牟合方盖与球体积的计算
1.中国古代数学著作《算法统宗》中有这样一个问题三

1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378 里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6 天后到达目的地.”则该人最后一天走的路程为A.24里B.12里C.6里D.3里2.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:几日相逢?A.12日B.16日C.8日D.9日3.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等. 问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列. 问五人各得多少钱?”(“钱”是古代的一种重量单位). 这个问题中,甲所得为 A.45钱 B.35钱 C.23钱 D.34钱 4.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体. 它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是A.a ,bB.a ,cC.c ,bD.b ,d5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺331寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺π≈3),则圆柱底面周长约为A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺6.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一段截下一尺,重四斤;在细的一端截下一尺,重二斤. 问依次每一尺各重几斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为A.6斤B.9斤C.10斤D.12斤7.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是DCBA8.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”愿意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则9117用算筹可表示为()A. B. C. D.9.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图8,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”。
冷知识丨“牟合方盖”——用于球体积的计算

冷知识丨“牟合方盖”——用于球体积的计算牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法。
由于其采用的模型像一个牟合的方形盒子,故称为牟合方盖(古时人们称伞为“盖”,“牟”同侔,意即相合)。
牟合方盖其实我国很早就有人开始了球体体积的研究,《九章算术》的“少广”章的廿三及廿四两问中有所谓的开立圆术,“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径。
”设d表示球的直径,V球表示球的体积,则有V=9d^3/16。
刘徽为《九章算术》作注时对这个公式提出了质疑说:“以周三径一为圆率,则圆幂伤少;令圆囷为方率,则丸积伤多。
互相通补,是以九与十六之率,偶与实相近,而丸犹伤多耳。
”他用每边为1寸的正方体棋子八枚,拼成一个边长为2寸的正方体,在正方体内画内切圆柱体,再在横向画一个同样的内切圆柱体。
这样两个圆柱所包含的立体共同部分像两把上下对称的伞,刘徽将其取名为“牟合方盖”。
根据计算得出球体积是牟合方盖体积的四分之三,可是圆柱体又比牟合方盖大,但是《九章算术》中得出球的体积是圆柱体体积的四分之三,显然《九章算术》中的球体积计算公式是错误的。
刘徽证实了《九章算术》中的公式错误,并且他知道“牟合方盖”的体积跟内接球体体积的比为4:π,只要有方法找出“牟合方盖”的体积便可。
刘徽画像可惜,刘徽始终不能解决这个问题,他提出的解决方法是计算出“外棋”的体积,但由于“外棋”的形状复杂,始终没有成功。
无奈只好留待有能之士图谋解决的方法:“观立方之内,合盖之外,虽衰杀有渐,而多少不掩。
判合总结,方圆相缠,浓纤诡互,不可等正。
欲陋形措意,惧失正理。
敢不阙疑,以俟能言者。
”直至二百多年后,袓冲之和他的儿子祖暅承袭了刘徽的想法,利用“牟合方盖”彻底地解决了球体体积公式的问题。
他们的方法是将原来的“牟合方盖”平均分为八份,取它的八分之一来研究。
祖冲之画像他们先考虑一个由八个边长为r的正立方体组成的大正立方体(如图1),然后用制作“牟合方盖”的方法把这个大正立方体分割,再取其中一个小正立方体部分作分割,分割的结果如图2,它的体积为“牟合方盖”的八分之一,而其余部分便是三个“外棋”。
高中数学必修二第八章立体几何初步考点精题训练(带答案)

高中数学必修二第八章立体几何初步考点精题训练单选题1、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180.0km2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)()A.1.0×109m3B.1.2×109m3C.1.4×109m3D.1.6×109m3答案:C分析:根据题意只要求出棱台的高,即可利用棱台的体积公式求出.依题意可知棱台的高为MN=157.5−148.5=9(m),所以增加的水量即为棱台的体积V.棱台上底面积S=140.0km2=140×106m2,下底面积S′=180.0km2=180×106m2,∴V=13ℎ(S+S′+√SS′)=13×9×(140×106+180×106+√140×180×1012)=3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m3).故选:C.2、如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1答案:A分析:由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项C错误,选项A正确.故选:A.小提示:关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.3、在正方体ABCD −A 1B 1C 1D 1中,三棱锥A −B 1CD 1的表面积为4√3,则正方体外接球的体积为( )A .4√3πB .√6πC .32√3πD .8√6π答案:B解析:根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 解:设正方体的棱长为a ,则B 1D 1=AC =AB 1=AD 1=B 1C =D 1C =√2a ,由于三棱锥A −B 1CD 1的表面积为4√3,所以S =4S △AB 1C =4×12×√32(√2a)2=4√3所以a =√2所以正方体的外接球的半径为√(√2)2+(√2)2+(√2)22=√62, 所以正方体的外接球的体积为43π·(√62)3=√6π故选:B .小提示:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.4、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1,由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.5、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( )A.√22B.1C.√2D.2√2答案:C分析:计算出V方盖差,V,即可得出结论.由题意,V方盖差=r3−18V牟=r3−18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r×r2−(√2r2)2=√26r3,∴V方盖差V正=13r3√2r36=√2,故选:C.6、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.7、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果. 由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.8、如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是()A.平面ABCD B.平面PBCC.平面PAD D.平面PCD答案:C分析:由线面垂直得到线线垂直,进而证明出线面垂直,面面垂直.因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD,由四边形ABCD为矩形得CD⊥AD,因为PA∩AD=A,所以CD⊥平面PAD.又CD⊂平面PCD,所以平面PCD⊥平面PAD.故选:C多选题9、沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上(细管长度忽略不下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23计).假设该沙漏每秒钟漏下0.02cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是()A.沙漏中的细沙体积为1024πcm381B.沙漏的体积是128πcm3C.细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD.该沙漏的一个沙时大约是1565秒(π≈3.14)答案:AC解析:A.根据圆锥的体积公式直接计算出细沙的体积;B.根据圆锥的体积公式直接计算出沙漏的体积;C.根据等体积法计算出沙堆的高度;D.根据细沙体积以及沙时定义计算出沙时.A.根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r=23×4=83cm,所以体积V=13⋅πr2⋅2ℎ3=13⋅64π9⋅163=1024π81cm3B.沙漏的体积V=2×13×π×(ℎ2)2×ℎ=2×13×π×42×8=2563πcm3;C.设细沙流入下部后的高度为ℎ1,根据细沙体积不变可知:1024π81=13×(π(ℎ2)2)×ℎ1,所以1024π81=16π3ℎ1,所以ℎ1≈2.4cm;D.因为细沙的体积为1024π81cm3,沙漏每秒钟漏下0.02cm3的沙,所以一个沙时为:1024π810.02=1024×3.1481×50≈1985秒.故选:AC.小提示:该题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式.10、(多选题)在四棱锥A-BCDE中,底面四边形BCDE为梯形,BC∥DE.设CD,BE,AE,AD的中点分别为M,N,P,Q,则()A.PQ=1MN B.PQ∥MN2C.M,N,P,Q四点共面D.四边形MNPQ是梯形答案:BCD分析:根据中位线的性质,结合平行的性质逐个判定即可DE,且DE≠MN,由题意知PQ=12所以PQ≠1MN,故A不正确;又PQ∥DE,DE∥MN,2所以PQ∥MN,又PQ≠MN,所以B,C,D正确.故选:BCD11、给出以下关于斜二测直观图的结论,其中正确的是()A.水平放置的角的直观图一定是角B.相等的角在直观图中仍然相等C.相等的线段在直观图中仍然相等D.两条平行线段在直观图中仍是平行线段答案:AD分析:根据直观图和斜二测画法的规则,判断选项.水平放置的角的直观图一定是角,故A正确;角的大小在直观图中都会发生改变,有的线段在直观图中也会改变,比如正方形的直方图中,故BC错误;由斜二测画法规则可知,直观图保持线段的平行性,所以D正确.故选:AD填空题12、如图所示,P为平行四边形ABCD所在平面外一点,E为AD的中点,F为PC上一点,若PA//平面EBF,则PF=_______FC答案:12##0.5 分析:连接AC 交BE 于点M ,连接FM ,由线面平行的性质得线线平行,由平行线性得结论. 连接AC 交BE 于点M ,连接FM ,∵PA//平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面EBF =EM ,∴PA//EM ,又AE//BC ,∴PF FC =AM MC =AE BC =12. 所以答案是:12. 13、已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.答案:39π分析:利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. ∵V =13π62⋅ℎ=30π∴ℎ=52∴l =√ℎ2+r 2=√(52)2+62=132 ∴S 侧=πrl =π×6×132=39π. 所以答案是:39π.14、如图,拿一张矩形纸片对折后略微展开,竖立在桌面上,折痕与桌面的关系是______.答案:垂直分析:根据给定条件,利用线面垂直的判定推理作答.令桌面所在的平面为α,折痕所在直线为l,纸片与桌面公共部分所在直线为a,b,如图,依题意有a∩b=A,因l⊥a,l⊥b,a,b⊂α,所以l⊥α,所以折痕与桌面垂直.所以答案是:垂直解答题15、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√23.分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM⊥DB,所以k AM⋅k BD=−1.建立如图所示的平面直角坐标系,设BC =2a(a >0).因为DC =1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM ⋅k BD =a−01−0×2a−00−1=a ×(−2a)=−2a 2=−1. 所以a =√22,即DA =√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D −xyz ,设|DA|=t ,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M (t 2,1,0),PB ⃑⃑⃑⃑⃑ =(t,1,−1),AM ⃑⃑⃑⃑⃑⃑ =(−t 2,1,0).所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0. 即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.。
牟合方盖的计算方法

牟合方盖的绘图与体积计算问题沈其松 学号:200820301038一:问题叙述:魏晋时数学家刘徽在他的著作《九章算术注》中指出我国古代数学名著《九章算术》中的球体积公式9316V d =(d 为球的直径)是错误的,错误的原因在于误以为球和它的外切圆柱的体积的比是π∶4。
为了纠正这一错误,刘徽在他的《九章算术注》中,提出一个独特的方法来计算球体的体积:他不直接求球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积。
正方体内两轴互相垂直的内切圆柱面相交所围的空间立体。
由于这个立体的外形如同两把上下对称的正方形雨伞,所以称它为牟合方盖。
刘徽通过计算,球体体积与“牟合方盖”的体积之比应为 π : 4;显然,只要求出牟合方盖的体积,那么球体积便迎刃而解。
可惜的是,刘徽功亏一篑,未能求出牟合方盖的体积。
所以本试验用MATLAB 画出牟合方盖,并用“祖暅方法”,“微积分方法”,“蒙特卡罗方法”,分别计算牟合方盖的体积,来实现刘徽的愿望。
二:问题分析:1.绘制牟合方盖绘制柱面x2 + y2 = R2与柱面x2 + z2 =R2所围立体在x-y 平面上半部分曲面。
由第二个方程解出z ,得z =, cos (0);x r t r R =≤≤sin (02);y r t t π=≤≤则可以画出对应的曲面,当画四分之一,八分之一曲面时,只需设置r 与t 的范围就可以了。
2.计算牟合方盖体积2.1 祖暅方法:祖暅沿用了刘徽的思想,利用刘徽“牟合方盖”的理论去进行体积计算。
由于没有微积分,祖暅用一种等效的方法来计算。
图 一图 二图 三他的方法是将原来的“牟合方盖”平均分为八份,取它的八分之一(如图一),设 OP = h ,过 P 点作平面 PQRS 平行于 OABC 。
又设内切球体的半径为 r ,则 OS = OQ = r ,由勾股定理有PS = PQ =22h r -,故此正方形 PQRS 面积是 r 2 - h 2。
祖暅原理及其分析(1)

祖暅原理及其分析摘要:刘徽在发现《九章算术》球体积公式错误的基础上,构造了"牟合方盖",正确指出了解决该问题的思路。
祖氏父子间接求出了"牟合方盖"的体积,从而彻底解决了球体积计算公式的难题,并提出了祖暅原理。
本文回顾了中国古代数学取得的巨大成就,激发大家的民族自豪感和学习数学史的热情,然后用高等数学的知识证明了祖暅原理,强调高等数学对中学数学教学的指导作用,增强大家学习高等数学的自觉性。
一、刘徽对球体积公式的探索刘徽一生不仅成就卓越,而且品格高尚。
在学术研究中,他既不迷信古人,也不自命不凡,而是坚持实事求是,以理服人。
如少广章的“开立圆术”给出的球体积计算方法相当于公式V=9/16D³(这里的D为球的直径),刘徽对这一公式的正确性产生怀疑,他娴熟的使用界面法进行验证,发现内切圆的体积与正方形的体积之比为π/4,在《九章算术》取π=3的情况下,只有在内切球与圆柱的体积之比也是π/4时,上述近似公式才成立,而实际上后者是不成立的,为了说明这一点,刘徽又引入了一种新的立体:以正方体相邻的两个侧面为底分别做两次内切圆柱切割,剔除外部,剩下的内核部分刘徽称之为“牟合方盖”。
他用截面法证明内切球与“牟合方盖”的体积之比为π/4,而明显可以看出,“牟合方盖”的体积比圆柱要小,故上述公式是错误的,显然,如果能求牟合方盖的体积,球的体积就自然可以求出了。
但对于牟合方盖的体积如何求出,刘徽百思不得其解,故最后不得不“付之缺疑,以俟能言者”。
刘徽没有成功,但他的思路正确,为后人解决这一问题打下基础。
二、祖暅原理祖氏父子在研究《九章算术》及刘徽注时发现了刘徽遗留下来的关于如何计算“牟合方盖”的问题,并且开始沿着刘徽的道路继续探索,经父子俩不懈的努力,终于由祖暅解决了牟合方盖体积的计算,得到牟合方盖与其外切正方形的体积之比是2/3,祖暅还将其推导过程中所用的、事实上也是刘徽已经使用过得不可分割原理,总结提炼成一般的命题:“幂势相同,则积不容异”,即夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,若所的截面总相等,则此二几何体体积相等。
阿基米德的天秤与刘徽的牟合方盖

摘自《數學歷史典故》梁宗巨 著
1 證明:錐體體積 = bh 3
3pyramids.ggb 3pyramids.wg3
h r h r r h
LT r 2 h2
L 形面積 =
mouhefanggai.ggb
2 2 2 2
r ( r h ) h
2
正方形面積 =
h2
h r r
h
由劉徽祖暅原理
b
1 c 2 4( ) ab (a b)2 2 c 2 2ab a 2 2ab b 2
c 2 a 2 b2
2r
h s h-r r
2r 球片半徑 =
2r
r 2 ( h r ) 2 2rh h 2
2 2
球片體積 = 錐片半徑 = 錐片體積 =
2rh h s s(2rh h )
以積分求牟合方蓋之體積
x r x r
V 2 A( x)dx
0
r
1 1 2 4 x r 2 x 2 r 2 dx 0 2 2 r x 2 2 x r 2 x 2 r 2 cos1 dx 0 r
r
(r 2 x 2 ) x 4 r 2 x cos1 r 2 x 2 3 r
牟合方蓋(Mouhefanggai )
多角度研究
http://140.114.32.3/disk3/exp02/3/4.wrl
劉徽祖暅原理 「夫疊 成立積,緣冪勢既同,則積不容異。」
劉徽祖暅原理 「夫疊 成立積,緣冪勢既同,則積不容異。 」
劉徽祖暅原理 「夫疊 成立積,緣冪勢既同,則積不容異。 」
牟合方蓋體積 球體體積 = 4
牟合方盖

另外,因为
S=r2-a2
所以
S=r2-(r2-h2)=h2
于所有的h来说,这个结果也是不变的。祖氏父子便由此出发,他们取一个底方每边之长和高都等于r的方锥,倒过来立着,与三个“外棋”的体积的和进行比较。设由方锥顶点至方锥截面的高度为h,不难发现对于任何的h,方锥截面面积也必为h2。换句话说,虽然方锥跟三个“外棋”的形状不同,但因它们的体积都可以用截面面积和高度来计算,而在等高处的截面面积总是相等的,所以它们的体积也就不能不是相等的了,所以祖氏云:
共5张
方
所谓“牟合方盖”听语音
是当一正立方体用圆柱从纵横两侧面作内切圆柱体时,两圆柱体的公共部分。刘徽在他的注中对“牟合方盖”有以下的描述:
“取立方棋八枚,皆令立方一寸,积之为立方二寸。规之为圆囷,径二寸,高二寸。又复横规之,则其形有似牟合方盖矣。八棋皆似阳马,圆然也。按合盖者,方率也。丸其中,即圆率也。”
“缘幂势既同,则积不容异。”
所以
外棋体积之和=方锥体积=小立方体体积/3=r3/3
即
小牟合方盖体积= 2r3/3
牟合方盖体积=16r3/3
因此
球体体积=(π/4)(16r3/3)=4πr3/3
这条公式也就是正式的球体体积公式。
备注听语音
虽然本球体体积公式的出现比欧洲阿基米德的公式晚些,但由于方法以至推导都是由刘徽及祖氏父子自行创出,是一项杰出的成就。当中使用的“幂势既同,则积不容异。”,即“等高处截面面积相等,则二立体的体积相等。”的定理。现在一般认为是由意大利数学家卡瓦列利(Cavalieri)首先引用,称为卡瓦列利原理(Principle of Cavalieri),但事实上祖氏父子比他早一千年就发现并使用了这个原理,故又称“祖暅原理”。
牟合方盖的绘图与体积计算问题

牟合方盖的绘图与体积计算问题摘要:2.计算牟合方盖体积2.1 祖暅方法:祖暅沿用了刘徽的思想,利用刘徽"牟合方盖"的理论去进行体积计算.由于没有微积分,祖暅用一种等效的方法来计算.图一...关键词:微积分类别:专题技术来源:牛档搜索()本文系牛档搜索()根据用户的指令自动搜索的结果,文中内涉及到的资料均来自互联网,用于学习交流经验,作品其著作权归原作者所有。
不代表牛档搜索()赞成本文的内容或立场,牛档搜索()不对其付相应的法律责任!牟合方盖的绘图与体积计算问题沈其松 学号:200820301038一:问题叙述:魏晋时数学家刘徽在他的著作《九章算术注》中指出我国古代数学名著《九章算术》中的球体积公式9316V d =(d 为球的直径)是错误的,错误的原因在于误以为球和它的外切圆柱的体积的比是π∶4。
为了纠正这一错误,刘徽在他的《九章算术注》中,提出一个独特的方法来计算球体的体积:他不直接求球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积。
正方体内两轴互相垂直的内切圆柱面相交所围的空间立体。
由于这个立体的外形如同两把上下对称的正方形雨伞,所以称它为牟合方盖。
刘徽通过计算,球体体积与“牟合方盖”的体积之比应为 π : 4;显然,只要求出牟合方盖的体积,那么球体积便迎刃而解。
可惜的是,刘徽功亏一篑,未能求出牟合方盖的体积。
所以本试验用MATLAB 画出牟合方盖,并用“祖暅方法”,“微积分方法”,“蒙特卡罗方法”,分别计算牟合方盖的体积,来实现刘徽的愿望。
二:问题分析:1.绘制牟合方盖绘制柱面x2 + y2 = R2与柱面x2 + z2 =R2所围立体在x-y 平面上半部分曲面。
由第二个方程解出z ,得z =, cos (0);x r t r R =≤≤sin (02);y r t t π=≤≤则可以画出对应的曲面,当画四分之一,八分之一曲面时,只需设置r 与t 的范围就可以了。