第十一讲-全等三角形(四)
人教版八年级数学上册《全等三角形的判定(第4课时)》示范教学课件

例3 如图,已知 AD 为△ABC的高,E 为 AC 上一点,BE 交AD 于点 F,且有 BF=AC,FD=CD.求证:BE⊥AC.
一锐角(A)
ASA或AAS
直角与已知锐角的夹边对应相等及锐角(或直角)的对边对应相等
斜边(H)
HL或AAS
一条直角边对应相等或一组锐角对应相等
一直角边(L)
HL或ASA或AAS
斜边对应相等或与已知边相邻的锐角对应相等或已知边所对的锐角对应相等
三角形全等的判定
对任意三角形均成立
仅适用于直Байду номын сангаас三角形
“边边边”或“SSS”
此判定方法在三角形是直角三角形的前提下,只需满足两条边(斜边与一直角边)相等即可,之前的判定方法都需满足三个条件.
问题
“HL”判定方法:斜边和一条直角边分别相等的两个直角三角形全等.此判定方法只适用于直角三角形.
判定直角三角形全等的方法
直角三角形
已知对应相等的元素
可选择的判定方法
需寻找的条件
操作
B′
A′
画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB: (1)画∠MC′N=90°; (2)在射线 C′M 上取 B′C′=BC; (3)以点 B′ 为圆心,AB 长为半径画弧,交射线 C′N 于点 A′; (4)连接 A′B′.
B′
A′
画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB: (1)画∠MC′N=90°; (2)在射线 C′M 上取 B′C′=BC; (3)以点 B′ 为圆心,AB 长为半径画弧,交射线 C′N 于点 A′; (4)连接 A′B′.
七年级(下)数学 第11讲 全等三角形的概念和性质及判定

本节主要针对全等三角形的相关概念和性质及全等三角形的判定进行讲解,重点是全等三角形的性质的运用和判定两个三角形全等的四个判定定理,要求同学们可以达到灵活运用判定定理进行说明三角形全等的理由.本节课是几何说理的基础,综合性不高,相对简单.一、全等形、全等三角形及其相关的概念 (1) 全等形:能够重合的两个图形叫做全等形.(2) 能够完全重合的两个三角形叫做全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边. 如下图所示:已知:△ABC ≌DFE ,A 与D ,B 与F 是对应顶点,则:(C 与E 是对应顶点) 对应边有:AB 与DF ,AC 与DE ,BC 与FE . 对应角有:A D B F C E ∠∠∠∠∠∠与,与,与.全等三角形的概念性质和判定内容分析知识结构模块一 全等三角形的概念和性质知识精讲ABCDEF- 2 -二、全等三角形的数学语言:三角形ABC 与三角形A′B′C′全等,记作△ABC ≌△A′B′C′,读作“三角形ABC 全等于三角形A′B′C′ ”. 三、全等三角形的性质:(1)全等三角形的对应边相等,对应角相等; (2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等. 四、全等三角形中应注意的问题:(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义; (2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; 五、画三角形:确定三角形形状、大小的条件:六个元素(三条边、三个角)中的如下三个元素: ①两角及其夹边; ②两边及其夹角; ③三边.【例1】 下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等【例2】 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等【例3】 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( ) A .∠1=∠2 B .AC =CA C .∠B =∠D D .AC =BC例题解析21ABCD【例4】 下列各条件中,不能作出唯一的三角形的是 ( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【例5】 练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=;(2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===;(3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒;(4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒.【例6】 下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是( )A .1个B .2个C .3个D .4个【例7】 下列说法中错误的是()A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边- 4 -【例8】 如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 ( ) A .80° B .100° C .60° D .45°【例9】 如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长.【例10】 如图,在△ABC 中,∠ A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,使旋转前后的△A′B′C′中的顶点B′在原三角形的边AC 的延长线上,求∠BCA′的度数.【例11】 如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =105°,∠CAD =10°,∠ADE =25°,求∠DFB 和∠AGB 的度数.α321AB CDEP1ABCDEFABCA′B′A BCD EF G本模块复习了全等三角形的4个判定定理,主要是已知条件为“两边及夹角对应相等(SAS )”,“两角及夹边对应相等(ASA )”,“两角及其中一角的对边对应相等(AAS )”“三边对应相等(SSS )”的两个三角形全等.【例12】 如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由.【例13】 如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么?【例14】 如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由.模块二 全等三角形的判定知识精讲例题解析ABCDEF21AB C DEABCDE- 6 -【例15】 如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由.【例16】 如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由.【例17】 如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由.【例18】 如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由.【例19】 如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么? (2) 说明AB =CD 的理由; (3) 图中有哪几对全等三角形?ABCDABC D EFABCD EFO ABCDEOABCDEF【例20】 如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由.【例21】 如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由.【例22】 如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由.【例23】 如图,线段BE 上有一点C ,以BC 、CE 为边分别在BE 的同侧作等边三角形ABC 、DCE ,连结AE 、BD ,分别交CD 、CA 于Q 、P .(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由; (2)取AE 的中点M 、BD 的中点N ,连结MN ,试判断△CMN 的形状.ABCDMABCDE ABC DEO2121A BCDEQP ABCDEMN PQ- 8 -【例24】 如图,△ABC 是等腰直角三角形,其中CA =CB ,四边形CDEF 是正方形,连接AF 、BD .(1)观察图形,猜想AF 与BD 之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF 绕点C 按顺时针方向旋转,使正方形CDEF 的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.【习题1】 下列命题中正确的是 ( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等【习题2】 如图,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD =7厘米,DM =5厘米,∠DAM =39°,则AN = 厘米,NM =_________厘米,∠NAB = .随堂检测A BCDMNABCD EF【习题3】 如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,(1)若AC //DB ,且AC =DB ,则△ACE ≌△BDF ,根据____________; (2)若AC //DB ,且AE =BF ,则△ACE ≌△BDF ,根据____________; (3)若AE =BF ,且CE =DF ,则△ACE ≌△BDF ,根据_____________; (4)若AC =BD ,AE =BF ,CE =DF .则△ACE ≌△BDF ,根据_______.【习题4】 如图,已知△ABC ≌△ADE , ∠CAD =15°,∠DFB =90°,∠B =25°.求∠E 和∠DGB 的度数.【习题5】 如图:A 、E 、F 、C 四点在同一条直线上,AE =CF ,过E 、F 分别作BE ⊥AC 、DF ⊥AC ,且AB ∥CD ,AB =CD .试说明:BD 平分EF .【习题6】 已知:如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC于点G ,•在GD 的延长线上取点E ,使DE =DB ,连结AE 、CD . 试说明:△AGE ≌△DAC .ABCEDFABC D EFG ABCDE FGABCDE FG- 10 -【习题7】 在∠O 的两边上分别取点A 、D 和B 、C ,连接AC 、BD 相交于P .(1)若∠A =∠B ,P A =PB ,试说明OA =OB 的理由; (2)若OA =OB ,P A =PB ,试说明PC =PD 的理由.【作业1】 如图,△ABC ≌△ABD ,C 和D 是对应顶点,若AB =6cm ,AC =5cm ,BC =4cm ,则AD 的长为_________cm .【作业2】 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF ===∠∠,,; ③B E BC EF C F ===∠∠∠∠,,; ④AB DE AC DF B E ===∠∠,,.其中,能使ABC DEF △≌△的条件共有 ( ) A .1组 B .2组 C .3组 D .4组【作业3】 下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【作业4】 已知△ABC ≌△DEF ,若△ABC 的周长为32,AB =8,BC =12,则DE =_______,DF =_______,EF = _______.课后作业ABC DEFABCDPOAB CDP OABCD【作业5】 如图△ACE ≌△DBF ,AE =DF ,CE =BF ,AD =8,BC =2.(1)求AC 的长度;(2)说明CE ∥BF 的理由.【作业6】 如图,已知△ABC ≌△AED ,AE =AB ,AD =AC , ∠D -∠E =20°,∠BAC =60°,求∠C 的度数.【作业7】 如图,△DAC 和△EBC 均是等边三角形,点C 在线段AB 上,AE 、BD 分别与CD 、 CE 交于点M 、 N ,有如下结论①△ACE ≌△DCB ;② CM =CN ;③ AC =DN .其中正确的结论是 ,证明正确的结论.【作业8】 如图,AD ⊥AB ,AC ⊥AE ,且AD =AB ,AC =AE .试说明:DC =BE ,DC ⊥BE .ABCDEABCD EM NABC DEGABCDEF。
北师大七年级下-第11讲-三角形的认识和图形全等

三角形的认识和图形全等三角形的有关概念由3条不在同一条直线上的线段,首尾顺次相接所组成的图形叫做三角形.三角形有3条边、3个顶点和3个内角.三角形的边和角称为三角形的基本元素.如图,线段BC、CA、AB是三角形的边,也可以分别用表示;点A、B、C是三角形的顶点.∠A、∠B、∠C是相邻两边所组成的角,叫做三角形的内角,简称为三角形的角.三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”.三角形的分类三角形按角可以分成如下三类:三角形按边可以分成如下两类:三角形的三边之间的关系(1)三角形的任意两边之和大于第三边,若三角形的三边为a,b,c,则a+b>c,b+c>a,c+a>b;(2)三角形的任意两边之差小于第三边.若三角形的三边为a,b,c,则 a-b<c,b-c<a,c-a<b(3)三角形的边的不等关系的应用和作用.①判断三条线段a、b、c能否组成三角形,其判断方法有如下三种:1°当a+b>c,b+c>a,c+a>b都成立,即三条边都小于其它两条边之和时,能组成三角形;2°当|a-b|<c<a+b时,即任意一条边大于其它两条边差的绝对值(即大边减小边),而小于其它两条边之和,可以构成三角形;3°当a最长,且有b+c>a时,即最大边小于其它两条边之和时可以构成三角形.②确定三角形第三边的取值范围:两边之差的绝对值<第三边<两边之和如果三角形已知两边分别为a、b,第三边为c,则|a-b|<c<a+b从而得到三角形的周长的取值范围,设a>b,则2a<a+b+c<2(a+b)③说明线段的不等关系.三角形的特殊线段(1)三角形的角平分线在三角形中,一个内角的平分线与对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.如图,∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线.一个三角形有三条角平分线,并且都在三角形的内部,它们相交于一点,这一点叫做三角形的内心.(2)三角形的中线在三角形中,连接一个顶点和它对边中点的线段,叫做三角形的中线.如图,连接△ABC的顶点A和它所对的边BC的中点E,所得线段AE叫做△ABC的边BC上的中线.一个三角形有三条中线,并且都在三角形的内部,它们相交于一点,这一点叫三角形的重心.(3)三角形的高在三角形中,从一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为F.那么线段AF叫△ABC的边BC上的高.三角形有三条高,且它们(或它们的延长线)相交于一点,这个交点叫做三角形的垂心.注意:①锐角三角形的三条高,都在三角形的内部.②直角三角形的三条高,有一条在三角形的内部,另外两条在三角形的边上.③钝角三角形的三条高,有一条在三角形的内部,另外两条在三角形的外部.典型例题讲解例1、如图所示,图中三角形的个数共有()A.1个B.2个C.3 个D.4个解析:由三条线段首尾顺次相连得到图形为三角形,所以图中三角形有△ABD,△ABC和△ADC,共有三个.答案:C例2、有四根长度分别为10cm、6cm、5cm、3cm的钢条,以其中三根为边,焊接成一个三角框架,问此三角形框架的周长可能是多少?分析:在四根钢条中任选3根,也就是在4根中去掉1根,共有四种情况,分类讨论在每种情况下能否构成三角形,即是否满足“三角形的任意两边之和大于第三边”.解:此三角形框架三边长有以下四种情况:⑴当三线段长分别为6cm、5cm、3cm时,周长为14cm;⑵当三线段长分别为10cm、5cm、3cm时,不能构成三角形;⑶当三线段长别为10cm、6cm、3cm时,不能构成三角形;⑷当三线段长别为10cm、6cm、5cm时,周长为21cm.所以此三角形框架的周长可能是14cm或21cm.例3、一个三角形的三条边中有两条边相等,且一边长为4,还有一边长为9,则它的周长是()A.17 B.22 C.17或22 D.13分析:计算等腰三角形的边长或周长时,常要分类讨论谁是腰,谁是底,这时往往忽略三边关系是前提条件.若第三边长是4,由于4+4<9,不符合三边关系定理,所以第三边只能为9,从而知周长为4+9+9=22,故选B.答案:B点评:分类讨论时应注意验证三边关系.例4、如图,在等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长.分析:由题意可知,中线BD将的周长分为AB+AD和BC+CD两部分,故有两种可能:⑴⑵再由AB=AC=2AD=2CD,知⑴式成立,⑵式不成立.解:设AB=AC=2x,则AD=CD=x.⑴当AB+AD=15,且BC+CD=6时,有2x+x=15,x=5,所以2x=10,BC=6-5=1.⑵当BC+CD=15,AB+AD=6时,有2x+x=6,x=2,所以2x=4 ,AB=AC=4,BC=13,又因为4+4=8<13,这与“三角形任意两边之和大于第三边”相矛盾,故不能组成三角形.答:这个三角形的腰长为10,底边长为1.点评:分类讨论是研究几何问题常用的数学思想方法,要求不重不漏;把线段长设为未知数,列方程解几何题是将问题化难为易的有效方法;要考虑求解结果是否满足三角形三边关系.全等图形(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.典型例题讲解例1.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形选:D.【点评】此题主要考查了全等图形的性质与判定,正确利用全等图形的性质得出是解题关键.例2.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等图形的面积相等,面积相等的两个图形是全等图形D.全等三角形的对应边相等,对应角相等选:C.【点评】此题主要考查了全等图形的定义与性质,正确掌握全等图形的性质是解题关键.例3.如图为正方形网格,则∠1+∠2+∠3=()A.105°B.120°C.115°D.135°选:D.例4.下列四个图形中,全等的图形是()A.①和②B.①和③C.②和③D.③和④选:D.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.例5.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a ,b ,c ,e ,α各字母所表示的值.【解答】解:对应顶点:A 和G ,E 和F ,D 和J ,C 和I ,B 和H , 对应边:AB 和GH ,AE 和GF ,ED 和FJ ,CD 和JI ,BC 和HI ;对应角:∠A 和∠G,∠B 和∠H,∠C 和∠I,∠D 和∠J,∠E 和∠F; ∵两个五边形全等,∴a=12,c=8,b=10,e=11,α=90°.【点评】此题主要全等图形,关键是找准对应顶点,全等图形,对应边相等,对应角相等.测试11、两根木棒的长分别为7cm 和10cm ,要选择第三根木棒,将它们订成一个三角形框架,那么第三根木棒长xcm 的范围是________.3cm<x<17cm2、如图,在△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =4cm 2,则S 阴影=________.1cm 23、已知△ABC 的三边长为5,12,3x -4,周长为偶数,求整数x 及周长.解:先求x 的取值范围,∴12-5<3x -4<12+5,即113<x <7,而x 为整数,∴x=4、5或6.若周长12+5+3x -4=13+3x 是偶数,则x 为奇数, ∴x=5,从而周长为5+12+3x -4=28.4、如图,在△ABC 中,AB=AC ,AC 上的中线把三角形的周长分为24cm 和30cm 的两个部分,求三角形各边的长.解:因为BD 是中线,所以AD=DC ,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论. 解:设AB=AC=2x ,则AD=CD=x ,(1)当AB +AD=30,BC +CD=24时,有2x +x=30,∴x=10,2x=20,BC=24-10=14,三边分别为:20cm ,20cm ,14cm . (2)当AB +AD=24,BC +CD=30,有2x +x=24∴x=8,BC=30-8=22,三边分别为16cm ,16cm ,22cm . 5、如图,P 是△ABC 内一点,试说明AB +AC>PB +PC 成立的理由.要添加辅助线,构造新的三角形.比较明显的辅助线可以作BP或CP的延长线.解答:延长BP交AC于D,解:(1)1;4;10(2)(3)平面上有n个点,过不在同一条直线上的三点可以确定一个三角形,取第一个点A有n种取法,取67、设m,n,p均为自然数,满足,且m+n+p=15,试问以m,n,p为边长的三角形有多少个?分析:本题考查三角形三边之间的关系.A.全等三角形的大小相等B.两个等边三角形一定是全等三角形C.全等三角形的形状相同D.全等三角形的对应边相等选B.【点评】本题考查了全等三角形的定义与性质,能够完全重合的两个三角形叫做全等三角形,即形状相同、大小相等两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等.2.下列说法:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的周长相等;(4)周长相等的两个三角形相等;(5)全等三角形的面积相等;(6)面积相等的两个三角形全等.其中不正确的是()A.(4)(5) B.(4)(6) C.(3)(6) D.(3)(4)(5)(6)选:B.【点评】此题主要考查了全等三角形,以及全等三角形的性质,关键是掌握能够完全重合的两个三角形叫做全等三角形.3.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CA C.AB=AD D.∠B=∠D选C.4.下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形选D.5.全等三角形用符号≌来表示;其对应边相等,对应角相等.6.如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于585°.7.找出全等图形.【解答】解:由图形可得出:(1)和(8);(2)和(6);(3)和(9);(5)和(7);(13)和(14)是全等图形.课后作业1、以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个2、已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是()A.2a B.-2bC.2a+2b D.2b-2c3、一个三角形三边之比为3︰4︰5,则这个三角形三边上的高线之比为()A.3,4,5 B.4,5,6C.10︰7︰5 D.20︰15︰124、如图,ΔABC,ΔADE及ΔEFG都是等边三角形,D和G分别为AC和AE的中点.若AB = 4时,则图形ABCDEFG 外围的周长是()A.12 B.15C.18 D.215、若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有().A.2对B.3对C.4对D.6对6、设三角形三边之长分别为3,8,1-2a,则a的取值范围为()A.-6<a<-3 B.-5<a<-2C.-2<a<5 D.a<-5或a>27、以7和3为两边长,另一边的长是整数,这样的三角形一共有()A.2个B.3个C.4个D.5个8、下列判断正确的是()(1)平分三角形内角的射线叫三角形的角平分线;(2)三角形的中线、角平分线都是线段;(3)一个三角形有三条角平分线和三条中线;(4)三角形的中线是经过顶点和对边中点的直线.A.(1)(2)(3)(4) C.(3)(4)B.(2)(3)(4) D.(2)(3)9、等腰三角形的各边长都是正整数,且周长为12,这样的三角形有()A.0个B.1个C.2个D.3个10、若自然数a、b、c为三角形的三边,且a≤b≤c,b=4,问这样的三角形有()个.A.4 B.6C.8 D.10答案:CDDBB BDDCD11、观察下列图形,则第n个图形中三角形的个数是()A.B.C.D.解析:第1个图形中有4个三角形;第2个图形中有8个三角形; 第3个图形中有12个三角形; ……由此规律,第n 个图形中有4n 个三角形. 答案:D12、下列长度的三条线段能组成三角形的是( )A .1cm ,2cm ,3.5cmB .4cm ,5cm ,9cmC .5cm ,8cm ,15cmD .6cm ,8cm ,9cm 解析:选项A 中1+2<3.5不能组成三角形;选项B 中4+5=9不能组成三角形;选项C 中5+8<15不能组成三角形;而D 中6+8>9,符合三角形三边关系,故选D.答案:D13、不等边△ABC 的两边高分别为4和12,若第三边上的高也是整数,试求它的长.分析:由两边上的高4和12可以求出这两边的关系,从而可以表示出第三边的取值范围,再用面积法可以求出第三边上的高.解答:设第三边c 边上高为h ,三角形面积为S ,高为4,12的两边为a ,b ,则有,∴a=2S 4,b=2S 12,c=2Sh . 据三角形三边关系,得,∴.∵h 为整数,∴h=4或5.又∵三角形为不等边三角形,∴h=5.14、如图,AD 是△ABC 的角平分线,DE∥AC,交AB 于点E ,DF∥AB,交AC 于点F.图中DA 是否平分∠EDF,为什么?解:图中DA 平分∠EDF.理由:由ED∥AC,得∠EDA=∠CAD. 同理,由DF∥AB, 得∠FDA=∠BAD.又由AD 是△ABC 的角平分线,得∠BAD=∠CAD. 所以∠EDA=∠FDA,即DA 平分∠EDF.点评:一个图形中,若具有“角平分线”与“平行线”的条件常常可以找到等角.。
《全等三角形》说课稿(通用4篇)

《全等三角形》说课稿(通用4篇)《全等三角形》篇1教师在吃透教材、简析教材内容、教学目的、教学重点、难点的基础上,遵循整体构思、融为一体、综合论述的原则,分块写清,分步阐述教学内容,以进一步提高教学效果。
下面是由小编为大家带来的关于《全等三角形》说课稿,希望能够帮到您!尊敬的各位评委老师:大家好!今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》。
下面,我将从教材分析、教学方法、教学过程等几个方面对本课的设计进行说明。
一、说教材全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。
本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。
本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。
通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
二、说学情学生在小学阶段已经学习了三角形的性质和类型,已经知道三角形可以分为锐角三角形、钝角三角形和直角三角形,但是对于全等三角形这一特殊的三角形却还是一个新的知识点。
三角形是最基本的几何图形之一,它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用。
学生对于研究它的全等的判定有着足够的感知经验,但是也存在着以下困难:全等三角形的判定对于学生的识图能力和逻辑思维能力是一个挑战,特别是学生的逻辑思维能力,在此之前,学生所接触的逻辑判断中直观多余抽象,用自己的语言表述多于用数学语言表述。
所以,怎样引导学生发挥认知和操作方面的经验,为掌握规范和有效的数学思维方式服务将是学习本节内容的关键。
三、说教学目标本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。
根据课程标准,确定本节课的教学目标如下:1.知识目标:(1)理解全等三角形的概念。
第十一讲全等三角形的判定(教案)

1.针对不同学生的掌握程度,进行分层教学,让每个学生都能跟上教学进度;
-能够运用判定方法,判断两个三角形是否全等,并理解判定过程中的关键步骤;
-将全等三角形的知识应用于解决实际问题,如几何图形的面积计算、形状识别等。
举例解释:
-重点强调全等三角形的判定方法,通过图例和实际操作,让学生理解并掌握SSS、SAS、ASA、AAS的具体应用;
-在讲解过程中,突出判定过程中的关键步骤,如对齐对应边、确认对应角等;
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用剪刀和纸片制作全等三角形,并尝试用不同的判定方法证明它们全等。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“全等三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.重点难点解析:在讲授过程中,我会特别强调SSS、SAS、ASA、AAS这四种判定方法。对于难点部分,我会通过图例和实际操作来帮助大家理解如何选择合适的判定方法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题,如如何在平面图形中找出全等三角形。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指能够完全重合的两个三角形,它们的对应边和对应角都相等。它是研究几何图形性质和解决几何问题的重要基础。
全等三角形》讲义(完整版)

全等三角形》讲义(完整版)全等三角形讲义全等三角形定义:若两个三角形形状大小相同,能够完全重合,则它们是全等形三角形。
对应顶点、对应边、对应角均重合。
全等三角形的性质是对应边相等,对应角相等。
全等三角形判定定理:1.边边边定理(SSS):若两个三角形的三条边对应相等,则它们是全等三角形。
2.边角边定理(SAS):若两个三角形的一条边和它们的夹角对应相等,且另一条边对应相等,则它们是全等三角形。
3.角边角定理(ASA):若两个三角形的两个角和它们的夹边对应相等,则它们是全等三角形。
4.角角边定理(AAS):若两个三角形的两个角和其中一个角的对边对应相等,则它们是全等三角形。
5.斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则它们是全等三角形。
角平分线的性质:在角平分线上的点到角的两边的距离相等。
角平分线的判定:到角的两边距离相等的点在角的平分线上。
三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。
典型例题举例:1.已知△ABN≌△ACM,对应角为∠B和∠C,对应边为AB和AC。
2.已知AB=AC,AD是连结点A与BC中点D的支架,求证△ABD≌△ACD。
3.已知点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF,求证△ABE≌△CDF。
4.在△ABC中,D在AB上,E在AC上,AB=AC,∠B =∠C,求证AD=AE。
5.已知∠1=∠2,∠3=∠4,求证AC=AD,其中D是线段BC上的一点,且BD=DC。
6.在图中,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,判断AB是否平行于CD,说明理由。
7.在图1中,△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,判断△ABC与△AEG 面积之间的关系,并说明理由。
8.在图中,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF,求证DF=EF。
七年级第十一讲全等三角形证明方法

名师堂七年级数学第十一讲证明全等三角形的一般方法重点难点拓展1 通过连结,延长,作垂直,作平行线等添加辅助线的方法,构造全等三角形。
2遇到有中点条件时,常常延长中线(即倍长中线),或以中点为旋转中心,使分散的条件汇集起来。
3遇到求边之间的和,差,倍数关系时,通常采用截长补短的方法,求角度之间的关系时,也一样。
全等三角形具有对应边相等和对应角相等的性质,是证明线段相等或角相等的依据,因此,掌握全等三角形的证明方法特别重要。
下面举例介绍证明两个三角形全等的一般思路,供同学们学习时参考。
一、当已知两个三角形中有两边对应相等时,找夹角相等(SAS)或第三边相等(SSS)。
例1.如图1,已知:AC=BC,CD=CE,∠ACB=∠DCE=60°,且B、C、D在同一条直线上。
求证:AD=BEAEB C D图1二、当已知两个三角形中有两角对应相等时,找夹边对应相等(ASA)或找任一等角的对边对应相等(AAS)例2. 如图2,已知点A、B、C、D在同一直线上,AC=BD,AM∥CN,BM∥DN。
求证:AM=CNM NA CB D图2三、当已知两个三角形中,有一边和一角对应相等时,可找另一角对应相等(AAS,ASA)或找夹等角的另一边对应相等(SAS)例3. 如图3,已知:∠CAB=∠DBA,AC=BD,AC交BD于点O。
求证:△CAB≌DBAD COA B图3四、已知两直角三角形中,当有一边对应相等时,可找另一边对应相等或一锐角对应相等例4.如图4,已知AB=AC,AD=AG,AE⊥BG交BG的延长线于E,AF ⊥CD交CD的延长线于F。
求证:AE=AFAF ED GB C图4五、当已知图形中无现存的全等三角形时,可通过添作辅助线构成证题所需的三角形例5.如图5,已知△ABC 中,∠BAC =90°,AB =AC ,BD 是中线,AE ⊥BD 于F ,交BC 于E 。
求证:∠ADB =∠CDEA图5例6、如图,在⊿ABC 中,AB=AC,B D ⊥AC 于D,求证∠1=21∠BAC.例7、 如图所示,⊿ABC 中,AD 平分∠BAC 交BC 于点D,E F ⊥AD 交BC 的延长线于F,且E 是AD 的中点,求证∠B=∠CAF.例8、在直角⊿ABC中,AB=AC,∠BAC=90°,∠1=∠2,C E⊥BD的延长线于E.求证BD=2CE.例9、已知⊿ABC为等边三角形,点M是边BC所在直线上任意一点,点N 是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,(1)如图甲,求证∠BQM=60°.(2) 如图已所示,试猜想∠BQM的度数,并证明你的结论。
三角形全等三角形(4)(PPT)3-3

尝试探究:
已知线段c=5cm,a=4cm,画一个直角三角形,使∠C=90° 直角边BC=a, 斜边AB=c.
a
画法:
c
第一步:作∠MCN=90°;
第二步:在射线CM上截取CB=a.
第三步:以B为圆心,c为半径画弧交 射线CN于点A
c 第四步:连结AB
a
第五步:下结论
将Rt△ABC剪下,再叠在一起,你有什么惊人的发现?
教学重点:
研究直角三角形全等的条件
教学难点:
灵பைடு நூலகம்运用三角形全等的条件证明
宜在~℃条件下生长,幼苗可耐℃以上的高温;直根膨大期的适宜温度是~8℃。胡萝卜对光照有较高的要求,特别在肉质根肥大期间,一定要保证其充足的 光照,否则就会降低产量、影响质量。种植期间要保证土壤湿润,特别是发芽期更是不能缺水,植株形成期若土壤过干,会造成肉质根细小、粗糙,外形不 正,质地粗硬。胡萝卜适宜生长;十四五规划 产业园区规划 / 十四五规划 产业园区规划 ; 在土层深厚肥沃、排水良好的壤土 或沙壤土中。为让根部有充裕的生长空间,栽培容器至少要cm宽,高度至少要~cm。 [] 分布范围 胡萝卜是全球性十大蔬菜作物之一,适应性强,易栽培, 种植十分普遍。胡萝卜在亚洲、欧洲和美洲地区分布最多。根据联合国粮食与农业组织(FAO)统计,年全世界胡萝卜的栽培总面积为.万公顷,其中亚洲为. 万公顷,欧洲为8.万公顷,北美洲为.万公顷,南美洲为.万公顷,非洲为.万公顷,大洋洲为.万公顷。近几年,除了亚洲栽培面积増幅较快之外,其他洲变化 较小。年中国胡萝卜栽培面积达到.万公顷,约占全世界栽培面积的.%,已成为世界第一胡萝卜生产国。 [] 主要品种 根据肉质根的形状特征,一般可分为以 下三种类型: ⑴短圆锥类型。一般根长~cm,最短的根近圆形,长仅~cm。早熟、耐热、产量低,春季栽培抽薹迟。如烟台三寸胡萝卜,外皮及内部均为 橘红色,单根重~g,肉厚、心柱细、质嫩、味甜,宜生食。 [] ⑵长圆柱类型。晚熟,根细长,肩部粗大,根前端钝圆,一般根长8~cm。如南京、的长红 胡萝卜,湖北麻城棒槌胡萝卜,安徽肥东黄胡萝卜,西安齐头红,岐山透心红,凤翔透心红,广东麦村胡萝卜,日本五寸参等。 [] ⑶长圆锥类型。一般根 长~cm,多为中、晚熟品种,味甜,耐贮藏。如宝鸡新透心红,鞭杆红,济南蜡烛台,内蒙古黄萝卜,烟台五寸胡萝卜,汕头红胡萝卜,红芯~号等。 [] 红森 属杂交品种,芯细,根色、芯色不仅着色好,而且有甜味,口感好;根形呈长圆筒形。中熟品种,吸肥性强,耐寒性优,青肩的发生极少;即使在~月
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲 全等三角形(四)
一[知识要点]
1. 全等三角形判定:________ _________ _________ ________ ____________
2. 全等三角形性质:_____________ _________________ ______________ 二[典型例题]
例1.如图,︒=∠=∠90B A ,,,BE AF CF DE ==求证:AD=BC
例2.如图,AB 交CD 于点O,AD 、CB 的延长线相交于点E, 且OA=OC,EA=EC,你能证明∠A=∠C 吗?点O 在∠AEC 的平分线上吗?
B
A
E
C
D
O
例3.如图,已知∠DCE=90°,∠DAC=90°,BE ⊥AC 于B,且DC=EC, 能否找出与AB+AD 相等的线段,并说明理由.
B A E
C D
例4.如图所示,BC=DE,BE=DC,求证:(1)BC∥DE;(2)∠A=∠ADE.
B A
E
C D
例5..如图,点B,E,C,F在同一条直线上,且AB=DE,AC=DF,BE=CF,则∠A=∠D, 试
说明理由。
例6.如图,△ABC的两条高AD,BE相交于H,且AD=BD。
是说明下列结论成立的理由。
(1)∠DBH=∠DAC;(2)△BDH≌△
ADC.
三[基础练习]
1、在 ABC中,∠B=60°,∠A=70°,则∠C= 。
2、已知三角形三个内角度数的比是1﹕2﹕3,那么这个三角形三个内角的度数分别是。
3、三角形的两条边长分别是5㎝,8㎝,第三边的取值范围是。
4、下列说法正确的是()
A、三角形的角平分线是射线。
B、三角形三条高都在三角形内。
C、三角形的三条角平分线有可能在三角形内,也可能在三角形外。
D、三角形三条中线相交于一点。
5.在Rt△中,两个锐角关系是()
A、互余
B、互补
C、相等
D、以上都不对
6、以下列长度的三条线段为边,能构成三角形的是()
A 、7㎝,8㎝,15㎝
B 、15㎝,20㎝,5㎝
C 、6㎝,7㎝,5㎝
D 、7㎝,6㎝,14㎝ 7、下列图中,是全等的图形是( )
四[提高练习]
8.
如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、
B 间的距
离,但绳子不够长,你能帮他想个主意测量吗?并说明你的理由。
9.如图,已知△ABC ≌△ADE,BC 的边长线交AD 于F,交AE 于G,∠ACB=105°,∠CAD=10°, ∠ADE=25°,求∠DFB 和∠AGB 的度数.
B
A
G E
F C
D
A B A C D B
R
B
P C
S Q A 五[创新练习]
10.Rt △ABC 中,AB=AC ,∠BAC=90 º,直线 为经过点A 的任一直线,BD ⊥ 于D , CE ⊥ 于E ,若BD>CE ,试问:
(1)AD 与CE 的大小关系如何?请说明理由.
(2)线段BD ,DE ,CE 之间的数量之间关系如何?你能说明清楚吗?不妨试一试.
11.如图, △ABC 中, P 、Q 分别是BC 、AC 上的点,作PR ⊥AB , PS ⊥AC ,垂足分别是R 、S.若AQ=PQ,PR=PS. 求证(1)AS=AR;(2)QP ∥AR.。