四川高考真题——集合
2024年四川高考数学(理)试题(含答案)

2024年四川高考数学(理)试题及答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A 10iB. 2iC. 10D. 2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9 C. {}1,2,3 D. {}2,3,5【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5 B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:.由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫ ⎪⎝⎭,则min 375122z =-⨯=-.故选:D.4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( )A. 2- B.73C. 1D. 2【答案】B 【解析】【分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值.【详解】由105678910850S S a a a a a a -=++++==,则80a =,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.5. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4 B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( )A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()2e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7. 函数()()2e e sin x x f x x x -=-+-在区间[2.8,2.8]-的大致图像为( )A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42ef ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.8. 已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1- C.D. 1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+⎪-α⎝⎭,故选:B.9. 已知向量()()1,,,2a x x b x =+=,则( )A. “3x =-”是“a b ⊥”的必要条件 B. “3x =-”是“//a b”的必要条件C. “0x =”是“a b ⊥ ”的充分条件D. “1x =-”是“//a b”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10. 设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是( )A. ①③ B. ②④C. ①②③D. ①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac+=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=.故选:C.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A. 2 B. 3C. 4D. 【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB最小,1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.【答案】5【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以V h V h ====甲甲乙乙.15. 已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.828【答案】(1)答案见详解(2)答案见详解【解析】【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p=,根据题意计算p+.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64 150=,用频率估计概率可得0.64p=,又因为升级改造前该工厂产品的优级品率0.5p=,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+,所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18. 记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅- (2)(21)31n n T n =-⋅+【解析】【分析】(1)利用退位法可求{}n a 的通项公式.(2)利用错位相减法可求n T .【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343nn T n =⋅+⋅+⋅++⋅ 所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【答案】(1)证明见详解; (2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解.【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,为所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,m n =,故二面角F BM E --20. 设椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k=-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Qy y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k kx x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21. 已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【答案】(1)极小值0,无极大值. (2)12a ≤-【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数,为【故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a aax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫-⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫-⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.为[选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+ (2)34a =【解析】【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析 (2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
招生国统一考试数学理试题精品解析四川卷试题

卜人入州八九几市潮王学校2021年高考卷理数试题解析〔精编〕〔解析〕第一卷〔一共50分〕一、选择题:本大题一一共10个小题,每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项 是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}Bx x =<<,那么A B 〔〕【答案】A【考点定位】集合的根本运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考察,解题的关键是结合韦恩图或者数轴解答. 2.设i 是虚数单位,那么复数32i i -() 〔A 〕-i 〔B 〕-3i 〔C 〕i.〔D 〕3i【答案】C【考点定位】复数的根本运算. 【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的根本概念及四那么运算即可.3.执行如下列图的程序框图,输出S 的值是()〔A 〕32〔B 〕32〔C 〕-12〔D 〕12 【答案】D【考点定位】程序框图.【名师点睛】程序框图也是高考的热点,几乎是每年必考内容,多半是考循环构造,根本方法是将每次循环的结果一一列举出来.4.以下函数中,最小正周期为且图象关于原点对称的函数是〔〕【答案】A【考点定位】三角函数的性质.【名师点睛】此题不是直接据条件求结果,而是从4个选项里面找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C 、D 选项里面的函数既不是奇函数也不是偶函数,而B 选项里面的函数是偶函数,故均可排除,所以选A.5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,那么AB =〔〕(B)〔D 〕【答案】D【考点定位】双曲线. 【名师点睛】双曲线22221x y a b -=的渐近线方程为22220x y a b-=,将直线2x =代入这个渐近线方程,便可得交点A 、B 的纵坐标,从而快速得出||AB 的值.6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数一共有〔〕〔A 〕144个〔B 〕120个〔C 〕96个〔D 〕72个【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进展分类和分步,分类时要注意不重不漏.在此题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进展分类.7.设四边形ABCD 为平行四边形,6AB =,4AD =.假设点M ,N 满足3BM MC =,2DN NC =,那么AM NM ⋅=〔〕〔A 〕20〔B 〕15〔C 〕9〔D 〕6【答案】C【考点定位】平面向量. 【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原那么是这两个向量有尽量多的元素.此题中,由于6AB =,4AD =故可选,AB AD 作为基底.8.设a ,b 都是不等于1的正数,那么“333a b >>〞是“log 3log 3a b <〞的〔〕(A )充要条件〔B 〕充分不必要条件〔C 〕必要不充分条件〔D 〕既不充分也不必要条件【答案】B【考点定位】【名师点睛】充分性必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.9.假设函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,那么mn 的最大值为〔〕 〔A 〕16〔B 〕18〔C 〕25〔D 〕812 【答案】B【考点定位】函数与不等式的综合应用.【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n10.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>l 恰有4条,那么r 的取值范围是〔〕 〔A 〕()13,〔B 〕()14,〔C 〕()23,〔D 〕()24, 【答案】D【考点定位】直线与圆锥曲线,不等式.【名师点睛】首先应结合图形进展分析.结合图形易知,只要圆的半径小于5,那么必有两条直线〔即与x 轴垂直的两条切线〕满足题设,因此只需直线的斜率存在时,再有两条直线满足题设即可.接下来要解决的问题是当直线的斜率存在时,圆的半径的范围是什么.涉及直线与圆锥曲线的交点及弦的中点的问题,常常采用“点差法〞.在此题中利用点差法可得,中点必在直线3x =上,由此可确定中点的纵坐标0y 的范围,利用这个范围即可得到r 的取值范围.第二卷〔一共100分〕二、填空题〔每一小题5分,总分值是25分,将答案填在答题纸上〕11.在5(21)x -的展开式中,含2x 的项的系数是〔用数字答题〕.【答案】40-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.12.=+ 75sin 15sin .【考点定位】三角恒等变换及特殊角的三角函数值.【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个角,然后再化为一个三角函数一般地,有sin cos )a b αααϕ+=+.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.13.某食品的保鲜时间是y 〔单位:小时〕与储存温度x 〔单位:C 〕满足函数关系b kx e y +=〔 718.2=e 为自然对数的底数,k 、b 为常数〕。
四川省绵阳市(新版)2024高考数学人教版真题(综合卷)完整试卷

四川省绵阳市(新版)2024高考数学人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若已知随机变量服从正态分布,且,则()A.0.75B.0.5C.0.25D.0.15第(2)题若且,,则称a为集合A的孤立元素.若集合,集合N为集合M的三元子集,则集合N中的元素都是孤立元素的概率为()A.B.C.D.第(3)题设集合,,且,则()A.6B.4C.D.第(4)题在中,,,且的面积为,则()A.B.C.D.第(5)题在复平面内,复数对应的点的坐标是,则()A.B.C.D.第(6)题在中,D是边AB上一点,且,点E是CD的中点.设,,则()A.B.C.D.第(7)题双曲线的顶点到其渐近线的距离为()A.B.1C.D.第(8)题若,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则()A.是偶函数,也是周期函数B.的最大值为C .的图像关于直线对称D.在上单调递增第(2)题函数有三个不同极值点,且.则()A.B.C.的最大值为3D.的最大值为1第(3)题椭圆:的左右焦点分别为,,过,分别作两条平行的射线,交椭圆C于A,B两点,(A,B均在x轴上方),则()A.当时,B.的最小值为3C.当时,四边形的面积为D.四边形面积的最大值为3三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知为等差数列,为其前n项和,若,,则_______.第(2)题记正项数列的前项和为,且满足.若不等式恒成立,则实数的取值范围是__________.第(3)题函数的定义域为_______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知点,点和点为椭圆上不同的三个点.当点,点B和点C为椭圆的顶点时,△ABC恰好是边长为2的等边三角形.(1)求椭圆标准方程;(2)若为原点,且满足,求的面积.第(2)题已知向量,.(Ⅰ)若,求的值;(Ⅱ)设,求的取值范围.第(3)题如图,四棱锥的底面为一直角梯形,其中,底面,是的中点.(1)求证://平面;(2)若平面,①求异面直线与所成角的余弦值;②求二面角的余弦值.第(4)题设函数.(1)解不等式;(2),恒成立,求实数的取值范围.第(5)题设函数.(1)解不等式;(2)若,不等式恒成立,求实数的取值范围.。
四川省凉山彝族自治州高考数学真题分类汇编专题01:集合(基础题)

四川省凉山彝族自治州高考数学真题分类汇编专题01:集合(基础题)姓名:________ 班级:________ 成绩:________一、集合 (共11题;共21分)1. (2分) (2018高三上·黑龙江月考) 已知集合和集合,则等于()A .B .C .D .2. (2分) (2019高一上·石家庄月考) 设集合,,则()A .B .C .D .3. (2分)已知集合,则()A . [-1,0)B . [0,1]C . (0,1]D . [-2,1]4. (2分) (2019高一上·柳江月考) 已知集合A满足,则集合A的个数为()A . 1B . 2C . 3D . 45. (2分)若一个矩形的对角线长为常数,则其面积的最大值为()A .B .C .D .6. (2分) (2017高一上·河北期末) 集合P={﹣1,0,1},Q={y|y=cosx,x∈R},则P∩Q=()A . PB . QC . {﹣1,1}D . [0,1]7. (2分)集合,则有()A . M=NB . M NC . N MD .8. (2分)已知全集U=R,集合,则()A .B .C .D .9. (2分)(2017·深圳模拟) 集合A={x|x2﹣2x<0},B={x|x﹣2<0},则()A . A∩B=∅B . A∩B=AC . A∪B=AD . A∪B=R10. (2分)(2017·山东模拟) 已知全集U={1,2},集合M={1},则∁UM等于()A . ∅B . {1}C . {2}D . {1,2}11. (1分) (2018高一上·东台月考) 若,,则 ________.参考答案一、集合 (共11题;共21分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、。
四川省2024年高考文科数学真题及参考答案

四川省2024年高考文科数学真题及参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4B.{}3,2,1 C.{}4,3D.{}9,2,12.设z =,则z z ⋅=()A.i-B.1C.1-D.23.若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤--≥--09620220334y x y x y x ,则5z x y =-的最小值为()A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()10,4F 、()20,4F -,且经过点()6,4P -,则双曲线C 的离心率是()A.4B.3C.2D.27.曲线()136-+=x x x f 在()0,1-处的切线与坐标轴围成的面积为()A.61B.2C.12D.23-8.函数()()2e esin xxf x x x -=-+-在区间[]8.2,8.2-的大致图像为()9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.132+B.1-C.23D.31-10.已知直线02=-++a y ax 与圆01422=-++y y x C :交于B A ,两点,则AB 的最小值为()A.2B.3C.4D.611.已知m 、n 是两条不同的直线,α、β是两个不同的平面,且m =βα .下列四个命题:①若m n ∥,则n α∥或n β∥;②若m n ⊥,则n α⊥,β⊥n ;③若n α∥且n β∥,则m n ∥;④若n 与α和β所成的角相等,则m n ⊥,其中所有真命题的编号是()A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=()A.13B.13C.2D.13二、填空题:本题共4小题,每小题5分,共20分.13.函数()sin f x x x =-在[]0,π上的最大值是______.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为()122r r -,()123r r -,则圆台甲与乙的体积之比为.15.已知1a >,8115log log 42a a -=-,则a =______.16.曲线33y x x =-与()21y x a =--+在()0,+∞上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.18.(12分)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率5.0=p .设p 为升级改造后抽取的n 件产品的优级品率.如果()np p p p -+>165.1,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为产品线智能化升级改造后,该工厂产品的优级品率提高了?(247.12150≈)19.(12分)如图,在以F E D C B A ,,,,,为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,4,=AD AD EF AD BC ,∥∥,2===EF BC AB ,且10=ED ,32=FB ,M 为AD 的中点.(1)证明:∥BM 平面CDE ;(2)求点M 到ABF 的距离.20.(12分)已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立.21.(12分)已知椭圆()2222:10x y C a b a b +=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)过点()0,4P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与直线MF 交于Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若2AB =,求a 的值.23.[选修4-5:不等式选讲](10分)实数a ,b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.参考答案一、选择题1.A 解析:由题意可得{}843210,,,,,=B ,∴{}4,3,2,1=B A .2.D解析:∵i z 2=,∴i z 2-=,∴222=-=⋅i z z .3.D 解析:实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤--≥--09620220334y x y x y x ,作出可行域如图:由y x z 5-=可得z x y 5151-=,即z 的几何意义为z x y 5151-=的截距的51-,则该直线截距取最大值时,z 有最小值,此时直线z x y 5151-=过点A,联立⎩⎨⎧=-+=--09620334y x y x ,解得⎪⎩⎪⎨⎧==123y x ,即⎪⎭⎫ ⎝⎛1,23A ,则271523min -=⨯-=z .4.D解析:法一:利用等差数列的基本量由19=S ,根据等差数列的求和公式1289919=⨯+=d a S ,整理得13691=+d a ,又()92369928262111173=+=+=+++=+d a d a d a d a a a .法二:特殊值法不妨取等差数列公差0=d ,则有1991a S ==,∴911=a ,故有922173==+a a a .5.B解析:当甲排在排尾,乙排在第一位,丙有2种排法,丁有1种排法,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁有1种排法,共2种;于是甲排在排尾共4种方法,同理,乙排在排尾共4种排法,于是共8种排法,基本事件总数显然是2444=A ,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为31248=.6.C解析:由题意,()4,01F ,()402-,F ,()4,6-P,则()()6446,10446,8222222121=-+==++===PF PF c F F ,则4610221=-=-=PF PF a ,24822===a c e .7.A解析:()365+='x x f ,则()30='f ,∴该切线方程为x y 31=-,即13+=x y ,令0=x ,则1=y ,令0=y ,则31-=x ,故该切线与两坐标轴所围成的三角形面积6131121=-⨯⨯=S .8.B解析:()()()()()x f x e e x x e ex x f x x x x=-+-=--+-=---sin sin 22,又函数定义域为[]8.2,8.2-,故函数为偶函数,可排除A,C,又()021*******sin 111sin 111>->--=⎪⎭⎫ ⎝⎛-+->⎪⎭⎫ ⎝⎛-+-=e e e e e e e f π,故排除D.9.B 解析:∵cos cos sin ααα=-,∴3tan 11=-α,解得331tan -=α,∴132tan 11tan 4tan -=-+=⎪⎭⎫ ⎝⎛+ααπα.10.C 解析:由题意可得圆的标准方程为:()5222=++y x ,∴圆心()20-,C ,半径为5,直线02=-++a y ax 可化为()()021=++-y x a ,∴直线过定点()21-,D ,当AB CD ⊥时,AB 最小,易得1=CD ,故()415222=-⨯=AB .11.A 解析:对①,当α⊂n ,∵n m ∥,β⊂n ,则β∥n ,当β⊂n ,∵n m ∥,α⊂m ,则α∥n ,当n 既不在α也不在β内,∵n m ∥,βα⊂⊂m m ,,则α∥n 且β∥n ,故①正确;对②,若n m ⊥,则n 与βα,不一定垂直,故②错误;对③,过直线n 分别作两平面与βα,分别相交于直线s 和直线t ,∵α∥n ,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知s n ∥,同理可得t n ∥,则t s ∥,∵⊄s 平面β,⊂t 平面β,则∥s 平面β,∵⊂s 平面α,m =βα ,则m s ∥,又∵s n ∥,则n m ∥,故③正确;对④,若m =βα ,n 与βα,所成的角相等,如果βα∥,∥n n ,则n m ∥,故④错误;综上,①③正确.12.C 解析:∵3π=B ,294b ac =,则由正弦定理得31sin 94sin sin 2==B C A .由余弦定理可得:ac ac c a b 49222=-+=,即ac c a 41322=+,根据正弦定理得1213sin sin 413sin sin 22==+C A C A ,∴()47sin sin 2sin sin sin sin 222=++=+C A C A C A ,∵A,C 为三角形内角,则0sin sin >+C A ,则27sin sin =+C A .二、填空题13.2解析:()⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=-=3sin 2cos 23sin 212cos 3sin πx x x x x x f ,当[]π,0∈x 时,⎥⎦⎤⎢⎣⎡-∈-32,33πππx ,当23ππ=-x 时,即65π=x 时()2max =x f .14.46解析:由题可得两个圆台的高分别为:()[]()()1221221232r r r r r r h -=---=甲,()[]())12212212223r r r r r r h -=---=乙∴()()()()462233131121212121212=--==++++=r r r r h h h S S S S h S S S S V V 乙甲乙甲乙甲.15.64解析:由25log 21log 34log 1log 1228-=-=-a a a a ,整理得()06log 5log 222=--a a ,可得1log 2-=a 或6log 2=a ,又1>a ,∴6log 2=a ,∴6426==a .16.()1,2-解析:令()a x x x +--=-2313,即1523+-+=x x x a ,令()()01523>+-+=x x x x x g ,则()()()1535232-+=-+='x x x x x g ,令()()00>='x x g 得1=x ,当()1,0∈x 时,()0<'x g ,()x g 单调递减;当()+∞∈,1x 时,()0>'x g ,()x g 单调递增,()()21,10-==g g ,∵曲线x x y 33-=与()a x y +--=21在()∞+,0上有两个不同的交点,∴等价于a y =与()x g 有两个交点,∴()1,2-∈a .三、解答题17.解:(1)∵3321-=+n n a S ,∴33221-=++n n a S ,两式相减可得121332+++-=n n n a a a ,即1253++=n n a a ,∴等比数列{}n a 的公比35=q ,当1=n 时有35332121-=-=a a S ,∴11=a ,∴135-⎪⎭⎫⎝⎛=n n a .(2)由等比数列求和公式得2335233513511-⎪⎭⎫ ⎝⎛=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯=nn n S ,∴数列{}n S 的前n 项和nS S S S T nn n 23353535352332321-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯=++++= 4152335415233513513523--⎪⎭⎫ ⎝⎛⋅=--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅⋅=n n n n.18.解:(1)根据题意可得列联表:可得()6875.416755496100507024302615022==⨯⨯⨯⨯-⨯⨯=K ,∵635.66875.4841.3<<,∴有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲、乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为64.015096=,用频率估计概率可得64.0=p ,又因为升级改造前该工厂产品的优级品率5.0=p ,则()()568.0247.125.065.15.01505.015.065.15.0165.1≈⨯+≈-⨯⨯+=-+n p p p ,可知()np p p p -+>165.1,∴可以认为产品线智能化升级改造后,该工厂产品的优级品率提高了.19.解:(1)∵AD BC ∥,2=EF ,4=AD ,M 为AD 的中点,∴MD BC MD BC =,∥,则四边形BCDM 为平行四边形,∴CD BM ∥,又∵⊄BM 平面CDE ,⊂CD 平面CDE ,∴∥BM 平面CDE .(2)如图所示,作AD BO ⊥交AD 于点O ,连接OF .∵四边形ABCD 为等腰梯形,4,=AD AD BC ∥,2==BC AB ,∴2=CD ,结合(1)可知四边形BCDM 为平行四边形,可得2==CD BM ,又2=AM ,∴ABM ∆为等边三角形,O 为AM 的中点,∴3=OB .又∵四边形ADEF 为等腰梯形,M 为AD 中点,∴MD EF MD EF ∥,=,四边形EFMD 为平行四边形,AF ED FM ==,∴AFM ∆为等腰三角形,ABM ∆与AFM ∆底边上中点O 重合,3,22=-=⊥AO AF OF AM OF ,∵222BF OFOB =+,∴OF OB ⊥,∴OF OD OB ,,互相垂直,由等体积法可得ABM F ABF M V V --=,233243213121312=⋅⋅⋅⋅=⋅⋅⋅=∆-FO S V ABM ABM F ,由余弦定理,()()10212102322102cos 222222=⋅⋅-+=⋅-+=∠ABF A FB AB F A F AB ,∴10239cos 1sin 2=∠-=∠F AB F AB .则2391023921021sin 21=⋅⋅⋅=∠⋅⋅=∆F AB AB F A S F AB ,设点M 到面ABF 的距离为d ,则有232393131=⋅⋅=⋅⋅==∆--d d S V V F AB ABM F ABF M ,解得13133=d ,即点M 到面ABF 的距离为13133.20.解:(1)由题意可得()x f 定义域为()∞+,0,()xax x a x f 11-=-=',当0≤a 时,()0<'x f ,故()x f 在()∞+,0上单调递减;当0>a 时,令()0='x f ,解得ax 1=,当⎪⎭⎫⎝⎛+∞∈,1a x 时,()0>'x f ,()x f 单调递增;当⎪⎭⎫⎝⎛∈a x 1,0时,()0<'x f ,()x f 单调递减;综上所述:当0≤a 时,()x f 在()∞+,0上单调递减;当0>a 时,()x f 在⎪⎭⎫⎝⎛+∞,1a 上单调递增,在⎪⎭⎫⎝⎛a 1,0上单调递减.(2)当2≤a 且1>x 时,()()x x e x x a e x f ex x x ln 121ln 1111+++≥-+--=----,令()()1ln 121>++-=-x x x ex g x ,则()()1121>+-='-x xe x g x ,令()()x g x h '=,则()()1121>-='-x xex h x ,显然()x h '在()∞+,1上单调递增,则()()0110=-='>'e h x h ,因()()x h x g =',则()x g '在()∞+,1上单调递增,故()()01210=+-='>'e g x g ,即()x g 在()∞+,1上单调递增,故()()01ln 1210=++-=>e g x g ,即()()()01ln 111>≥-+--=---x g x x a e x f ex x ,∴当1>x 时,()1-<x ex f 恒成立.21.解:(1)设()0,c F ,由题设有1=c ,且232=a b ,故2312=-a a ,解得2=a ,故3=b ,故椭圆方程为:13422=+y x .(2)由题意知,直线AB 额斜率一定存在,设为k ,设()()()2211,,,,4:y x B y x A x k y AB -=,由()⎪⎩⎪⎨⎧-==+413422x k y y x 可得()0126432432222=-+-+k x k x k ,∵()()012644341024224>-+-=∆kkk ,∴2121<<-k ,由韦达定理可得22212221431264,4332kk x x k k x x +-=+=+,∵⎪⎭⎫ ⎝⎛0,25N ,∴直线⎪⎭⎫ ⎝⎛--=252522x x y y BN :,故52325232222--=--=x y x y y Q,∴()()()()524352452352523222122212211--+-⋅-=-+-=-+=-x x k x x k x y x y x y y y y Q()0528433254312642528522222222121=-++⨯-+-⨯=-++-=x k k k k k x x x x x k 故Q y y =1,即AQ y ⊥轴.22.解:(1)由1cos +=θρρ,将⎪⎩⎪⎨⎧=+=xy x θρρcos 22代入1cos +=θρρ,可得122+=+x y x ,两边平方后可得曲线的直角坐标方程为122+=x y .(2)对于直线l 的参数方程消去参数t ,得直线的普通方程为a x y +=.法一:直线l 的斜率为1,故倾斜角为4π,故直线的参数方程可设为⎪⎪⎩⎪⎪⎨⎧+==s a y s x 2222,R s ∈.将其代入122+=x y 中得)()01212222=-+-+a s a s .设B A ,两点对应的参数分别为21,s s ,则()()12,12222121-=--=+a s s a s s ,且()()01616181822>-=---=∆a a a ,故1<a ,∴()()()218184222122121=---=-+=-=a a s s s s s s AB ,解得43=a .法二:联立⎩⎨⎧+=+=122x y ax y ,得()012222=-+-+a x a x ,()()088142222>+-=---=∆a a a ,解得1<a ,设()()2211,,,y x B y x A ,∴1,2222121-=-=+a x x a x x ,则()()()21422241122212212=---⋅=-+⋅+=a a x x x x AB ,解得43=a .23.解:(1)∵()()0222222222≥-=+-=+-+b a b ab a b a b a ,当b a =时等号成立,则()22222b a b a +≥+,∵3≥+b a ,∴()b a b a b a +>+≥+22222.(2)()b a b a a b b a ab b a +-+=-+-≥-+-222222222222()()()()()623122222=⨯≥-++=+-+≥+-+=b a b a b a b a b a b a .。
最新普通高等学校招生理科数学全国统一考试试题(四川卷)(含解析)

普通高等学校招生全国统一考试(四川卷)数 学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出地 四个选项中,只有一个是符合题目要求地 .1.设集合{|20}A x x =+=,集合2{|40}B x x=-=,则A B =I ( )(A ){2}- (B ){2} (C ){2,2}- (D )∅2.如图,在复平面内,点A 表示复数z ,则图中表示z地 共轭复数地 点是( )(A)A(B)B(C)C(D)D3.一个几何体地三视图如图所示,则该几何体地直观图可以是()4.设x Z∈,集合A是奇数集,集合B是偶数集.若命题:,2∀∈∈,则()p x A x B(A):,2p x A x B⌝∀∉∉p x A x B⌝∀∃∈∉(B):,2(C):,2⌝∃∈∈p x A x B p x A x B⌝∃∉∈(D):,25.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<地 部分图象如图所示,则,ωϕ地 值分别是( )(A )2,3π- (B )2,6π- (C )4,6π- (D )4,3π6.抛物线24yx=地 焦点到双曲线2213yx -=地 渐近线地距离是( )(A )12 (B )3 (C )1(D 37.函数231xx y =-地 图象大致是( )8.从1,3,5,7,9这五个数中,每次取出两个不同地数分别为,a b,共可得到lg lga b地不同值地个数是()(A)9(B)10(C)18(D)209.节日里某家前地树上挂了两串彩灯,这两串彩灯地第一次闪亮相互独立,若接通电后地 4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮地时刻相差不超过2秒地概率是()(A)14(B)12(C)34(D )7810.设函数()f x =a R ∈,e 为自然对数地 底数).若曲线sin y x =上存在0(,)x y 使得0(())f f y y =,则a 地 取值范围是( )(A )[1,]e (B )1[,-11]e -,(C )[1,1]e +(D )1[-1,1]ee -+二、填空题:本大题共5小题,每小题5分,共25分.11.二项式5()x y +地 展开式中,含23x y 地 项地 系数是_________.(用数字作答)12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AOλ+=u u u r u u u r u u u r ,则λ=_________.13.设sin 2sin αα=-,(,)2παπ∈,则tan 2α地 值是_________.14.已知()f x 是定义域为R 地 偶函数,当x ≥0时,2()4f x x x=-,那么,不等式(2)5f x +<地 解集是________ .15.设12,,,nP P P L 为平面α内地 n 个点,在平面α内地 所有点中,若点P 到12,,,nP P P L 点地 距离之和最小,则称点P为12,,,nP P P L 点地 一个“中位点”.例如,线段AB 上地 任意点都是端点,A B 地 中位点.则有下列命题: ①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 地 中位点;②直角三角形斜边地 点是该直角三角形三个顶点地 中位点;③若四个点,,,A B C D 共线,则它们地 中位点存在且唯一;④梯形对角线地 交点是该梯形四个顶点地 唯一中位点.其中地 真命题是____________.(写出所有真命题地 序号数学社区)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 在等差数列{}na 中,218aa -=,且4a 为2a 和3a 地 等比中项,求数列{}na 地 首项、公差及前n 项和.17.(本小题满分12分) 在ABC ∆中,角,,A B C 地 对边分别为,,a b c ,且232coscos sin()sin cos()25A B B A B B A C ---++=-.(Ⅰ)求cos A 地 值;(Ⅱ)若a =5b =,求向量BAu u u r在BCuuu r 方向上地 投影.18.(本小题满分12分)某算法地程序框图如图所示,其中输入地变量x在1,2,3,,24⋅⋅⋅这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y地值为i地概率(1,2,3)P i=;i(Ⅱ)甲、乙两同学依据自己对程序框图地理解,各自编写程序重复运行n次后,统计记录了输出y地值为(1,2,3)i i=地频数.以下是甲、乙所作频数统计表地部分数据.甲地 频数统计表(部分)乙地 频数统计表(部分)当2100n =时,根据表中地 数据,分别写出甲、乙所编程序各自输出y 地值为(1,2,3)i i =地 频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求地 可能性较大;(Ⅲ)按程序框图正确编写地 程序运行3次,求输出y 地 值为2地 次数ξ地 分布列及数学期望.19.(本小题满分12分) 如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=o,1,D D 分别是线段11,BC B C 地 中点,P 是线段AD 地 中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行地直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中地 直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --地 余弦值.1C20.(本小题满分13分) 已知椭圆C :22221,(0)x y a b a b +=>>地两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P . (Ⅰ)求椭圆C 地 离心率;(Ⅱ)设过点(0,2)A 地 直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上地 点,且222211||||||AQAM AN =+,求点Q 地 轨迹方程.21.(本小题满分14分)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上地 两点,且12x x <.(Ⅰ)指出函数()f x 地 单调区间;(Ⅱ)若函数()f x 地 图象在点,A B 处地 切线互相垂直,且2x<,求21xx -地 最小值;(Ⅲ)若函数()f x 地 图象在点,A B 处地 切线重合,求a地 取值范围.参考答案一、 选择题:本题考查基本概念和基本运算.每小题5分,满分50分.1.A2.B3.D4.D5.A6.B7.C8.C9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分.(7,3)- 15.①④ 三、解答题:共6小题,共75分.16.解:设该数列公差为d ,前n 项和为ns .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}na 地 首相为4,公差为0,或首相为1,公差为3. 所以数列地 前n项和4n s n=或232n n n s -=. ………….12分17.解:()I 由()()232coscos sin sin cos 25A B B A B B A C ---++=-,得()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦,即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-. ………….. 5分()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a bA B =,所以,sin sin b A B a ==.由题知a b >,则A B >,故4B π=. 根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去). 故向量BAu u u r 在BCuuu r 方向上地 投影为cos 2BA B =u u u r . ………….12分18. 解:()I .变量x 是在1,2,3,……24这24个整数中随机产生地 一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 地 值为1,故112p =; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 地 值为2,故213p=;当x 从6,12,18,24这4个数中产生时,输出y 地 值为3,故316p=. ……………3分()II 当n=2100时,甲、乙所编程序各自输出y 地 值为i(i=1,2,3)地 频率如下:比较频率趋势与概率,可得乙同学所编程序符合算法要求地 可能性较大. ………7分(3)随机变量ξ可能饿取值为0,1,2,3.33128(0)3327p C ξ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭1213124(1)339p C ξ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭2123122(2)339p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭333121(3)3327p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭故ξ地 分布列为所以842101231279927E ξ=⨯+⨯+⨯+⨯=即ξ地数学期望为1. ………12分 19.解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1A BC 外,BC在平面1A BC 内,由直线与平面平行地 判定定理可知, l //平面1A BC .由已知,AB AC =,D 是BC 地 中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面ξ12 3 p827492912711ADD A 内,且AD与1AA 相交,所以直线平面11ADD A . …………………………………………………………………………….6分()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF .由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN .所以AE ⊥平面1A MN ,则1A M AE ⊥.所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A A M N --地 平面角(设为θ).设11AA =,则由12AB AC AA ==,120BAC ∠=o,有60BAD ∠=o,2,1AB AD ==.又P 为AD 地 中点,所以M 为AB 地 中点,且1,12AP AM ==, 在1Rt AA P V 中,1A P =;在1Rt A AM V 中,1AM从而,11AA AP AE A P •==,11AA AMAF A M•==所以2sin 5AEAFθ==.所以22215cos 1sin 15θθ⎛⎫=-=-= ⎪ ⎪⎝⎭.故二面角1A A M N--地 余弦值为155. ………………12分解法二:设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,A E A D u u u r u u u u r ,1AA u u u r 地 方向为x 轴,y 轴,z 轴地 正方向,建立空间直角坐标系Oxyz (点O 与点1A 重合).则()10,0,0A ,()0,0,1A .因为P 为AD 地 中点,所以,M N 分别为,AB AC 地 中点,故11,1,,12222M N ⎛⎫⎛⎫- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,所以11,122A M ⎛⎫= ⎪ ⎪⎝⎭u u u u r ,()10,0,1A A =u u u r,)NM =u u u u r .设平面1AA M 地 一个法向量为()1111,,n x y z =,则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩u u u u u r u u u u r 即11110,0,n A M n A A ⎧•=⎪⎨•=⎪⎩u u u u ru u u r 故有()()()1111111,,,10,2,,0,0,10,x y z x y z ⎧⎫•=⎪⎪⎪⎨⎝⎭⎪•=⎩从而111110,20.y z z ++=⎪=⎩取11x =,则1y =()11,n =.设平面1A MN 地 一个法向量为()2222,,nx y z =,则 212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩u u u u u ru u u u u r 即2120,0,n A M n NM ⎧•=⎪⎨•=⎪⎩u u u u ru u u u r 故有()())2222221,,,10,22,,0,x y z x y z ⎧⎛⎫•=⎪⎪ ⎪⎪⎝⎭⎨⎪•=⎪⎩从而222210,220.x y z ++=⎨⎪=⎩取22y=,则21z=-,所以()20,2,1n=-.设二面角1A A M N --地 平面角为θ,又θ为锐角,则1212cos 5n n n n θ•===•.故二面角1A A M N--地 余弦值为5. ………………12分20.解:122a PF PF =+==所以,a =又由已知,1c =,所以椭圆C 地离心率2ce a ===……………4分 ()II 由()I 知椭圆C 地 方程为2212x y +=.设点Q 地 坐标为(x ,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q点坐标为0,25⎛- ⎝⎭(2) 当直线l 与x 轴不垂直时,设直线l 地 方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 地 坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQx y k x =+-=+由222211AQAMAN=+,得()()()22222212211111k x k x k x =++++,即()212122222212122211x x x x x x x x x +-=+= ① 将2y kx =+代入2212x y +=中,得()2221860kx kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k>. 由②可知12122286,,2121k x xx x k k +=-=++代入①中并化简,得2218103xk =- ③因为点Q 在直线2y kx =+上,所以2y k x-=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x<<,即22x ⎛⎫⎛∈-⎪ ⎪ ⎝⎭⎝⎭U .又0,25⎛- ⎝⎭满足()22102318y x --=,故x ⎛∈ ⎝⎭.由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤, 又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,22y ⎛∈ ⎝⎦.所以点Q 地 轨迹方程是()22102318y x --=,其中,22x ⎛∈- ⎝⎭,1,225y ⎛∈- ⎝⎦………..13分21.解:()I 函数()f x 地 单调递减区间为(),1-∞-,单调递增区间为[)1,0-,()0,+∞()II 由导数地 几何意义可知,点A 处地 切线斜率为()1f x ',点B 处地 切线斜率为()2f x ',故当点A 处地 切线与点B 处地 切垂直时,有()()121f x f x ''=-.当0x <时,对函数()f x 求导,得()22f x x '=+. 因为12x x<<,所以()()1222221x x ++=-,所以()()12220,220x x +<+>.因此()()21121222212x x x x -=-+++≥=⎡⎤⎣⎦当且仅当()122x -+=()222x +=1,即123122x x =-=且时等号成立.所以函数()f x 地 图象在点,A B 处地 切线互相垂直时,21x x -地 最小值为1…………7分()III 当120x x <<或210x x >>时,()()12f x f x ''≠,故120x x <<.当10x <时,函数()f x 地 图象在点()()11,x f x 处地 切线方程为()()()21111222y x x a x x x -++=+-,即()21122y x x xa=+-+当2x>时,函数()f x 地 图象在点()()22,x f x 处地 切线方程为()2221ln y x x x x -=-,即221ln 1y x x x =•+-.两切线重合地 充要条件是1222112 2 ln 1 x x x x a ⎧=+⎪⎨⎪-=-+⎩①②由①及120x x <<知,110x -<<.由①②得,()2211111ln1ln 22122a xx x x =+-=-+-+.设()()21111ln 221(10)h x xx x =-+--<<,则()1111201h x x x '=-<+.所以()()1110h x x -<<是减函数.则()()10ln21h x h >=--,所以ln 21a >--.又当1(1,0)x ∈-且趋近于1-时,()1h x 无限增大,所以a 地 取值范围是()ln21,--+∞.故当函数()f x 地 图像在点,A B 处地 切线重合时,a 地 取值范围是()ln21,--+∞.14分。
集合历年高考真题

高考集合历年真题题型1 集合的基本概念——暂无题型2 集合间的基本关系——暂无题型3 集合的运算1.(2014新课标Ⅰ文1)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N =I ( )A. (2,1)-B. (1,1)-C. (1,3)D. )3,2(-2.(2014新课标Ⅱ文1)已知集合{}2,0,2A =-,{}2|20B x x x =--=,则A B =I ( ) A.∅ B.{}2 C.{}0 D.{}2-3(2014江西文2)设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()A B =R I ð( ).A.(3,0)-B.(3,1)--C.(3,1]--D.(3,3)- 4(2014辽宁文1)已知全集U =R ,{|0}A x x =≤,{|1}B x x =≥,则集合()U A B =U ð( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<5.(2014陕西文1)设集合{}{}2|0|1M x x x N x x x =∈=<∈R R ≥,,,,则M N =I ( ). A.[]0,1 B.()0,1 C.(]0,1 D. [)0,1 6.(2014四川文1)已知集合()(){}120A x x x =+-„,集合B 为整数集,则A B =I ( ).A.{}1,0-B.{}0,1C.{}2,1,0,1--D.{}1,0,1,2-7.(2014北京文1)若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( ) A.{}0,1,2,3,4 B.{}0,4 C.{}1,2 D.{}38.(2014大纲文1)设集合{12468}{123567}M N ==,,,,,,,,,,,则M N I 中元素的个数为( ).A .2B .3C .5D .79.(2014福建文1)若集合}{}{24,3,P x x Q x x =<=≤≥则P Q I 等于( )A.}{34x x <≤B.}{34x x <<C.}{23x x <≤D. }{23x x ≤≤10.(2014广东文1)已知集合{}{}2,3,4,0,2,3,5M N ==,则M N =I ( ).A.{}0,2B.{}2,3C.{}3,4D. {}3,511.(2014湖北文1)已知全集{}1234567U =,,,,,,,集合{}1356A =,,,,则U A =ð ( ). A .{}1356,,, B .{}237,, C .{}247,, D . {}257,,12.(2014湖南文2)已知集合{|2}A x x =>,{|13}B x x =<<,则A B =I ( ).A.{|2}x x >B. {|1}x x >C.{|23}x x <<D. {|13}x x <<13.(2014江苏1)已知集合{}2134A =--,,,,{}123B =-,,,则A B =I .14(2014重庆文11)已知集合{3451213}{235813}A B A B ===I ,,,,,,,,,,则 . 15.(2015重庆文1)已知集合{}1,2,3A =,{}1,3B =,则A B =I ( ).A.{2}B.{1,2}C.{1,3}D. {1,2,3}16.(2015广东文1)若集合{}1,1M =-,{}2,1,0N =-,则M N =I ( ).A .{}0,1-B .{}0C .{}1D .{}1,1-17.(2015天津文1)已知全集{}1,2,3,4,5,6U =,集合{}2,3,4A =,集合{}1,3,4,6B =, 则集合U A B =I ð( ).A.{}3B. {}2,5C. {}1,4,6D.{}2,3,518.(2015安徽文2)设全集{}1,2,3,4,5,6U =,{}1,2A =,{}2,3,4B =,则()U A B =I ð ( ).A. {}1,2,5,6B. {}1C. {}2D. {}1,2,3,4 19.(2015全国I 文1)已知集合{32,},{6,8,10,12,14}A x x n n B ==+∈=N ,则集合A B I 中元素的个数为( ).A. 5B. 4C. 3D. 220.(2015北京文1)若集合{}52A x x =-<<,{}33B x x =-<<,则A B =I ( ). A. {}32x x -<< B. {}52x x -<< C. {}33x x -<< D. {}53x x -<< 21.(2015全国II 文1)已知集合{|12}A x x =-<<,{}03B x x =<<,则=B A Y ( ).A. ()13,-B. ()10,-C. ()02,D. ()23,22.(2015山东文1)已知集合{}|24A x x =<<,{}|(1)(3)0B x x x =--<,则 A B =I ( ).A. (13),B. (14),C. (23),D. (24),23.(2015四川文1) 设集合{}12A x x =-<<,集合{}13B x x =<<,则A B =U ( ).A. {}13x x -<<B. {}11x x -<<C. {}12x x <<D. {}23x x <<24.(2015浙江文1)已知集合{}223P x x x =-…,{}24Q x x =<<,则=I P Q ( ). A. [)34, B. (]23, C.()12-, D.(]13-,25.(2015湖南文11)已知集合{}1,2,3,4U =,{}1,3A =,{}1,3,4B =,则()U A B =U ð .26.(2015江苏1)已知集合{}1,2,3A =,{}2,4,5B =,则集合A B U 中元素的个数 为 .27.(2016北京文1)已知集合{}24A x x =<<,{}35B x x x =<>或,则A B =I ( ). A. {}25x x << B. {}45x x x <>或 C. {}23x x << D.{}25x x x <>或28.(2016全国丙文1)设集合{0,2,4,6,8,10}A =,{4,8}B =,则A B =ð( ).A.{}4,8B.{}0,2,6C.{}0,2,6,10D.{}0,2,4,6,8,10 29.(2016全国甲文1)已知集合{}1,2,3A =,{}2|9B x x =<,则A B =I ( ). A.{}2,1,0,1,2,3-- B.{}2,1,0,1,2-- C.{}1,2,3 D.{}1,230.(2016山东文1)设集合{123456}{135}{345}U A B ===,,,,,,,,,,,,则()=U A B U ð( ).A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}31.(2016浙江文1)已知全集{}12,3456U =,,,,,集合{}13,5P =,,{}124Q =,,,则()U P Q =U ð( ).A.{}1B.{}3,5C.{}1,2,4,6D.{}1,2,3,4,532.(2016江苏卷1)已知集合{}1,2,3,6A =-,{}23B x x =-<<,则A B =I .33.(2016上海文1)设x ∈R ,则不等式31x -<的解集为 . 34.(2017全国1文1)已知集合{}2A x x =<,{}320B x x =->,则( ). A .32A B x x ⎧⎫=<⎨⎬⎩⎭I B .A B =∅I C .32A B x x ⎧⎫=<⎨⎬⎩⎭U D .A B =R U 35.(2017全国2文1)设集合{}123A =,,,{}234B =,,,则=A B U ( ). A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,36(2017全国3文1)已知集合{}1234A =,,,,{}2468B =,,,,则A B I 中元素的个数为( ).A .1B .2C .3D .437.(2017北京文1)已知U =R ,集合{|22}A x x x =<->或,则U A =ð( ).A.(2,2)-B.(,2)(2,)-∞-+∞UC.[2,2]-D.(,2][2,)-∞-+∞U38.(2017山东文1)设集合{}11M x x =-<,{}2N x x =<,则M N =I ( ). A. ()1,1- B. ()1,2- C. ()0,2D. ()1,2 39(2017天津文1)设集合{}1,2,6A =,{}2,4B =,{}1,2,3,4C =,则()A B C =U I ( ). A.{}2 B.{}1,2,4 C.{}1,2,4,6 D.{}1,2,3,4,640.(2017浙江1)已知集合{}11P x x =-<<,{}02Q x x =<<,那么P Q =U ( ).A.()1,2-B.()01,C.()1,0-D.()1,2。
2022四川高考数学试题及答案解析

2022四川⾼考数学试题及答案解析2022四川⾼考数学试题及答案解析⼀、选择题(5×12=60分)1、设集合={|},={|}.则=A. {|-7<<-5 }B. {| 3<<5 }C. {| -5 <<3}D. {| -7<<5 }【答案】C【解析】={| },={|}∴={| -5 <<3}2、函数的反函数是 A. B. C. D.【答案】C 【解析】由,⼜因原函数的值域是,∴其反函数是3、等差数列{}的公差不为零,⾸项=1,是和的等⽐中项,则数列的前10项之和是A. 90B. 100C. 145D. 190【答案】B【解析】设公差为,则.∵≠0,解得=2,∴=1004、已知函数,下⾯结论错误的是A. 函数的最⼩正周期为2B. 函数在区间[0,]上是增函数C.函数的图象关于直线=0对称D. 函数是奇函数【答案】D 【解析】∵,∴A 、B 、C 均正确,故错误的是D【易错提醒】利⽤诱导公式时,出现符号错误。
5、设矩形的长为,宽为,其⽐满⾜∶=,这种矩形给⼈以美感,称为黄⾦矩形。
黄⾦矩形常应⽤于⼯艺品设计中。
下⾯是某⼯艺品⼚随机抽取两个批次的初加⼯矩形宽度与长度的⽐值样本:甲批次:0.598 0.625 0.628 0.595 0.639⼄批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618⽐较,正确结论是 A. 甲批次的总体平均数与标准值更接近 B. ⼄批次的总体平均数与标准值更接近C. 两个批次总体平均数与标准值接近程度相同D. 两个批次总体平均数与标准值接近程度不能确定【答案】A【解析】甲批次的平均数为0.617,⼄批次的平均数为0.613【备考提⽰】⽤以上各数据与0.618(或0.6)的差进⾏计算,以减少计算量,说明多思则少算。
6、如图,已知六棱锥的底⾯是正六边形,则下列结论正确的是A.B.C. 直线∥D. 直线所成的⾓为45°【答案】D【解析】∵AD与PB在平⾯的射影AB不垂直,所以A不成⽴,⼜,平⾯PAB⊥平⾯PAE,所以也不成⽴;BC∥AD∥平⾯PAD, ∴直线∥也不成⽴。