a 的取值有关 [2004.一.7.4][2004.二.7.4]把0x +→时的无穷小量223cos ,tan,sin xxtdt tdt αβγ===⎰⎰⎰排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(B )A ,,αβγB ,,αγβC ,,βαγD ,,βγα[2004.一.8.4][2004.二.10.4]设()f x 连续,且()00f '>,则存在0δ>,使得(C ) A. ()f x 在()0,δ内单调增加 B. ()f x 在(),0δ-内单调减少 C. 对任意()0,x δ∈有()()0f x f > D. 对任意(),0x δ∈-有()()0f x f >[2004.三.11.4][2004.四.11.4]设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论种错误的是(D )A. 至少存在一点()0,x a b ∈,使得()()0f x f a >B. 至少存在一点()0,x a b ∈,使得()()0f x f b >C. 至少存在一点()0,x a b ∈,使得()00f x '=D. 至少存在一点()0,x a b ∈,使得()00f x =[2004.二.8.4][2004.三.9.4][2004.四.9.4]设()()1f x x x =-,则(C )A. 0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点B. 0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点C. 0x =是()f x 的极值点,且()0,0不是曲线()y f x =的拐点D. 0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点[2004.二.9.4]lim lnn →∞=(B )A.221ln xdx ⎰ B.212ln xdx ⎰ C.212ln(1)x dx +⎰ D.221ln (1)x dx +⎰[2004.四.10.4]设()()()01,00,0,1,0xx f x x F x f t dt x >⎧⎪===⎨⎪-<⎩⎰,则(B )A.()F x 在0x =点不连续。
【考研数学}2004年考研数一真题标准答案及解析

2004年全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ .(2)已知xx xe e f -=')(,且f(1)=0, 则f(x)=__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ] (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ](14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解. (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-, ][11122222222dt dydty d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydt y d ,解此方程,得通解为 .221221x c x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dxy d ax =++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B 【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 22002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx xx dtt dtt x xxx x tan 221sin lim tan sin lim lim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B).(10)设f(x)为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT=,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αu 相当于分位数,直观地有α 21α-(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ]【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+ =222233σσn n n n n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=- =.222222σσn n n n n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(t t t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b e a b ->-. 【证法2】 设x ex x 224ln )(-=ϕ,则 24ln 2)(ex x x -='ϕ,2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时, 044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a e a b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm -=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCev -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv e kmv dt t v x tmk==-==∞+-∞+⎰或由t m ke v dtdx -=0,知)1()(000--==--⎰t m kt t mke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dt dxm k dtx d , 其特征方程为 02=+λλm k ,解之得m k-==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dt dxv x t tm kt t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0t m ke k mv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意.(17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy zdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy zdzdx y dydz x ⎰⎰∑-++-由高斯公式知dxdydz z y x dxdy z dzdx y dydz x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定. 【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z z x z y z y x z y x z02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ n n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为 ⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an nnna aA. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A00002111122221111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P ,,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P)(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量;(II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ (I ) 由于1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX , 令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为 .1ˆ-=X X β (II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。
[考研类试卷]考研数学一(无穷级数)历年真题试卷汇编2.doc
![[考研类试卷]考研数学一(无穷级数)历年真题试卷汇编2.doc](https://img.taocdn.com/s3/m/18cb0123f5335a8103d2202c.png)
[考研类试卷]考研数学一(无穷级数)历年真题试卷汇编2一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1 (2000年)设级数收敛,则必收敛的级数为2 (2002年)设u n≠0,(n=1,2,3,…),且则级数(A)发散。
(B)绝对收敛.(C)条件收敛.(D)收敛性根据所给条件不能判定.3 (2004年)设为正项级数,下列结论中正确的是4 (2006年)若级数收敛,则级数5 (2009年)设有两个数列{a n},{b n},若则6 (2011年)设数列{a n}单调减少,无界,则幂级数的收敛域为(A)(一1,1].(B)[一1,1).(C)[0,2).(D)(0,2].7 (2013年)设令则8 (2015年)若级数条件收敛,则与x=3依次为幂级数的(A)收敛点,收敛点.(B)收敛点,发散点.(C)发散点,收敛点.(D)发散点,发散点.9 (2018年)(A)sin1+cos1.(B)2sin1+cos1.(C)2sin1+2cos1.(D)2sin1+3cos1.二、填空题10 (1997年)设幂级数的收敛半径为3,则幂级数的收敛区间为_____________________.11 (2003年)设则a2=____________.12 (2008年)已知幂级数在x=0处收敛,在x=一4处发散,则幂级数的收敛域为____________.13 (2017年)幂级数在区间(一1,1)内的和函数S(x)=____________.三、解答题解答应写出文字说明、证明过程或演算步骤。
14 (200l年)设试将f(x)展开成x的幂级数.并求级数的和.15 (2003年)将函数展开成x的幂级数,并求级数的和.16 (2004年)设有方程x n+nx一1=0,其中n为正整数,证明此方程存在唯一正实根x n,并证明当α>1时,级数收敛.17 (2005年)求幂级数的收敛区间与和函数f(x).18 (2006年)将函数展开成x的幂级数.18 (2007年)设幂级数内收敛,其和函数y(x)满足 y"一2xy'一4y=0,y(0)=0,y'(0)=119 证明a n+2n=1,2,…;20 求y(x)的表达式.21 (2008年)将函数f(x)=1—x2(0≤x≤π)展开成余弦级数,并求级数的和.22 (2009年)设a n为曲线y=x n与y=x n+1(n=1,2,…)所围成区域的面积,记求S1与S2的值.23 (2010年)求幂级数的收敛域及和函数.24 (2012年)求幂级数的收敛域及和函数.24 (2013年)设数列{a n)满足条件:a0=3,a1=1,a n-2一n(n一1)a n=0(n≥2),S(x)是幂级数的和函数.25 证明:S"(x)一S(x)=0;26 求S(x)的表达式.26 (2014年)设数列{a n},{b n}满足cosa n一a n=cosb n,且级数收敛.27 证明:28 证明:级数收敛.28 (2016年)已知函数f(x)可导,且f(0)=1,设数列{x n}满足x n+1=f(x n)(n=1,2,…).证明:29 级数绝对收敛;30 存在,且。
2004年考研数学(一)试题及答案解析

2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可。
【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分。
完全类似的例题见《数学复习指南》P89第8题, P90第11题.(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分。
【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.完全类似例题见《数学题型集粹与练习题集》P143例10.11,《考研数学大串讲》P122例5、例7 .(4)欧拉方程)0(024222>=++x y dx dyx dx y d x 的通解为 221x c x c y +=.【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可。
2004考研数一真题及答案解析

令 Y
1 n
n i 1
Xi
,
则
(A)
Cov(
X1,
Y
)
2 n
(B) Cov( X1,Y ) 2
(C)
D( X 1
Y)
n
n
2
2
(D)
D( X 1
Y)
n 1 n
2
三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算
步骤)
(15)(本题满分 12 分)
设
e
a
b
e2
,证明
(2)已知 f (e x ) xex ,且 f(1)=0, 则 f(x)= 1 (ln x)2 . 2
【分析】 先求出 f (x) 的表达式,再积分即可。
【详解】 令 e x t ,则 x ln t ,于是有
f (t) ln t , 即 f (x) ln x .
t
x
积分得 f (x) ln xdx 1 (ln x)2 C . 利用初始条件 f(1)=0, 得 C=0,故所求函数为 f(x)= 1 (ln x)2 .
【详解】
x2
lim x0
lim x0
tan tdt
0
x cos t 2dt
lim
x0
tan x 2x cos x 2
0 ,可排除(C),(D)选项,
0
又
lim lim
x0
x0
x sin t 3dt
0 x2
tan tdt
lim
x0
3
sin x 2
1
2x
2x tan x
0
= 1 lim 4 x0
0 0 1
2004年考研数一真题及解析

2004年考研数学试题答案与解析(数学一)、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=l nx 上与直线x ・y=1垂直的切线方程为 y=x_1.【分析】 本题为基础题型,相当于已知切线的斜率为 1,由曲线y=lnx 的导数为1可确定切点的坐标.1【详解】由/-(ln x)1,得x=i,可见切点为(1,0),于是所求的切线方程为xy - 0 =1 (x -1),即 y = x -1.11,得x 0 =1,由此可知所求切线方程为 X 。
本题比较简单,类似例题在一般教科书上均可找到 .1(2)已知 f (e x )二 xe 」,且 f(1)=0,则 f(x)=(ln x)22【分析】先求出f (X )的表达式,再积分即可. 【详解】令e -1,则x - I nt ,于是有IntInxf (t),即f (x).tx积分得上 / 、 」n x , 1 “ 、2 丄f (x) dx (I nx) C .利用初始条件f(1)=0,得c=0,故所求函数x 21 2 为 f(x) = (In x). 2【评注】 本题属基础题型,已知导函数求原函数一般用不定积分(3)设L 为正向圆周x y =2在第一象限中的部分, 则曲线积分L xd^2ydx 的3值为一二.2【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分2 2【详解】 正向圆周x y = 2在第一象限中的部分,可表示为【评注】本题也可先设切点为(x 0, ln x 0),曲线y=l nx 过此切点的导数为y -0 =1 (x-1),即 y = x -1.x = ^2 cos 日, y = P2 sin B ,二二 刁 2sin 2 rd :-—』02【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加 的线段上用参数法化为定积分计算即可.(4)欧拉方程x 2写・4x 也・2y=0(x .0)的通解为y 丄弋.dxdxx x欧拉方程的求解有固定方法,作变量代换 x = e '化为常系数线性齐次微分方程即可.代入原方程,整理得010,矩阵B 满足ABA^2BA^ E ,其中A *为A 的伴随矩1xdy2ydx cos 一 2cos 2、2si n $2s i n]d【分析】 【详解】令…t ,则齐乌史edx_t 鱼]dy dt x dtd 2y dx 221 dy 1 d y dt x2 dt x dt 2 1 r d 2y dy dx~2 [ 2 x dtdt ], d 2 y dt 2證"0, 解此方程,得通解为y = c 1e _L c 2e^2t【评注】 本题属基础题型,也可直接套用公式,二e ',则欧拉方程可化为ax 2啤dxbx 慕 cy = f(x),dt 2dt_2(5)设矩阵A = 1】01阵,E 是单位矩阵,则 B = 1.9【分析】 可先用公式 A *A = |AE 进行化简 【详解】 已知等式两边同时右乘 A ,得ABA *A =2BA *A A , 而 A = 3,于是有3AB =6B A ,即(3A —6E )B =A ,再两边取行列式,有3A-6E[B| = A = 3,1而3A —6E|=27,故所求行列式为 B=~. 9【评注】先化简再计算是此类问题求解的特点, 而题设含有伴随矩阵 A *,一般均应先利用公式A A = AA = A E 进行化简.(6)设随机变量X 服从参数为入的指数分布,则P{x >J DX}=-.e【分析】 已知连续型随机变量 x 的分布,求其满足一定条件的概率,转化为定积分计 算即可.1【详解】 由题设,知DX . 2,于是扎P{X . DX} =P{X -} =「'e^dx去推算.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内)IX2门X 2厂备"X3(7)把 X T 0 时的无穷小量 口 = cost dt, 0 = [ tanw'tdt, 丫 = ( sin t dt ,使 排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) :, .(B): , /■ .(C) ■/, . (D), /■.【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再1【分析】先两两进行比较,再排出次序即可【分析】 函数f(x)只在一点的导数大于零, 一般不能推导出单调性, 因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可【详解】 由导数的定义,知f(x)-f(O)门 f (o )Pm,f (X )- f (0)即当 x (-、,0)时,f(x)<f(0);而当 x (0,、)时,有 f(x)>f(0).故应选(C).【评注】题设函数一点可导,一般均应联想到用导数的定义进行讨论CO(9)设v a n 为正项级数,下列结论中正确的是n =1【详解】x 2 —tan tdt lim — = lim 0T%T\0C0St 「dt t arx 2x x 2... Pm 「2cox=0,可排除(C),(D)选项,32Sinx 2 「lim xx 2xta nxtan Vtdt 1 x -=—lim ==::,可见 是比:低阶的无穷小量,故应选 (B). 4x 刃 x 21 limlim x _0 ■ ]x _0■- x 30 sint dt12一x 【评注】 本题是无穷小量的比较问题,也可先将 :-,'-,分别与x n 进行比较,再确定相互的高低次序(8)设函数f(x)连续,且f (0) • 0,则存在:.■ 0,使得(A) f(x)在(0,.)内单调增加.(B) f (x)在(-「0)内单调减少•(C) 对任意的 x (0,、)有 f(x)>f(0).(D) 对任 意的 X := ( -、,0)有 f(x)>f(0).根据保号性,知存在0,当 x • (-、;,0) (0, 时,有于是,F (t)二 f (t)(t -1),从而有 F (2H f (2),故应选(B).若lim na n =0,则级数a .收敛. n & :1,则级数J a n 收敛,但limn 2a .n* n n=【评注】 本题也可用比较判别法的极限形式,alim na n = lim 丄「「0,而级数' 上发散,因此级数’二a n 也发散,故应选(B). n 厂 n : 1t t(10)设f(x)为连续函数,F(t)二dy f(x)dx ,则F (2)等于(A) 2f(2). (B) f(2). (C) -(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求F (2)即可.关键是求导前应先交换积分次序,使得被 积函数中不含有变量t.【详解】 交换积分次序,得t tt xtF(t) = [dyj y f (x)dx = [[ J f (x)dy]dx =」f (x)(x-1)dx(A) (B ) 若存在非零常数 ■,使得lim na n = ■,则级数a n n _jpc发散.(C)若级数v a n 收敛,则limn 2a n =0.n —^c(D)若级数v a n 发散,则存在非零常数,,使得lim na nn —jpc【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到 正确选项.【详解】 取a n,贝U lim na n =0,但nlnnn->::n =1发散,排除(A), (D);nA n ln n又取a n,排除(C),故应选(B).:=1 n =1【评注】在应用变限的积分对变量x求导时,应注意被积函数中不能含有变量X:b(x)[a(x)f(t)dt]=f[b(x)]b(x) — f[a(x)]a(x)否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x换到积分号外或积分线上•(11)设A是3阶方阵,将A的第1列与第2列交换得B再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为(A)0 1 0(B) 1 0 1 . (C)〕°°1一0 1 1(D) 1 0 0【°0 1一【分析】本题考查初等矩阵的的概念与性质,对A作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q即为此两个初等矩阵的乘积•【详解】由题设,有1 0 0B 0 1 1 =C,〕0 0 1一于是, 0 0 0 1 11 1 =A 1 0 0 =C.0 0 1 一可见,应选(D).【评注】涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系(12)设A,B为满足AB=O的任意两个非零矩阵,则必有(A) A的列向量组线性相关(B) A的列向量组线性相关(C) A的行向量组线性相关(D) A的行向量组线性相关B的行向量组线性相关B的列向量组线性相关B的行向量组线性相关B的列向量组线性相关【分析】A,B的行列向量组是否线性相关,可从A,B是否行(或列)满秩或Ax=0 ( Bx=0)是否有非零解进行分析讨论•【详解1】设A为m n矩阵,B为n s矩阵,则由AB=O知,r(A) r(B) < n .又A,B为非零矩阵,必有r(A)>0,r(B)>0.可见r(A)<n, r(B)<n,即A的列向量组线性相关,B的行向量组线性相关,故应选 (A).【详解2】由AB=O 知,B 的每一列均为 Ax=0的解,而B 为非零矩阵,即 Ax=0存在非 零解,可见A 的列向量组线性相关.同理,由AB=O 知,B T A T =0,于是有B T 的列向量组,从而B 的行向量组线性相关, 故应选(A).【评注】AB=0是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=0二 r( A) r(B) :: n ; 2)AB=0= B 的每列均为 Ax=0的解.(13)设随机变量 X 服从正态分布N(0,1),对给定的:•(0 :::「:: 1),数u-.满足P{X A U 』,若 P{ X| £ X} ,则 x 等于(A) U. .(B) U .. .(C) Uy .(D) Uj :. .[ C ]22 2【分析】此类问题的求解,可通过U-.的定义进行分析,也可通过画出草图,直观地得 到结论. 【详解】 由标准正态分布概率密度函数的对称性知,P{X-U 一.} = ,于是1 —a =1—P{X <x} =P{X Ax} =P{X Zx} +P{X 兰―x} =2P{X 王 x}1 -a即有 P{X _x},可见根据定义有 x 二5_一,故应选(C).2—22【评注】本题U :.相当于分位数,(14)设随机变量X「X2,…,X n( n・1)独立同分布,且其方差为二0.令【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:CovX’X j ) =0,i =2,3, n.JCov(X i ,X i )丄、Cov(X i ,X i ) n1 1 _2 =DX 1 .nn【评注】 本题(C),(D)两个选项的方差也可直接计算得到:如n-2n 2 n-2 2= 2n n(15) (本题满分12分)设 e :: a :: b :: e 2,证明 In 2 b — In 2 a £ (b — a).e【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用 单调性证明.【证法1】 对函数ln 2x 在[a,b ]上应用拉格朗日中值定理,得设e 晋,则〈)二耳,当t>e 时,:(t) ::0,所以:(t)单调减少,从而•「(e 2),即(A) Cov(X 1,Y)=—n2(B) Cov(X 「Y)-. (C) D(X i Y) j.n(D) D(X 「Y)二卫1二2.n【详解】Cov(X i ,Y) =Cov(X i 」' X i )n yD(X i1 --X n )2(1 n)n -1D(X 1 —Y)二 D(n 1X 1 -丄 X 2 - n nAn)n (n -1)2「22n-1——<T2n2 2ln b Tn a =2ln::b.故 In 2 b 一 In 2 a g (b 一 a). e 【证法2】设「(x) =1 n 2x-耸x ,则e(x)二 2所以当x>e 时,「(x) ::: 0,故:(x)单调减少,从而当e ::: x ::: e 2时,2 4 4(x) .「(e 2—-飞=0,e e2即当e ::: x ::: e 时,(x)单调增加.因此当 e ■■■■. x ::: e 2时,「(b):(a),2424 即 In b ^b In a 2 a ,ee4故 In b - In a 2 (b - a).e【评注】本题也可设辅助函数为(x) = In 2x-ln 2 a - 4(x -a),e ::: a :::x ::: e 2或e(x) = In 2 b 「In 2 x - $ (b 「x),e ::: x : b e 2,再用单调性进行证明即可.e(16) (本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞, 以增大阻力,使飞机迅速减速并停下现有一质量为9000kg 的飞机,着陆时的水平速度为 700km/h.经测试,减速伞打开后, 飞机所受的总阻力与飞机的速度成正比(比例系数为 k =6.0 106).问从着陆点算起,飞 机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度 v 0 =700km/h .从飞 机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得InIn e 2e 2(x)二 2In x xdv m — dt=-kv .dv dv dx dv又v -dt dx dt dx由以上两式得dx dv , k积分得x(t)v C.由于v(0) = v 0, x(0) = 0 ,故得C v 0,从而k kx(t)「m(…t)).k+ —九=0,解之得人=0,几2 m,当v ⑴>0时,心kmv °9000 700 6.0 106=1.05(km).所以,飞机滑行的最长距离为1.05km.【详解2】 根据牛顿第二定律,得 dvm 一 dt所以dv kdt.v m两端积分得通解v = Ce,代入初始条件J%解得—k故 v(t)二 v °e m . 飞机滑行的最长距离为X = 0 v(t)dtmv ° 咼 mv 0=1.05( km).kk dxt=v 0e m,知 x(t)t 0v 0ektmdtkkv£(e^t -1),故最长距离为当t >时,x(t) > 也m=1.05(km).【详解3】 根据牛顿第二定律,得d 2x m —2" dt-k dx dtd 2x dt 2K^=0,dt其特征方程为_k t故 ^C 1 C 2e m当 t —• :* 时,x(t) —; m ^ = 1.05(km).k所以,飞机滑行的最长距离为 1.05km.【评注】 本题求飞机滑行的最长距离,可理解为 t —• -■或v(t) > 0的极限值,这种条件应引起注意.(17) (本题满分12分) 计算曲面积分332I 二 2x dydz 2y dzdx 3(z -1)dxdy,Z其中v 是曲面z =1 -x 2 -y 2(z _0)的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加 的曲面上应用直接投影法求解即可.2 2【详解】 取' 1为xoy 平面上被圆x y =1所围部分的下侧,记 门为由7与7 1围 成的空间闭区域,贝UI 二 2x 3dydz 2y 3dzdx 3(z 2 -1)dxdy- 2x 3dydz 2y 3dzdx 3(z 2 -1)dxdy.由高斯公式知3 3 2 2 22x dy dz2y dzdx3(z -1)dxdy 6(x y z)d x d y d z'八 1-J22 二1 1 -4 2=6 .0 d o dr p (z r )rdz11=12二.°[?r(1 -r 2)2r 3(1 -r 2)]dr =2;而 112x 3dydz 2y 3dzdx 3(z 2 -1)dxdy - -- 3dxdy 二 3二,、1x 2 y 2-i1故 I 二 2恵一3二一-二.得 C 1-C2kx(t)=由x mv o t 厂Vo,曰疋【评注】本题选择时应注意其侧与围成封闭曲面后同为外侧(或内侧),再就是在' 1上直接投影积分时,应注意符号Ci取下侧,与z轴正向相反,所以取负号).(18)(本题满分11分)设有方程x n• nx 一1 = 0,其中n为正整数.证明此方程存在惟一正实根x n,并证明当〉1时,级数V x]收敛•n 4【分析】利用介值定理证明存在性,利用单调性证明惟一性•而正项级数的敛散性可用比较法判定•【证】记f n(x)二x n• nx-1.由f n(0) =-1 :::0 , f n(1)= n ・0,及连续函数的介值定理知,方程x n nx-1 =0存在正实数根x n• (0,1).当x>0时,f n(x)二nx nJ1• n .0 ,可见f n(x)在[0,=)上单调增加,故方程x n 5X -1 =0存在惟一正实数根x n•由x n• nx -1 = 0与X n 0 知1 _ x n 1 . 1 -0 ■ x n二—-:::一,故当〉-1 时,0 :::x n < (一):n n noO 1 co而正项级数7 —收敛,所以当:1时,级数7 X;收敛•n 二n n T【评注】本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证(佃)(本题满分12分)设z=z(x,y)是由x2 -6xy • 10y2 -2yz-z2 T8 =0 确定的函数,求z= z(x, y)的极值点和极值.【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】因为x2 -6xy T0y2-2yz-z2 T8 = 0,所以cz cz2x-6y-2y 2z 0,■x :Xcz cz-6x 20y-2z-2y 2z 0.cy cy令;:x得*类似地,z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意 x,y,z 满足原方程.(20)(本题满分9分):z c 0x 「3y 二 0, 3x 10y - z = 0,x=3y,z = y.将上式代入 x 2「6xy 10y 2「2yz 「z 218=0,可得由于=3,x = -9,y ~ -3 z = -3.2-2yj:x-2-2z 5=02 x一6一2—二exz— -2z ;:xxydz20 -::z:y-2c z-2y 2 ■y ;z 2() ■y;:2z-2z —2 = 0,;:2z所以 A =2.x故 AC -B 2(9,3,3);:2z(9,3,3)从而点 丄,C 仝y 2(9,3,3)(9,3)是z(x,y)的极小值点, 极小值为z(9,3)=3.;:2zA\2;:2z .:x :yJ C 二(』,D 2, 寸(-9,」,」)5 _3,可知AC -B 2二丄 0,又A =36--0,从而点(-9, -3)是z(x,y)的极大值点,极大值为6令;:x 得*设有齐次线性方程组= (12 ,n)T ,(1 a)% x 2 亠 亠焉=0, 2x 1 (2 a)x 2 川…川‘2x 二 0,nx 2 卷…卷(n a)x n =0,试问a 取何值时,该方程组有非零解,并求出其通解【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩 n ,进而判断是否有非零解;或直接当a=0时,r(A)=1<n ,故方程组有非零解,其同解方程组为花 X 2X n =0,由此得基础解系为1=(-1,1,0, ,0)T ,2=(-1,0,1, ,0)T ,, n 」=(-1,0,0,,1)T ,当a = 0时,对矩阵B 作初等行变换, -1 +a 1 1 BBL1 B T-2 1 0 …-_n 00 (1)有-崇叶1)0 0 … 0〕2T-2 1 0 0-n0 0 …1-2x 1 +X 2 =0, - 3x 1 x a =0, -nx 「X n =0,由此得基础解系为于是方程组的通解为 k n 4其中k 1,…,k n 」为任意常数可知a =n(n 1) 2时, r(A)二n -1 ::: n ,故方程组也有非零解,其同解方程组为阵直接用初等行变换化为阶梯形,再讨论其秩是否小于 计算系数矩阵的行列式,根据题设行列式的值必为零, 可•【详解1】 对方程组的系数矩阵 A 作初等行变换,由此对参数 a 的可能取值进行讨论即有一1+a 1 1 ・・L 1亠-2aa 0… 0 =B._na 0 0 … a(n_2)于是方程组的通解为x = k ,其中k 为任意常数.故方程组的同解方程组为由此得基础解系为于是方程组的通解为其中k 1, ,k n_,为任意常数._2 1 0 …-2 1 0 0T… … … … … T -・- … … …---_ n 00 … 1 _1 1 -n 0 0 … 1 _故方程组的同解方程组为【详解2】方程组的系数行列式为a=0 或 a =当a=0时,对系数矩阵 一1 2叫」时2 ,A 作初等行变换,■1 0方程组有非零解• 1【 2「°1【 0A =2 2+a 2 (2)T-2a a0 0nnnn +a _ 1 1 -na 00 …a _一1 +a1 1 … 11 -0 ■ …0 1A 作初等行变换,有时, 对系数矩阵 11 1 1 1 11 1 a 1 aX 1 X 2X n =0,1=(-1,1,0, ,0)T ,2 =(一1,0,1, ,0)T ,,n 」=(-1,0,0,…,1)T ,n(n 1)= (12 ,n)T ,"-2% +x 2 = 0,-3% + x 3 = 0, -n X i x n =0,由此得基础解系为= (1,2, ,n)T ,于是方程组的通解为x = k ,其中k 为任意常数_n葺卫故行列式A=(a 咛ba n 」(21)(本题满分9分)丸一1-2 3丸—2 _ (丸 _ 2) 0 矩-A=1 丸—4 3—1 、、一43-1-a丸—5-1-a丸—53 =(&-2)(&2 -8& +18+3a).■1 2-1+a 212 +a 1 ■■亠1 12 ■1 2 12 1 ■■亠11 2 A = ---… --- … …=aE + -- --- … … ---n n n … n +a_1 1nnn …nn(n 1)征值为0, 02的特征值为a,a,,a设矩阵A似对角化•【分析】_1 先求出 -3〕-3的特征方程有一个二重根,求5的特征值, a 的值, 并讨论A 是否可相A 定A 是否可相似对角化即可【详解】 A 的特征多项式为再根据其二重根是否有两个线性无关的特征向量,确1=(人-2) 1-1-1 -4 -a【评注】矩阵A 的行列式A 也可这样计算:1 11,矩阵当怎=2是特征方程的二重根,则有22 _16 18 3^0,解得a= -2.■1当a= -2时,A 的特征值为2,2,6,矩阵2E-A= 1的线性无关的特征向量有两个,从而A 可相似对角化■2 -8,;“ -.-18 - 3a 为完全平方,从而 18+3a=16, 解得a-2n - r (打E - A ) = k j .而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)1 1 1设 A,B 为随机事件,且 p (A ) =*,P (B A ) =§,P (AB ) =?,令1, A 发生, 4 B 发生, X =』Y =』0, A 不发生0, B 不发生.求:(I )二维随机变量(X,Y 的概率分布;(II ) X 和Y 的相关系数:\Y -【分析】 先确定(X,丫的可能取值,再求在每一个可能取值点上的概率,而这可利用随 机事件的运算性质得到,即得二维随机变量(X,丫的概率分布;利用联合概率分布可求出边缘 概率分布,进而可计算出相关系数•a 时,A 的特征值为2,4,34,矩阵 4E-A=-1-1应的线性无关的特征向量只有一个,从而A 不可相似对角化【评注】n 阶矩阵A 可对角化的充要条件是:对于秩为2,故冬=4对的任意k i 重特征根■ i ,恒有 -2 3-2 3 的秩为1,故k = 2对应 2— 3若,=2不是特征方程的二重根,则当怎=2是特征方程的二重根,则有22 _16 18 3^0,解得a= -2.1【详解】(I) 由于P(AB) = P(A)P(BA)=丄,12所以,P(B)=P{X =1,Y =1}P(AB) =1P(A|B) 6=P(AB)112- 1P{X =1,Y =0} =P(AB)二 P(A) -P(AB)= 6- 1P{X =0,Y =1} =P(AB) =P(B) _P(AB) ,P{X =0,Y =0} =P(AB) =1 - P(A B)=1 _P(A) _P(B) P(AB)故(X,Y)的概率分布为(II) X, Y的概率分布分别为Cov(X,Y)二 E(XY)-EX EY 二土,从而c _ Cov(X,Y) _J 15 XY = DX 、DY =石.【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强 •通过随机事件定义随机变量或通过随机变量定义随机事件, 可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意•(23)(本题满分9分) 设总体X 的分布函数为1F(x, P )才I其中未知参数1・1,X 1,X 2,…,X n 为来自总体 X 的简单随机样本,求:(I) :的矩估计量; (II):的最大似然估计量X0 1Y315 P——P一4 4611 2 3 51二—,— ?DX =—, DY=—— E(XY)—, 4 6 16 3612 则EX 11 6(或 P{X =0,Y =0} =11 12【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方 法进行讨论即可【详解】X 的概率密度为[Pf(x 「)= 7-0,由于EX 二 "xf (x; '■ )dx3 二?=X -1故1的最大似然估计量为?n_n、ln X i【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算x 1, x <1.-1X-1,所以参数' 的矩估计量为(II ) 似然函数为f (X i ;')=i 吕->x i1(i=1,2, ,n),(X 1X 2…$0,其他当X j 1(i =12 , n)时,L( J 0,取对数得nIn L( ■) = nln 一: -「: 1p In X j ,i#两边对1求导,得令dInL( ) = 0 ,可得 dP二 In x ii =1X ii 经的准确性.。
考研数学一(常微分方程)历年真题试卷汇编4(题后含答案及解析)

考研数学一(常微分方程)历年真题试卷汇编4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2004年] 微分方程y’’+y=x2+1+sinx的特解形式可设为( ).A.y*=ax2+bx+c+x(Asinx+Bcosx)B.y*=x(ax2+bx+c+Asinx+Bcosx)C.y*=ax2+bx+c+AsinxD.y*=ax2+bx+c+Acosx正确答案:A解析:对应齐次方程y’’+y=0的特征方程为λ2+1=0,特征根为λ=±i.对y’’+y=x2+1=e0x(x2+1)而言,因0不是其特征根,从而其特解形式可设为y1*=ax2+bx+c.对y’’+y=sinx=e0x(0·cosx+1·sinx)(λ=0,w=1),因λ+iw=0+i·1=i 为特征根,从而其特解形式可设为y2*=x(Asinx+Bcosx),从而知,y’’+y=x2+1+sinx 的特解形式为y*=ax2+bx+c+x(Asinx+Bcosx).仅A入选.知识模块:常微分方程2.[2008年] 在下列微分方程中以y=C1ex+C2cos2x+C3sin2x (C1,C2,C3为任意常数)为通解的是( ).A.y’’’+y’’一4y’一4y=0B.y’’’+y’’+4y’+4y=0C.y’’’一y’’一4y’+4y=0D.y’’’-y’’+4y’-4y=0正确答案:D解析:由所给通解可知,其特征根为λ1=1,λ2,3=0+2i,故其特征方程为(λ一1)(λ一2i)(λ+2i)=(λ一1)(λ2+4)=λ3一λ2+4λ一4=0,故所求的微分方程为y’’’一y’’+4y’-4y=0.仅D入选.知识模块:常微分方程3.[2015年] 设是二阶常系数非齐次线性微分方程y’’+ay’+by=cex的一个特解,则( ).A.a=一3,b=2,c=一1B.a=3,b=2,c=一1C.a=一3,b=2,c=1D.a=3,b=2,c=1正确答案:A解析:因为方程y’’+ay’+by=cex的特解,故为原方程对应的齐次方程的解,因而2,1为特征方程λ2+aλ+b=0的特征根,故a=一(2+1)=一3,b=1×2=2.再由所给原方程的特解易看出xex也为原方程的一个特解,将其代入原方程得c=一1.知识模块:常微分方程4.[2016年] 若y=(1+x2)2一,y=(1+x2)2+再是微分方程y’+p(x)y=q(x)的两个解,则q(x)=( ).A.3x(1+x2)B.一3x(1+x2)C.D.正确答案:A解析:利用解的结构和性质,令y1*=(1+x2)2一,y2*=(1+x2)2+,为微分方程y’+p(x)y=q(x)的两个特解.可得到y1*—y2*为y’+p(x)y=0的解(因a=1,b=一1,a+b=0),而将其代入(y1*-y2*)’+p(x)(y1*-y2*)=0,得到又为y’+p(x)y=q(x)的解(因,a+b=1).易求得将其代入方程y’+p(x)y=q(x)得到即4x(1+x2)+(1+x2)2=q(x)故q(x)=4x(1+x2)一(1+x2)2=4x(1+x2)-x(1+x2)=3x(1+x2).仅A入选.知识模块:常微分方程填空题5.[2006年] 微分方程y’=y(1一x)/x的通解是______.正确答案:y=Cxe-x (C为任意常数)解析:直接利用分离变量法求解.由原方程易得到即两边积分,得到ln|y|=ln|x|—x+C1,即=C1一x.故=eC1-x=e-xeC1,所以|y|=eC1|x|e-x,去掉绝对值符号,改写eC1为C,并认为C可取正值或负值,得到y=Cxe-x.由于y=0也是原方程的解.上式中的C也可为0,于是得通解为y=Cxe-x (C为任意常数).知识模块:常微分方程6.[2008年] 微分方程xy’+y=0满足条件y(1)=1的解为______.正确答案:y=1/x解析:由初始条件y(1)=1知,只需考虑xy’+y=0在(0,+∞)内的非负解即可.由dy/(-y)=dx/x得到ln|y|=ln|x|+C1,即|x||y|=eC1,即y=C/x(C=eC1).又因y(1)=1,故C=1,所以y=1/x.知识模块:常微分方程7.[2014年] 微分方程xy’+y(lnx—lny)=0满足条件y(1)=e3的解为y=______.正确答案:y=xe2x+1(x>0)解析:在所给微分方程的两边除以x可得①令,则y=xu,y’=xu’+u,代入式①得到xu’+u=ulnu,即分离变量得即两边积分得到ln|lnu一1|=lnx+lnc,即lnu-1=cx,故则其通解为y=xecx+1.将y(1)=e3代入上式可得c=2,即得其特解为y=xe2x+1(x>0).知识模块:常微分方程8.[2011年] 微分方程y’+y=e-xcosx满足条件y(0)=0的解为y=______.正确答案:y=e-xsinx解析:注意到y’+y=y’+(x)’y=e-xcosx,在其两边乘上ex得到y’ex+exx’y=exe-xcosx=cosx,即(yex)’=cosx.两边积分得到yex=∫cosxdx+C=sinx+C,即y=e-xsinx+Ce-x.由y(0)=0,得到C=0,故所求特解为y=e-xsinx.知识模块:常微分方程9.[2005年] 微分方程xy’+2y=xlnx满足y(1)=一1/9的特解为______.正确答案:y=(x/3)(lnx一1/3)解析:用凑导数法求之.为此在原方程两边乘以x得到x2y’+2xy=x2lnx,即(x2y)’=x2lnx.两边积分得到x2y=∫x2lnxdx=代入初始条件y(1)=一1/9,可得C=0,于是所求的特解为y=(xlnx)/3一x/9=(x/3)(lnx一1/3).知识模块:常微分方程10.[2013年] 已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=______.正确答案:y= c1e3x+c2ex-xe2x,其中c1,c2均为任意常数解析:先由给出的3个解找出对应的齐次线性微分方程的两个线性无关的解.事实上,利用线性微分方程解的性质知,y1一y3=e3x,y2一y3=ex是对应的齐次线性微分方程的两个线性无关的解.因而该齐次微分方程的通解为Y=c1e3x+c2ex.又y3*=一xe2x显然为该非齐次线性微分方程的特解,则由常系数微分方程解的结构知,所求的通解为y=Y+y*=c1e3x+c2ex-xe2x,其中c1,c2均为任意常数.知识模块:常微分方程11.[2002年] 微分方程yy’’+y’2=0满足初始条件y|x=0=1,y’|x=0=1/2的特解是______.正确答案:解析:将y’=p,代入原方程,得到.因而p=0(因不满足初始条件,舍去),.积分后得到,将初始条件代入得到C1=.再对即2ydy=dx积分,得到y2=x+C2,代入初始条件得C2=1,从而y2=x+1,再由y|x=0=1>0,得微分方程的特解. 知识模块:常微分方程12.[2007年] 二阶常系数非齐次线性微分方程y’’-4y’+3y=2e2x的通解为______.正确答案:y= C1ex+C2e2x-2e2x解析:其特征方程为λ2一4λ+3=0,其特征根为λ1=1,λ2=3.对应齐次微分方程y’’一4y’+3y=0的通解为y=C1e*+C2e3x.又设非齐次微分方程y’’-4y’+3y=2e2x的特解为y*=Ae2x,将其代入该非齐次方程得到A=一2,故所求通解为y=Y+y*=C1ex+C2e2x-2e2x.知识模块:常微分方程13.[2012年] 若函数f(x)满足方程f’’(x)+f’(x)-2f(x)=0及f’’(x)+f(x)=2ex,则f(x)=______.正确答案:f(x)=ex解析:方程f’’(x)+f’(x)一2f(x)=0的特征方程为r2+r=2一(r+2)(r一1)=0,其特征根为r1=一2,r2=1.于是齐次方程f’’(x)+f’(x)一2f(x)=0的通解为f(x)=C1ex+C2e-2x,则f’(x)=C1ex-2C2e-2x,f’’(x)=C1ex+4C2e-2x.代入非齐次方程f’’(x)+f(x)=2ex,得到C1ex+4C2e-2x+C1ex+C2e-2x=2C1ex+5C2e-2x=2ex,故C1=1,C2=0,于是所求f(x)=ex.知识模块:常微分方程14.[2017年] 微分方程y’’+2y’+3y=0的通解为y=______.正确答案:y=e-x解析:特征方程为r2+2r+3=0,特征值为λ1,2=,其通解为y=e-x 知识模块:常微分方程15.微分方程xy’’+3y’=0的通解为______.正确答案:y=C1+C2/x2解析:y=C1+C2/x2在所给方程两边乘以x得欧拉方程x2y’’+3xy’=0(a=1,b=3,c=0).可知,令x=et,可化为常系数线性微分方程,其特征方程为r2+2r=r(r+2)=0,其通解为y=C1e0t+C2e-2t=C1+C2e-2t=C1+C2/x2.知识模块:常微分方程16.[2004年] 欧拉方程(x>0)的通解是______.正确答案:y=C1/x+C2/x2,其中C1,C2为任意常数解析:作变量代换x=et,其中a=1,b=4,c=2,则此为二阶常系数的线性齐次微分方程.其特征方程为r2+3r+2=(r+2)(r+1)=0,其特征根为r1=一1,r2=一2,故其通解为y=C1e-t+C2e-2t.代入原变量x,得到原方程的通解为y=C1/x+C2/x2,其中C1,C2为任意常数.知识模块:常微分方程17.[2009年] 若二阶常系数线性齐次微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’+ay’+by=x满足条件y(0)=2,y’(0)=0的解为______.正确答案:y=一xex+x+2解析:由所给通解知,二阶常系数线性齐次微分方程y’’+ay’+by=0的特征根是r1=r2=1.因而特征方程为(r一1)2=r2一2r+1=0.故二阶常系数线性齐次微分方程为y’’一2y’+y=0,故a=一2,b=1.因而非齐次方程为y’’-2y’+y=x.下面求非齐次方程y’’-2y’+y=x ①的特解.由题设条件知,其特解形式为y*=Ax+ B.代入方程①,得到(y*)’’=0,(y*)’=A,于是有一2A+Ax+B=x,即(A 一1)x一2A+B=0,所以A一1=0,B一2A=0,从而A=1,B=2,故一特解为y*=x+2.非齐次方程的通解为y=(C1+C2x)ex+x+2.②将y(0)=2,y’(0)=2,代入方程②得C1=0,C2=一1,满足初始条件的解为y=一xex+x+2.知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c1 c2 . x x2
t 【评注】 本题属基础题型,也可直接套用公式,令 x e ,则欧拉方程
ax 2
d2y dLeabharlann bx cy f ( x) , 2 dx dx
可化为
a[
d 2 y dy dy ] b cy f (e t ). 2 dt dt dt
完全类似的例题见《数学复习指南》P171 例 6.19, 《数学题型集粹与练习题集》P342 第六题., 《考研数 学大串讲》P75 例 12.
2004 年数学一试题 详解和评注
一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上) (1)曲线 y=lnx 上与直线 x y 1 垂直的切线方程为
y x 1.
【分析】 本题为基础题型,相当于已知切线的斜率为 1,由曲线 y=lnx 的导数为 1 可确定切点的坐标。 【详解】 由 y (ln x)
1 1 ,得 x=1, 可见切点为 (1,0) ,于是所求的切线方程为 x
y 0 1 ( x 1) , 即 y x 1 .
【评注】 本题也可先设切点为 ( x0 , ln x0 ) ,曲线 y=lnx 过此切点的导数为 y 由此可知所求切线方程为 y 0 1 ( x 1) , 即 y x 1 . 本题比较简单,类似例题在一般教科书上均可找到. (2)已知 f (e x ) xe x ,且 f(1)=0, 则 f(x)=
(9)设
a
n 1
n
为正项级数,下列结论中正确的是
(A) 若 lim nan =0,则级数
n
a
n 1
n
收敛.
(B) 若存在非零常数 ,使得 lim nan ,则级数
n
a
n 1
n
发散.
(C) 若级数
a
n 1 n 1
n
收敛,则 lim n an 0 .
2 1 0 * * * (5)设矩阵 A 1 2 0 ,矩阵 B 满足 ABA 2BA E ,其中 A 为 A 的伴随矩阵,E 是单位矩阵, 0 0 1
则B
1 9
.
*
【分析】 可先用公式 A A A E 进行化简 【详解】 已知等式两边同时右乘 A,得
sin x lim
x 0
3 2
1
0
tan t dt
2 x 2 x tan x
1 x lim 2 ,可见 是比 低阶的无穷小量,故应选(B). 4 x 0 x
n
【评注】 本题是无穷小量的比较问题,也可先将 , , 分别与 x 进行比较,再确定相互的高低次序. 完全类似例题见《数学一临考演习》P28 第 9 题. (8)设函数 f(x)连续,且 f (0) 0, 则存在 0 ,使得 (A) f(x)在(0, ) 内单调增加. (C) (B)f(x)在 ( ,0) 内单调减少. (D) 对 任 意 的 x ( ,0) 有 f(x)>f(0) .
2
A* A AA* A E 进行化简。
完全类似例题见《数学最后冲刺》P107 例 2,P118 例 9 (6)设随机变量 X 服从参数为 的指数分布,则 P{ X
DX } =
1 . e
【分析】 已知连续型随机变量 X 的分布,求其满足一定条件的概率,转化为定积分计算即可。 【详解】 由题设,知 DX
完全类似的例题见《数学复习指南》P213 例 8.13. (10)设 f(x)为连续函数, F (t ) (A) 2f(2). (B) f(2).
t
1
dy f ( x)dx ,则 F ( 2) 等于
y
t
(C) –f(2).
(D) 0.
[ B ]
【分析】 先求导,再代入 t=2 求 F ( 2) 即可。关键是求导前应先交换积分次序,使得被积函数中不含有变 量 t.
根据保号性,知存在 0 ,当 x ( ,0) (0, ) 时,有
f ( x) f (0) 0 x
即当 x ( ,0) 时,f(x)<f(0); 而当 x (0, ) 时,有 f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论。 完全类似例题见《数学一临考演习》P28 第 10 题.
1
2
,于是
1 P{ X DX } = P{ X } 1 e x dx
=e
x
1
1 . e
【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算。 完全类似例题见《数学一临考演习》P35 第 5 题. 二、选择题(本题共 8 小题,每小题 4 分,满分 32 分. 每小题给出的四个选项中,只有一项符合题目要求,把 所选项前的字母填在题后的括号内) (7)把 x 0 时的无穷小量
x 2 cos , y 2 sin ,
于是
:0 .
2
x d y 2 y d x
L
2 0
[ 2c o s 2c o s 2 2s in 2s in ]d
=
2 0
2 sin 2 d
3 . 2
【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法 化为定积分计算即可. 完全类似例题见《数学题型集粹与练习题集》P143 例 10.11, 《考研数学大串讲》P122 例 5、例 7 .
于是,
0 1 0 1 0 0 A 1 0 0 0 1 1 0 0 1 0 0 1
0 1 1 A 1 0 0 C. 0 0 1
可见,应选(D). 【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系。 完全类似例题见《数学题型集粹与练习题集》P196 例 2.2 (12)设 A,B 为满足 AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关. (D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ] 【分析】A,B 的行列向量组是否线性相关,可从 A,B 是否行(或列)满秩或 Ax=0(Bx=0)是否有非零解 进行分析讨论. 【详解 1】 设 A 为 m n 矩阵,B 为 n s 矩阵,则由 AB=O 知,
x
0
cost 2 dt, tan t dt, sin t 3 dt ,使排在后面的是前一个
0 0
x2
x
的高阶无穷小,则正确的排列次序是 (A)
, , .
(B)
, , . (C) , , .
(D)
, , .
[ B ]
【分析】 先两两进行比较,再排出次序即可.
【详解】
x 0
lim
t a n t dt l i mt a nx 2x 0 ,可排除(C),(D)选项, lim 0x x0 x2 cot s2 dt x0 c o s
x2
0
又
x 0
lim
lim x0
=
x
0 x2
sin t 3 dt
d2y 1 dy 1 d 2 y dt 1 d 2 y dy 2 [ ], dx 2 x dt x dt 2 dx x 2 dt 2 dt
代入原方程,整理得
d2y dy 3 2y 0 , 2 dt dt
解此方程,得通解为
y c1e t c2 e 2t
【评注】 本题属基础题型,已知导函数求原函数一般用不定积分。 完全类似的例题见《数学复习指南》P89 第 8 题, P90 第 11 题.
(3)设 L 为正向圆周 x 2 y 2 2 在第一象限中的部分,则曲线积分
xdy 2 ydx 的值为
L
3 . 2
【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分。 【详解】 正向圆周 x 2 y 2 2 在第一象限中的部分,可表示为
[
b( x )
a( x)
f (t )dt] f [b( x)]b( x) f [a( x)]a( x)
否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量 x 换到积分号外或积分线上。 完全类似例题见《数学最后冲刺》P184 例 12,先交换积分次序再求导. (11)设 A 是 3 阶方阵,将 A 的第 1 列与第 2 列交换得 B,再把 B 的第 2 列加到第 3 列得 C, 则满足 AQ=C 的可逆矩阵 Q 为
ABA* A 2BA* A A , 而 A 3 ,于是有
3 AB 6B A , 即
再两边取行列式,有
(3 A 6 E ) B A ,
3 A 6E B A 3 ,
1 . 9
*
而 3 A 6E 27 ,故所求行列式为 B
【评 注 】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵 A ,一般均应先利用公式
对 任 意 的 x (0, ) 有 f(x)>f(0) .
[ C ] 【分析】 函数 f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导
3
数的定义及极限的保号性进行分析即可。 【详解】 由导数的定义,知
f (0) l i m