2020年北师大版数学七年级下册《期末测试题》(附答案解析)
2020北师大版七年级数学下学期期末数学测试题含答案

2020七年级下学期期末数学测试题一.精心选一选 (以下每小题给出的四个选项中,只有一个选项是正确的,将正确选项前的字母填在题后的括号内.本题有10小题,每小题3分,共30分)1.下列各式计算结果正确的是( )A .2a a a =+B .()2263a a =C .()1122+=+a a D .2a a a =⋅ 2.2004年全年国内生产总值按可比价格计算,比上年增长9.5%,达到136515亿元,136515亿元用科学记数法表示(保留4个有效数字)为( )A .121.36510⨯元;B .131.365210⨯元;C .121.36510⨯元;D .121.36510⨯元3.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个4.下列说法正确的是( )A .如果一件事不可能发生,那么它是必然事件,即发生的概率是1;B .概率很大的事情必然发生;C .若一件事情肯定发生,则其发生的概率1≥P ;D .不太可能发生的事情的概率不为05.下列关于作图的语句中正确的是( )A .画直线AB =10厘米;B .画射线OB =10厘米;C .已知A .B .C 三点,过这三点画一条直线;D .过直线AB 外一点画一条直线和直线AB 平行6.如图,已知AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠EFG=40°,则∠EGF 的度数是( )A .60°B .70°C .80°D .90°7.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D .垂线段最短8.下列乘法中,不能运用平方差公式进行运算的是( )A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b )9.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,1l .2l 分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是( )A .骑车的同学比步行的同学晚出发30分钟;B .步行的速度是6千米/时;C .骑车的同学从出发到追上步行的同学用了20分钟;D .骑车的同学和步行的同学同时达到目的地l 23060545006y(千米)x(分)l 1 F E DC BA10.如图,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE ,(2)BC =EF ,(3)AC =DF ,(4)∠A =∠D ,(5)∠B =∠E ,(6)∠C =∠F ,以其中三个作为已知条件,不能..判断△ABC 与△DEF 全等的是( ) A .(1)(5)(2) B .(1)(2)(3) C .(2)(3)(4) D .(4)(6)(1)二、耐心填一填 (请直接将答案填写在题中的横线上,每题3分,共24分)11.等腰三角形的一个角为100°,则它的底角为 .12.()32+-m (_________)=942-m ; ()232+-ab =_____________. 13.某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为__________.14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字3)= ,P(摸到偶数)= .(第15题) (第17题) (第18题)15.如图,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 与l 2相交与点E ,若∠1=43°,则∠2= 度.16.有一个多项式为a 8-a 7b +a 6b 2-a 5b 3+…,按照此规律写下去,这个多项式的第八项是_____________.17.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.18.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是 分钟.三、细心算一算:19.(4分)①)()(2322c ab c ab ÷ (4分)②2)())((y x y x y x ++---20.(5分)先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a .21.(4分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?22.(6分)如图所示:ΔABC的周长为24cm,AB=10cm,边AB的垂直平分线DE交BC边于点E,垂足为D,求ΔAEC的周长.四、用心想一想23.(6分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,你能找出一对全等的三角形吗?为什么它们是全等的?24.(5分)如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a、b的等式.25.(5分)已知如图,要测量水池的宽AB,可过点A作直线AC ⊥AB,再由点C观测,在BA延长线上找一点B’,使∠ACB’= ∠AC B,这时只要量出AB’的长,就知道AB 的长,对吗?为什么?26.(6分)请你设计一个摸球游戏:在袋子中装有若干个黄球、绿球和红球,使摸到球的概率:P (摸到红球)=41;P (摸到黄球)=32;P (摸到绿球)=121,那么袋子中黄球、绿球和红球至少各需要多少个?五、识图与计算:27.(12分)如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按同路从A 地出发驶往B 地,如图所示,图中的折线PQR 和线段MN 分别表示甲、乙所行驶的路程S 与该日下午时间t 之间的关系. 根据图象回答下列问题:(1)甲和乙哪一个出发的更早?早出发多长时间?(2)甲和乙哪一个更早到达B 城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.28.(9分)下图是小明作的一周的零用钱开支的统计图(单位:元)分析上图,试回答以下问题:(1)周几小明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的?分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.24681012周一周二周三周四周五周六周日答 案1~10:DACDD BABDC11.40°; 12.32--m ,912422+-ab b a ; 13.E6395;14.101,21; 15.133°; 16.7ab -; 17.AB=DC 或∠A=∠D ; 18.37.2; 19.①)c ab ()c ab (2322÷=)c ab (c b a 23242÷=ab ②xy y 222+20.a a 332+,值为6.21.21 22.ΔAEC 的周长=AE+EC+AC=BE+EC+AC=BC+AC=24-10=14cm .23.△AED ≌△AFD .理由: 因为∠AED=∠AFD ,∠EAD=∠F AD ,AD 是公共边, 所以它们全等(AAS ).(或理由:因为角的平分线上的点到这个角的两边距离相等, 所以DE=DF ,AD 是公共的斜边,所以它们全等(HL ).)24.()()ab b a b a 422+==+等. 25.对,用ASA 可以证明三角形全等.26.红球3个,黄球8个,绿球1个.27.(1)甲比乙出发更早,要早1小时(2)乙比甲早到B 城,早了2个小时(3)乙出发半小时后追上甲(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B 城(5)乙的速度为50千米/时,甲的平均速度为12.5千米/时.28.(1)周三,1元,10元,(2)周一与周五都是6元,周六和周日都是10元,(3)()67101065146=÷++++++(元);(4)略.。
2020年北师大版七年级数学下册期末测试题(含答案)

精品试题精品试题,如需请下载,希望能帮到你第 1 页共 15 页第 2 页共 15 页第 3 页 共 15 页4- 6- 52020 年北师大版七年级数学下册期末测试题(含答案)一、 选择题( 每题 3 分,共 18 分)1、给出下列图形名称:( 1)线段 ( 2)直角 ( 3)等腰三角形 ( 4)平行四边形 ( 5)长方形,在这五种图形中是轴对称图形的有()A 、1 个B 、2 个C 、3 个D 、4 个2、下列运算正确的是()。
A 、 a5a5a10B 、 a6a4a24C 、 aa1a D 、 a4a4a3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A 、4B 、1 C 、1D215 35154、1 纳米相当于 1 根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径 ..是()A 、6 万纳米 B 、6×10 纳米C 、3×10 米D 、3×10 米5、下列条件中,能判定两个直角三角形全等的是()A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )( 1)汽车行驶时间为 40 分钟;( 2) AB 表示汽车匀速行驶;( 3)在第 30 分钟时,汽车的速度是90 千米/时;( 4)第 40 分钟时,汽车停下来了.A 、1 个B 、2 个C 、3 个D 、4 个速度 80 C D60 40 20AB1时间5 10 15 20 25 30 35 40第 4 页共 15 页第 5 页 共 15 页22二、填空题 (每空 3 分,共 27 分)AD7、单项式1 xy 3的次数是 .3OC8、一个三角形的三个内角的度数之比为 2: 3: 4,则该三角形按角分应为 三角形.B9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006 年中央财政用于“三农”的支出将达到33970000 万元,这个数据用科学记数法可表示为万元.10、如图AOB=125,AO O C , B0 0D 则COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1 道题不会做,于是随意选了一个答案 ( 每小题 4 个项) ,他选对的概率是.12、若 a22ka 9 是一个完全平方式,则 k 等于.13 、 2m 3 ( )= 4m2914、已知:如图,矩形 ABCD 的长和宽分别为 2 和 1,以 D 为圆心, AD 为半径作 AE 弧,再以 AB 的中点 F 为圆心, FB 长为半径作 BE 弧,则阴影部分的面积为.15、观察下列运算并填空:1×2×3×4+1=25=5 ;2×3×4×5+1=121=11 2:3×4×5×6+1=361=19 ;2根据以上结果,猜想析研究(n+1)(n+2)(n+3)(n+4)+1= 。
【北师大版】七年级下册数学《期末考试题》(含答案解析)

2019-2020学年度第二学期期末测试七年级数学试题学校________ 班级________ 姓名________ 成绩________一、选择题:1.计算-12的结果为( )A. 2B. 12C. -2D. 1-22.2019年4月28日,北京世界园艺博览会正式开幕,在此之前,我国已举办过七次不同类别的世界园艺博览会.下面是北京、西安、锦州、沈阳四个城市举办的世园会的标志,其中是轴对称图形的是( )A. B. C. D. 3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面( )A. 一定是正面B. 是正面的可能性较大C. 一定是反面D. 是正面或反面的可能性一样大4.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A. 50︒B. 40︒C. 45︒D. 130︒5.下列运算正确的是( )A. 66x x x ÷=B. 358x x x ÷=C. 2242x x x •=D. ()3263x y x y -=- 6.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A. 20.210-⨯克B. 2210-⨯克C. 3210-⨯ 克D. 4210-⨯克7.如图,点A 在直线上,ABC △与''AB C V 关于直线l 对称,连接'BB 分别交,'AC AC 于点,',D D 连接'CC ,下列结论不一定正确的是( )A. ''BAC B AC ∠=∠B. '//'CC BBC. ''BD B D =D. 'AD DD =8.如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点M 处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度v (千米/时)与行驶时间t (时)之间的关系是( )A. B. C. D. 9.如图,''A B C ABC ≅V V ,点'B 在边AB 上,线段''A B ,AC 交于点D ,若40,60A B ︒︒∠=∠=,则'A CB ∠的度数为( )A. 100︒B. 120︒C. 135︒D. 140︒10.有一种手持烟花,点然后每隔1.4秒发射一发花弹。
2020年北师大版七年级下册数学《期末检测卷》(带答案)

北师大版七年级下册数学期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果正确的是( )A. 326a a a ⋅=B. 2323a a a +=C. ()236a a =D. ()222x y x y -=- 2.计算()()2222a bab ÷的结果是( ) A. 34a B. 4ab C. 3a D. 24a 3.等腰三角形中有两条边的长度分别是8,4cm cm ,那么这个三角形的周长是( )A. 20cmB. 16cmC. 20cm 或16cmD. 无法确定4.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为( )A. 61.4110⨯B. 71.4110⨯C. 51.4110⨯D. 41.4110⨯ 5.下列图形中不是轴对称图形的是( ) A. B. C. D.6.若750),(a m a n a ==≠,那么2a 用含m 和n 的代数式表示为( ) A. m n ⋅ B. mn C. n m D. m n -7.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A. 4个 B. 12个 C. 8个 D. 不确定 8.如图,已知两条直线//m n ,直线AB 与m 交于点A 与n 交于点B ,145,∠=︒那么2∠度数是( )A . 125oB. 135oC. 120oD. 145o9.如图,在ABC V 中,50A B C ∠=︒∠=∠,,点D E F 、、分别在各边上,BE CF BD CE ==,, 则DEF ∠的度数是( )A. 75︒B. 70︒C. 65︒D. 50︒10.若29x kx ++是完全平方式,则k 的值是( )A. 6B. 6-C. 6或6-D. 2 11.已知4,2,x y xy +==那么()2x y -的值是( )A. 4B. 8C. 2 D 1.12.已知关于,x y 的代数式2632m x y +与261n x y +-是同类项,那么m n 的值是( )A. 9B. 9-C. 19D. 19- 13.如图,若直线//,AB CD 那么1,2∠∠与3∠之间的数量关系是( )A. 123∠+∠=∠B. 1223∠+∠=∠C. 321∠+∠=∠D. 11232∠+∠=∠ 14.如图,四边形ABCD 中,//AD BC ,下列条件能使ADC CBA △≌△的有( )AD BC =①;D B ∠=∠②;//AB CD ③A. ①B. ②C. ③D. 以上都可以15.某人从家出发,步行去图书馆看书.下面的图像反映了他离家的距离()s 与时间()t 的关系.下列说法中正确的有( ) ①出发时的速度是每分钟60米;②在图书馆看了80分钟的书;③家到图书馆1200米;④回家时速度是每分钟80米;A. ①③④B. ①②③④C. ②③④D. ①②④二、填空题(每题5分,满分25分,将答案填在答题纸上)16.02-=________________.17.某个三角形的边长均为整数,有两边长分别是14,cm cm 、那么第三边是____________. 18.已知:()2120x y ++-=,那么y x =_________________. 19.如图,在ABC V 中,54A ∠=︒,若BO CO 、分别是ABC ∠与ACB ∠的角平分线,交于点O ,那么BOC ∠的度数是________________.20.如图,在第一个1A BC V 中,30B ∠=︒,1A B CB =,在边1A B 上任取一D ,延长1CA 到2A ,使121A A A D =,得到第2个12A A D V ,在边2A D 上任取一点E ,延长12A A 到3A ,使232A A A E =,得到第三个23A A E △,…按此做法继续下去,第n 个等腰三角形的底角的度数是________________.三、解答题 (共80分.解答应写出文字说明、证明过程或演算步骤.)21.计算: 20182201911222828⎛⎫--⨯-+⨯ ⎪⎝⎭22.化简求值:()()()22222,x y x y x y y ⎡⎤⎣+⎦+--÷其中1,12x y ==- 23.如图,在ABC V 中,AB 的垂直平分线MN 交AB 于点D ,交AC 于点E ,且15AC =,BCE V 的周长等于25.求BC 的长.24.如图,在ABC V 中,M 为AC 中点,连接BM ,点D 为BM 上的一点,过点C 作CE BM ∥ ,过点D 作DE AB ∥,CE DE 、交于点E ,连接BE ,求证:BE AD =.25.在一个不透明的袋子中装有红、黑、白三种球共100个,他们除了颜色外其余完全一样. 已知黑球是白球的2倍少5个,将球充分搅匀后,随机摸出一球是红球的概率是310(1)这三种球各有多少个?(2)随机摸出一球是白球的概率是多少?(3)若从袋子中拿出10个球(没有红球)后,随机摸一次摸到红球的概率是多少?26.如图,ABC V 中,90BAC ∠=︒ ,AB AC = ,AE 是过A 点一条直线l(1)作BD l ⊥ 于点D ,CE l ⊥ E 点,若B 点和C 点在直线l 的同侧,求证:DE BD CE =+ ; (2)若直线l 绕点A 旋转到B 点和C 点在其两侧,其余条件不变,问:BD DE CE 、、的关系如何?请予以证明.27.某学校校长暑假期间将带领该校市级“三好学生”到北京旅游,到旅行社打听价格时,甲旅行社说:“如果校长买一张全票,其余学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按6折优惠.”票价为240元.(1)设学生数为x ,用含x 的代数式表示两个旅行社的收费;(2)当学生是多少时,两家旅行社的收费一样?(3)当学生数不是(2)中的数,你将怎样选择旅行社?答案与解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果正确的是( )A. 326a a a ⋅=B. 2323a a a +=C. ()236a a =D. ()222x y x y -=- 【答案】C【解析】【分析】结合选项分别进行幂的乘方和积的乘方以及合并同类项等运算,然后选择正确选项.【详解】解:A 、325a a a ⋅=,原式计算错误,故本选项错误;B 、22a 与a 不能合并,故本选项错误;C 、()236a a =,原式计算正确,故本选项正确;D 、()2222x y x xy y -=-+,原式计算错误,故本选项错误.故选:C .【点睛】此题考查幂的乘方和积的乘方,解题的关键是幂的乘方和积的乘方以及合并同类项的运算法则. 2.计算()()2222a bab ÷的结果是( ) A. 34aB. 4abC. 3aD. 24a 【答案】D【解析】【分析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算即可.【详解】()()2222a bab ÷=()()42222=44a b a b a ÷,故选D.【点睛】此题考查整式除法,解题关键在于掌握运算法则.3.等腰三角形中有两条边的长度分别是8,4cm cm ,那么这个三角形的周长是( )A. 20cmB. 16cmC. 20cm 或16cmD. 无法确定 【答案】A根据三角形的任意两边之和大于第三边,来确定这个三角形的腰是多少,进而可求出它的周长,据此解答.【详解】解:4+4=8(厘米)8厘米=8厘米,两边之和等于第三边,所以腰不能为4厘米.8+4=12(厘米)12厘米>8厘米,两边之和大于第三边,所以腰是8厘米.8+8+4=20(厘米)答:这个三角形的周长是20厘米.故选:A.【点睛】此题考查三角形三边的应用,解题关键在于根据三角形的任意两边之和大于第三边,来确定腰是多少.4.2018-2019学年度七星关区区级配套“教育精准扶贫”资金约1410000元,1410000用科学计数法表示为()A. 61.4110⨯1.4110⨯ D. 41.4110⨯ B. 71.4110⨯ C. 5【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1410000用科学记数法表示为6⨯,1.4110故选:A.【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列图形中不是轴对称图形的是()A. B.C. D.【答案】D根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意;故选:D .【点睛】此题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 6.若750),(a m a n a ==≠,那么2a 用含m 和n 的代数式表示为( )A. m n ⋅B. m nC. n mD. m n - 【答案】B【解析】【分析】利用同底数幂的除法法则进行计算即可.【详解】∵750),(a m a n a ==≠,∴752a a a ÷=,∴2a =m n, 故选B.【点睛】此题考查同底数幂的除法,解题关键在于掌握运算法则.7.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A. 4个B. 12个C. 8个D. 不确定【答案】C【解析】【分析】 首先设黑球的个数为x 个,根据题意得:4143=x +,解此分式方程即可求得答案. 【详解】设黑球的个数为x 个,根据题意得:4143=x +, 解得:x=8, 经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.8.如图,已知两条直线//m n ,直线AB 与m 交于点A 与n 交于点B ,145,∠=︒那么2∠度数是( )A. 125oB. 135oC. 120oD. 145o【答案】B【解析】【分析】 根据平行线的性质进行解答即可.【详解】∵//m n ,∴∠1=∠3=45°,∠2=180°-∠1=135°,故选B.【点睛】此题考查平行线的性质,解题关键在于掌握其性质定义.9.如图,在ABC V 中,50A B C ∠=︒∠=∠,,点D E F 、、分别在各边上,BE CF BD CE ==,, 则DEF ∠的度数是( )A. 75︒B. 70︒C. 65︒D. 50︒【答案】C【解析】【分析】 首先证明△DBE ≌△ECF ,进而得到∠EFC=∠DEB ,再根据三角形内角和计算出∠CFE+∠FEC 的度数,进而得到∠DEB+∠FEC 的度数,然后可算出∠DEF 的度数.【详解】解:∵AB=AC ,∴∠B=∠C ,在△DBE 和△ECF 中,BD EC B C EB CF ⎧⎪∠∠⎨⎪⎩=== ,∴△DBE ≌△ECF (SAS ),∴∠EFC=∠DEB ,∵∠A=50°,∴∠C=(180°-50°)÷2=65°,∴∠CFE+∠FEC=180°-65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°-115°=65°.故选C.【点睛】此题考查全等三角形的判定及性质,三角形内角和定理的运用,解题关键在于证明三角形全等. 10.若29x kx ++是完全平方式,则k 的值是( )A. 6B. 6-C. 6或6-D. 2 【答案】C【解析】【分析】先根据两平方项项确定出这两个数是x 和3,再根据完全平方公式求解即可.【详解】∵x 2+kx+9=x 2+kx+32,∴kx=±2×x×3, 解得k=±6. 故选:C .【点睛】此题考查完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.解题的关键是利用平方项来确定这两个数.11.已知4,2,x y xy +==那么()2x y -的值是( )A. 4B. 8C. 2 D 1. 【答案】B【解析】【分析】根据(x-y )2=(x+y )2-4xy ,代入计算即可;【详解】∵x+y+4,xy=2,∴(x-y )2=(x+y )2-4xy=16-8=8.故选B.【点睛】此题考查完全平方公式,解题的关键是灵活运用公式解决问题.12.已知关于,x y 的代数式2632m x y +与261n x y +-是同类项,那么m n 的值是( )A. 9B. 9-C. 19D. 19- 【答案】A【解析】【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.根据同类项的定义中相同字母的指数也相同,可先列出关于x 和y 的二元一次方程组,再解方程组求出它们的值. 【详解】由同类项的定义,得26=23=61m n +⎧⎨+⎩,解得=21=3m n -⎧⎪⎨⎪⎩ . 则m n =-21=93⎛⎫ ⎪⎝⎭ 故选:A .【点睛】此题考查同类项的定义、方程思想.解题关键在于掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.13.如图,若直线//,AB CD 那么1,2∠∠与3∠之间的数量关系是( )A. 123∠+∠=∠B. 1223∠+∠=∠C. 321∠+∠=∠D. 11232∠+∠=∠【答案】A【解析】【分析】过点G 做FE ∥//,AB CD 再利用平行线的性质即可解答.【详解】如图过点G 做FE ∥//,AB CD∵FE ∥//,AB CD∴∠1=∠BGE,∠2=∠DGE,∵∠BGE+∠DGE=∠3,∴123∠+∠=∠,故选A.【点睛】此题考查平行线的性质,解题关键在于掌握其性质.14.如图,四边形ABCD 中,//AD BC ,下列条件能使ADC CBA △≌△的有()AD BC =①;D B ∠=∠②;//AB CD ③A. ①B. ②C. ③D. 以上都可以【答案】A【解析】【分析】 已知//AD BC ,可得∠DAC=∠BCA ,加上公共边AC ,所以根据“SAS”判断ADC CBA △≌△时,需要添加AD=BC .【详解】A .若添加AD=BC ,因为//AD BC 则∠DAC=∠BCA ,依据SAS 可得ADC CBA △≌△,故A 选项正确;B .若添加D B ∠=∠,因为//AD BC 则∠DAC=∠BCA ,不能判定ADC CBA △≌△,故B 选项错误; C .若添加//AB CD ,则不能判定ADC CBA △≌△,故C 选项错误;故D 错误;故选:A .【点睛】此题考查全等三角形的判定,解题关键在于掌握判定定理.15.某人从家出发,步行去图书馆看书.下面的图像反映了他离家的距离()s 与时间()t 的关系.下列说法中正确的有( ) ①出发时的速度是每分钟60米;②在图书馆看了80分钟的书;③家到图书馆1200米;④回家时速度是每分钟80米;A. ①③④B. ①②③④C. ②③④D. ①②④【答案】A【解析】【分析】根据图象可以得到某人家距离图书馆的距离;某人从家到图书馆用多少分钟;某人在图书馆的时间;某人步行去图书馆的平均速度;某人步行回家的平均速度,由此即可求解.【详解】解:如图,①根据图象可知出发时的速度是每分钟1200=6020米,故说法正确;②在图书馆看了80-20=60分钟的书,故说法错误;③家到图书馆1200米,故说法正确;④回家时速度是每分钟1200=8095-80米,故说法正确.在这四种说法中,正确有三个①③④.故选:A.【点睛】此题考查函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(每题5分,满分25分,将答案填在答题纸上)16.02-=________________.【答案】-1【解析】【分析】根据零指数幂进行计算即可.【详解】02-=-1,故答案为:-1.【点睛】此题考查零指数幂,解题关键在于掌握运算法则.17.某个三角形的边长均为整数,有两边长分别是14,cm cm 、那么第三边是____________. 【答案】4cm【解析】【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再根据第三边为整数即可得出答案.【详解】根据三角形的三边关系,得3cm <第三边<5cm ,故第三边为4,故答案为:4cm .【点睛】此题考查三角形的三边关系的应用,解题关键在于掌握任意两边之差<第三边.18.已知:()2120x y ++-=,那么y x =_________________.【答案】1.【解析】【分析】 先根据非负性求出x=-1,y=2,再代入x,y 即可得出结论.【详解】∵|x+1|+(y-2)2=0,∴x+1=0,y-2=0,∴x=-1,y=2,∴y x =()2-1 =1.故答案为:1. 【点睛】此题考查整式的非负性,求出x=-1,y=2是解题的关键.19.如图,在ABC V 中,54A ∠=︒,若BO CO 、分别是ABC ∠与ACB ∠的角平分线,交于点O ,那么BOC ∠的度数是________________.【答案】117°【解析】【分析】先根据三角形内角和定理求出∠ABC+∠ACB 的度数,再根据BO 、CO 分别平分∠ABC 与∠ACB 求出∠1+∠2的度数,由三角形内角和定理即可得出∠BOC 的度数.【详解】∵∠A=54°,∴∠ABC+∠ACB=180°-54°=126°.∵BO 、CO 分别是∠ABC 、∠ACB 的角平分线,∴∠1+∠2=12(∠ABC+∠ACB )=12×126°=63°, ∴∠BOC=180°-(∠1+∠2)=180°-63°=117°.故答案为:117°.【点睛】此题考查三角形内角和定理,解题关键在于掌握三角形内角和是180°.20.如图,在第一个1A BC V 中,30B ∠=︒,1A B CB =,在边1A B 上任取一D ,延长1CA 到2A ,使121A A A D =,得到第2个12A A D V ,在边2A D 上任取一点E ,延长12A A 到3A ,使232A A A E =,得到第三个23A A E △,…按此做法继续下去,第n 个等腰三角形的底角的度数是________________.【答案】1752n -︒ 【解析】【分析】 先根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角度数.【详解】解:∵在△CBA 1中,∠B=20°,A 1B=CB ,∴∠BA 1C =1802B ︒-∠ =75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C=12×75°=37.5°; 同理可得,∠EA 3A 2=754° ,∠FA 4A 3=758° , ∴第n 个等腰三角形的底角的度数=1752n -︒. 故答案为1752n -︒. 【点睛】此题考查等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,进而找出规律是解题的关键.三、解答题 (共80分.解答应写出文字说明、证明过程或演算步骤.)21.计算: 20182201911222828⎛⎫--⨯-+⨯ ⎪⎝⎭【答案】3【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式=-4-2+1+20181888⎛⎫⨯⨯ ⎪⎝⎭=-5+8=3. 【点睛】此题考查有理数的混合运算,解题关键在于掌握运算法则.22.化简求值:()()()22222,x y x y x y y ⎡⎤⎣+⎦+--÷其中1,12x y ==- 【答案】2x+y ,0.【解析】【分析】根据完全平方公式和平方差公式展开后合并同类项,再根据多项式除以单项式法则进行计算即可.【详解】解:[(2x+y )2-(2x+y )(2x-y )]÷2y , =(4x 2+4xy+y 2-4x 2+y 2)÷2y ,=(4xy+2y 2)÷2y ,=2x+y ,当1,12x y ==-时, 原式=2×12+(-1)=0. 【点睛】此题考查整式的加减、除法,完全平方公式,平方差公式,能熟练地运用性质进行计算是解题的关键.23.如图,在ABC V 中,AB 的垂直平分线MN 交AB 于点D ,交AC 于点E ,且15AC =,BCE V 的周长等于25.求BC 的长.【答案】10【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE ,然后求出△BCE 的周长=AC+BC ,再求解即可;【详解】∵AB 的垂直平分线MN 交AB 于点D ,∴AE=BE ,∴△BCE 的周长=BE+CE+BC=AE+CE+BC=AC+BC , ∵AC=15,∴BC=25-15=10;【点睛】此题考查线段垂直平分线的性质,熟记其性质并准确识图是解题的关键.24.如图,在ABC V 中,M 为AC 中点,连接BM ,点D 为BM 上的一点,过点C 作CE BM ∥ ,过点D 作DE AB ∥,CE DE 、交于点E ,连接BE ,求证:BE AD =.【答案】见解析【解析】【分析】根据题干给出的条件可以证明△ABD ≌△DEF ,可以得四边形ABED 是平行四边形,可得BE=AD .【详解】如图,延长AD 交EC 于F ,∵M 是AC 的中点,BM ∥EC ,∴AD=DF ,∠ADB=∠DFE又∵AB ∥DE ,∴∠BAD=∠EDF ,在△ABD 和△DEF 中,===BAD EDF AD DFADB DFE ∠∠⎧⎪⎨⎪∠∠⎩, ∴△ABD ≌△DEF (ASA ),∴AB=DE∴四边形ABED 是平行四边形,∴BE=AD .【点睛】此题考查平行四边形的判定,掌握全等三角形对应边相等的性质,求证△ABD ≌△DEF 是解题的关键.25.在一个不透明的袋子中装有红、黑、白三种球共100个,他们除了颜色外其余完全一样. 已知黑球是白球的2倍少5个,将球充分搅匀后,随机摸出一球是红球的概率是310(1)这三种球各有多少个?(2)随机摸出一球是白球的概率是多少?(3)若从袋子中拿出10个球(没有红球)后,随机摸一次摸到红球的概率是多少?【答案】(1)红球有30,黑球45,白球有25;(2)14 ;(3)13; 【解析】【分析】 (1)根据红、黑、白三种颜色球共有的个数乘以红球的概率求出红球的数量,再设白球有x 个,得出黑球有(2x-5)个,根据题意列出方程,求出白球的个数,即可解答;(2)由(1)可知白球的数量,再除以总的球数即可;(3)先求出取走10个球后,还剩的球数,再根据红球的个数,除以还剩的球数即可.【详解】解:(1)根据题意得:红球有100×310=30, 设白球有x 个,则黑球有(2x-5)个,根据题意得x+2x-5=100-30解得x=25.∴黑球2×25-5=45, 答:红球有30,黑球45,白球有25.(2)有(1)可知白球有25个,所以摸出一个球是白球的概率P=251=1004; (3)因为取走10个球后,还剩90个球,其中红球的个数没有变化,所以从剩余的球中摸出一个球是红球的概率301903= ; 【点睛】此题考查了概率公式,解题关键在于掌握如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 26.如图,ABC V 中,90BAC ∠=︒ ,AB AC = ,AE 是过A 点的一条直线l(1)作BD l ⊥ 于点D ,CE l ⊥ E 点,若B 点和C 点在直线l 的同侧,求证:DE BD CE =+ ; (2)若直线l 绕点A 旋转到B 点和C 点在其两侧,其余条件不变,问:BD DE CE 、、的关系如何?请予以证明.【答案】(1)证明见解析;(2)CE=BD+DE ,理由见解析;【解析】【分析】(1)由AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可解决问题.(2)由AAS 证明证明△ABD ≌△CAE ,得出BD=AE ,AD=CE ,即可得出结论.【详解】(1)证明:∵∠BAC=90°,BD ⊥DE ,CE ⊥DE ,∴∠DAB+∠DBA=∠DAB+∠EAC ,∴∠DBA=∠EAC ;在△ABD 与△CAE 中,===DBA EAC BDA AEC AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴DE=BD+CE .(2)解:CE=BD+DE ;理由如下:同(1)得:∠ABD=∠CAE ,在△ABD 和△CAE 中,===ABD CAE ADB CEA AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AD=AE+DE ,∴CE=BD+DE .【点睛】此题考查全等三角形的判定及其性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.27.某学校校长暑假期间将带领该校市级“三好学生”到北京旅游,到旅行社打听价格时,甲旅行社说:“如果校长买一张全票,其余学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按6折优惠.”票价为240元.(1)设学生数为x ,用含x 的代数式表示两个旅行社的收费;(2)当学生是多少时,两家旅行社的收费一样?(3)当学生数不是(2)中的数,你将怎样选择旅行社?【答案】(1)y甲=240+240×0.5x=(240+120x)元,y乙=240×0.6(x+1)=(144x+144)元;(2)学生数为4人时,两家旅行社的收费一样;(3)当学生数少于4人时,选择乙旅行社,当学生数等于4人时,选择两家旅行社中的任何一家均可;当学生数多于4人时,选择甲旅行社.【解析】【分析】(1)设甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,根据总价=单价×数量就可以表示出结论;(2)当y甲=y乙时,建立关于x的方程求出其解即可;(3)分类讨论,当y甲>y乙时,当y甲=y乙时或当y甲<y乙时求出x的值就可以得出结论.【详解】(1)设甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,由题意,得y甲=240+240×0.5x=(240+120x)元,y乙=240×0.6(x+1)=(144x+144)元;(2)当y甲=y乙时,240+120x=144x+144,解得:x=4.∴当学生数为4人时,两家旅行社的收费一样;(3)当y甲>y乙时240+120x>144x+144,解得:x<4,当y甲=y乙时,240+120x=144x+144,解得:x=4;当y甲<y乙时,240+120x<144x+144解得:x>4∴当学生数少于4人时,选择乙旅行社,当学生数等于4人时,选择两家旅行社中的任何一家均可;当学生数多于4人时,选择甲旅行社.【点睛】此题考查一元一次方程的应用,一元一次不等式的应用,解题关键在于求出两家的收费的表达式.。
2020年北师大版七年级下册数学《期末考试试卷》(附答案)

北师大版数学七年级下学期期末测试卷(时间:120 总分:120分)学校________ 班级________ 姓名________ 座号________一、选择题(每小题3分,共30分)1. 下列图案中,属于轴对称图形的是()A. B. C. D.2.如图,在△ABC中,AB=AC,AD=BD=BC,则∠A的度数是()A. 30°B. 36°C. 45°D. 20°3.下列事件为必然事件的是()A. 任意买一张电影票,座位号是奇数B. 两边及其夹角对应相等的两个三角形全等C. 打开电视机,正在播放纪录片D. 三根长度为4 cm,4 cm,8 cm的木棒能摆成三角形4. 如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A. 25°B. 35°C. 45°D. 50°5.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是( ) A.23B.110C.15D.146.下列运算正确的是( )A. (﹣2ab )•(﹣3ab )3=﹣54a 4b 4B. 5x 2•(3x 3)2=15x 12C. (﹣0.1b )•(﹣10b 2)3=﹣b 7 D. (3×10n )(13×10n )=102n 7.如图,如果AB ∥DE ,那么∠BCD=( )A .∠2=∠1 B. ∠1+∠2C. 180°+∠1-∠2D. 180°+∠2-2∠18.当x=-712时,式子(x-2)2-2(2-2x )-(1+x )·(1-x )的值等于( ) A. -2372 B. 2372C. 1D.49729.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满清水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量V (m 3)随时间t (h)变化的大致图象是( )A.B.C.D.10.如图,点D ,E 是正三角形ABC 的边BC ,AC 上的点,且CD=AE ,AD ,BE 相交于点P ,BQ ⊥AD 于点Q ,已知BE=7,则AD 等于( )A. 5B. 6C. 7D. 8二、填空题(每小题4分,共24分)11.如图是有若干个全等的等边三角形拼成的纸板,若某人向纸板上投掷飞镖,(每次飞镖均落在纸板上),则飞镖落在阴影部分的概率是_____.12.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于12AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若∠A=25°,则∠CDB=()A. 25°B. 90°C. 50°D. 60°13.如图,在△ABC中,AB=AC,∠BAC = 36°,DE是线段AC的垂直平分线,若BE=,AE=,则用含、的代数式表示△ABC的周长为__________.14.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为_______.15.宁宁同学设计了一个计算程序如下表:输入数据 1 2 3 4 5 …输出数据234567891011…根据表格中的数据的对应关系,可得出输出数据y与输入数据x之间的关系式为_____.16.小明从A地出发行走到B地,并从B地返回到A地,同时小张从B地骑车匀速到达A地后,发现忘带东西,立刻以原速返回取到东西后,再以原速赶往A地,结果与小明同时到达A地,如图为小明离A地距离s(单位:km)与所用时间t(单位:h)之间关系,则小明与小张第2次相遇时离A地_____km.三、解答题(共66分)17.已知a+b=-5,ab=7,求a 2+b 2的值. 18.若2x =3,2y =5,求42x+y 的值.19.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体质量x 的一组对应值. 所挂物体质量x/kg 0 12345 弹簧长度y/cm182022242628①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? ②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?20.如图,点C ,F ,E ,B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.21.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC=72°,∠DOF=90°. (1) 写出图中任意一对互余的角; (2) 求∠EOF 的度数.22.一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同.(1)小明认为,搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的.你同意他的说法吗?为什么?(2)搅匀后从中摸出一个球,请求出不是白球的概率; (3)搅匀后从中任意摸出一个球,要使摸出红球的概率为23,应添加几个红球? 23.如图,AP ,CP 分别平分∠BAC,∠ACD,∠P=90°,设∠BAP=a. (1)用a 表示∠ACP; (2)求证:AB ∥CD;(3)AP ∥CF .求证:CF 平分∠DCE.24.如果经过三角形某一个顶点的一条直线可把它分成两个小等腰三角形,那么我们称该三角形为等腰三角形的生成三角形,简称生成三角形.(1)如图,已知等腰直角三角形ABC ,∠A=90°,试说明:△ABC 是生成三角形;(2)若等腰三角形DEF 有一个内角等于36°,请你画出简图说明△DEF 是生成三角形.(要求画出直线,标注出图中等腰三角形的顶角、底角的度数)答案与解析一、选择题(每小题3分,共30分)1. 下列图案中,属于轴对称图形的是()A. B. C. D.【答案】A【解析】试题分析:A.此图案是轴对称图形,有5条对称轴,此选项符合题意;B.此图案不是轴对称图形,此选项不符合题意;C.此图案不是轴对称图形,而是旋转对称图形,不符合题意;D.此图案不是轴对称图形,不符合题意;故选A.考点:轴对称图形.2.如图,在△ABC中,AB=AC,AD=BD=BC,则∠A的度数是()A. 30°B. 36°C. 45°D. 20°【答案】B【解析】解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°.∵BD=BC,∴∠BDC=∠BCD=2x°.∵AB=AC,∴∠ABC=∠BCD=2x°.在△ABC中,x+2x+2x=180,解得:x=36,∴∠A=36°.故选B.点睛:此题考查了等腰三角形的性质;熟练掌握等腰三角形的性质,以及三角形内角和定理,得到各角之间的关系是解答本题的关键.3.下列事件为必然事件的是()A. 任意买一张电影票,座位号是奇数B. 两边及其夹角对应相等的两个三角形全等C. 打开电视机,正在播放纪录片D. 三根长度为4 cm,4 cm,8 cm的木棒能摆成三角形【答案】B【解析】解:A、任意买一张电影票,座位号是奇数,是随机事件,选项错误;B、两边及其夹角对应相等的两个三角形全等,是必然事件,选项正确;C、打开电视机,正在播放纪录片,是随机事件,选项错误;D、三根长度为4cm,4cm,8cm的木棒能摆成三角形,是不可能事件,选项错误.故选B.4. 如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A. 25°B. 35°C. 45°D. 50°【答案】D【解析】试题分析:∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选D.考点:平行线的性质.5.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A. 23B.110C.15D.14【答案】B【解析】解:∵20个球中红球有2个,∴任意摸出一个球是红球的概率是220=110,故选B.6.下列运算正确的是()A. (﹣2ab)•(﹣3ab)3=﹣54a4b4B. 5x2•(3x3)2=15x12C. (﹣0.1b)•(﹣10b2)3=﹣b7D. (3×10n)(13×10n)=102n【答案】D【解析】【分析】根据积的乘方、单项式乘单项式的运算法则分别计算,再作判断.【详解】解:A、(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4,故选项错误;B、5x2•(3x3)2=5x2•(9x6)=45x8,故选项错误;C、(﹣0.1b)•(﹣10b2)3=(﹣0.1b)•(﹣1000b6)=100b7,故选项错误;D、(3×10n)(13×10n)=102n,故选项正确.故选D.【点睛】本题考查了积的乘方、单项式乘单项式,熟练掌握运算性质是解决本题的关键.7.如图,如果AB∥DE,那么∠BCD=()A. ∠2=∠1B. ∠1+∠2C. 180°+∠1-∠2D. 180°+∠2-2∠1【答案】C【解析】试题分析:过点C作CF∥AB,∴∠1=∠BCF,∵AB∥DE,∴DE∥CF,∴∠DCF=180°-∠2,∴∠BCD=∠BCF+∠DCF=∠1+180°-∠2=180°+∠1-∠2.故选C.点睛:本题考查的是平行线的性质,根据题意作出辅助线,构造出三线八角是解答此题的关键.8.当x=-712时,式子(x-2)2-2(2-2x)-(1+x)·(1-x)的值等于()A. -2372B.2372C. 1D.4972【答案】A【解析】【分析】先利用乘法公式化简,再括号合并同类项,然后代入求值. 【详解】解:原式=2244441x x x x-+-+-+=221x-=272()112⨯--=2372-.故选A.9.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满清水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量V(m3)随时间t(h)变化的大致图象是()A. B. C. D.【答案】C【解析】【详解】解:根据题意分析可得:存水量V的变化有几个阶段:1、减小为0,并持续一段时间;2、增加至最大,并持续一段时间;3、减小为0.故选C.10.如图,点D,E是正三角形ABC的边BC,AC上的点,且CD=AE,AD,BE相交于点P,BQ⊥AD于点Q,已知BE=7,则AD等于()A. 5B. 6C. 7D. 8【答案】C【解析】解:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°.又∵AE=CD,∴△ABE≌△CAD(SAS),∴AD=BE=7.故选C.点睛:本题主要考查了等边三角形的性质以及全等三角形的判定及性质能够熟练掌握并能进行一些简单的计算、证明问题.二、填空题(每小题4分,共24分)11.如图是有若干个全等的等边三角形拼成的纸板,若某人向纸板上投掷飞镖,(每次飞镖均落在纸板上),则飞镖落在阴影部分的概率是_____.【答案】3 8【解析】如图:阴影部分的面积占6份,总面积是16份,∴飞镖落在阴影部分的概率是616=38,故答案为38.【点睛】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比. 12.如图,在△ABC 中,按以下步骤作图:①分别以A 、B 为圆心,大于12AB 的长为半径画弧,相交于两点M ,N ;②作直线MN 交AC 于点D ,连接BD .若∠A=25°,则∠CDB=( )A. 25°B. 90°C. 50°D. 60°【答案】C 【解析】试题解析:由作图的步骤可知,直线MN 是线段AB 的垂直平分线, ∴DA=DB , ∴∠DBA=∠A=25°, ∴∠CDB=∠DBA+∠A=50°, 故选C .13.如图,在△ABC 中,AB=AC ,∠BAC = 36°,DE 是线段AC 的垂直平分线,若BE=,AE=,则用含、的代数式表示△ABC 的周长为__________.【答案】2a+3b 【解析】【详解】由题意可知:AC=AB=a+b ,由于DE 是线段AC 的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b ,从可知△ABC 的周长为:AB+AC+BC=2a+3b. 故答案为2a+3b .考点:1、等腰三角形的性质;2、线段垂直平分线的性质14.若(4x 2+2x )(x+a )的运算结果中不含x 2的项,则a 的值为_______. 【答案】-12解:232(42)()4(42)2x x x a x a x ax ++=+++.∵运算结果中不含x 2的项,∴4a +2=0,∴a =12-.故答案为12-. 15.宁宁同学设计了一个计算程序如下表: 输入数据12345…输出数据 23 45 67 891011…根据表格中的数据的对应关系,可得出输出数据y 与输入数据x 之间的关系式为_____. 【答案】y=221xx + 【解析】解:根据题意,得:221x y x =+.故答案为221xy x =+. 16.小明从A 地出发行走到B 地,并从B 地返回到A 地,同时小张从B 地骑车匀速到达A 地后,发现忘带东西,立刻以原速返回取到东西后,再以原速赶往A 地,结果与小明同时到达A 地,如图为小明离A 地距离s (单位:km)与所用时间t (单位:h)之间关系,则小明与小张第2次相遇时离A 地_____km .【答案】20 【解析】 解:小明的速度=253km/h ,小张的速度=2536⨯=252km/h ,设小明与小张第2次相遇时经历时间为t ,由题意得:253t +252t =25×3,解得:t =185,则此时小明离A 地的距离=25﹣253×(185﹣3)=20km .故答案为20. 点睛:本题考查了函数的图象,解答本题的关键是仔细分析,得出两人第二次相遇在什么阶段,这样方便我们得出方程,有一定难度.三、解答题(共66分)17.已知a+b=-5,ab=7,求a 2+b 2的值. 【答案】11试题分析:根据完全平方公式的变形进行计算即可.试题解析:解:因为a+b=-5,ab=7,所以a2+b2=(a+b)2-2ab=(-5)2-2×7=11.18.若2x=3,2y=5,求42x+y的值.【答案】2025【解析】试题分析:逆用幂的运算法则解答即可.试题解析:解:因为2x=3,2y=5,所以42x+y=42x×4y=24x×22y=(2x)4×(2y)2=34×52=2 025.19.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?【答案】①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.【解析】(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量;(2)当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;(3)根据上表可知所挂重物为7千克时(在允许范围内)时的弹簧长度=18+2×7=32(厘米).20.如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【答案】CD∥AB,CD=AB,证明见解析.【解析】【分析】试题分析:根据CE=BF,可求证CF=BE,再根据∠CFD=∠BEA,DF=AE,可证△DFC≌△AEB,利用全等三角形的性质可得: CD=AB,∠C=∠B,根据平行线的判定可证CD∥AB. CD∥AB,CD=AB,证明如下:∵CE=BF,∴CE-EF=BF-EF,∴CF=BE.在△DFC和△AEB中,∴△DFC≌△AEB(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【详解】请在此输入详解!21.如图,直线AB,CD相交于点O,OE平分∠BOD,∠AOC=72°,∠DOF=90°.(1) 写出图中任意一对互余的角;(2) 求∠EOF的度数.【答案】(1)∠BOF和∠BOD互余;(2)54°【解析】试题分析:(1)根据两角互余的性质得出互余的角;(2)首先根据题意得出∠COF=90°,根据∠AOC的度数得出∠BOF和∠BOD的度数,根据角平分线的性质得出∠BOE的度数,从而根据∠EOF=∠BOF+∠BOE 得出答案.试题解析:(1)∠BOF与∠BOD或∠DOE与∠EOF(2)∵∠COF=180°-∠DOF=90°,∴∠BOF=180°-∠AOC-∠COF=180°-72°-90°=18°∴∠BOD=∠DOF-∠BOF=90°-18°=72°,∵OE平分∠BOD,∴∠BOE=∠BOD=36°,∴∠EOF=∠BOF+∠BOE=18°+36°=54°考点:角度的计算22.一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同.(1)小明认为,搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的.你同意他的说法吗?为什么?(2)搅匀后从中摸出一个球,请求出不是白球的概率;(3)搅匀后从中任意摸出一个球,要使摸出红球的概率为23,应添加几个红球?【答案】(1)不同意,理由见解析;(2)13;(3)3.【解析】试题分析:(1)求出分别摸到白球与摸到红球的概率,比较这两个概率,即可知道谁的可能性大,概率大则可能性就大;(2)由(1)即可得出结论;(3)此题考查了借助方程思想求概率的问题,解题的关键是找到等量关系.试题解析:解:(1)不同意,因为两种球数量不同,装有2个白球和1个红球,摸出白球的概率为23,摸出红球的概率为13,故摸出白球和摸出红球的可能性不同.(2)由(1)得出不是白球的概率即为摸出红球的概率为13;(3)设应添加x个红球,所以1233xx+=+,解得x=3.故应添加3个红球.点睛:此题考查了学生对概率问题理解,要注意方程思想的应用.23.如图,AP,CP分别平分∠BAC,∠ACD,∠P=90°,设∠BAP=a.(1)用a表示∠ACP;(2)求证:AB∥CD;(3)AP∥CF .求证:CF平分∠DCE.【答案】(1)∠CAP=90°-α;(2)证明见解析;(3)证明见解析;【解析】试题分析:(1)由角平分线的定义可得∠P AC=α,在Rt△P AC中根据直角三角形的性质可求得∠ACP;(2)结合(1)可求得∠ACD,可证明∠ACD+∠BAC=180°,可证明AB∥CD;(3)由平行线的性质可得∠ECF=∠CAP,∠ECD=∠CAB,结合条件可证得∠ECF=∠FCD,可证得结论.试题解析:(1)解:∵AP平分∠BAC,∴∠CAP=∠BAP=α.∵∠P=90°,∴∠ACP=90°-∠CAP=90°-α;(2)证明:由(1)可知∠ACP=90°-α.∵CP平分∠ACD,∴∠ACD=2∠ACP=180°-2α.又∠BAC=2∠BAP=2α,∴∠ACD+∠BAC=180°,∴AB∥CD;(3)证明:∵AP∥CF,∴∠ECF=∠CAP=α.由(2)可知AB∥CD,∴∠ECD=∠CAB=2α,∴∠DCF=∠ECD-∠ECF=α,∴∠ECF=∠DCF,∴CF平分∠DCE.点睛:本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.24.如果经过三角形某一个顶点的一条直线可把它分成两个小等腰三角形,那么我们称该三角形为等腰三角形的生成三角形,简称生成三角形.(1)如图,已知等腰直角三角形ABC,∠A=90°,试说明:△ABC是生成三角形;(2)若等腰三角形DEF有一个内角等于36°,请你画出简图说明△DEF是生成三角形.(要求画出直线,标注出图中等腰三角形的顶角、底角的度数) 【答案】(1)见解析;(2)见解析. 【解析】试题分析:(1)根据等腰直角三角形的性质,可得△ABD、△ACD的形状,可得证明结论;(2)根据顶角是36°,可画底角的角平分线,可得答案,根据顶角是108°的等腰三角形,把顶角分成12,可得答案.试题解析:证明:过点A作AD⊥BC,垂足为D.∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∠BAD=∠CAD=12∠BAC=45°,∴∠B=∠BAD,∠C=∠CAD,∴△ABD和△ACD是等腰三角形,∴△ABC是生成三角形;(2)如图:,△DEG与△EFG都是等腰三角形,△DEF是生成三角形.点睛:本题考查了等腰三角形的判定与性质,等角对等边是判定等腰三角形的方法.。
2020年新版北师大版七年级数学下册期末试卷及答案

七年级下册数学期末模拟试卷及答案本试卷共24个小题,总分为100分,考试时间为100分钟。
一、选择题(本大题共10个小题,每小题3分,共30分。
注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在括号里) 1. 下列各式计算正确的是( ) A. 325a a a =÷ B. 2a a 222=- C. 623a a a =⋅D. 633)(a a =2. 下列说法正确的是( ) A. -1不是单项式B. 2xy-的系数是-1 C. 32y x 的次数是3D. 2r π的次数是33. 平面上有4个点,经过每两个点画一条直线,那么共可以画直线( )A. 6条B. 1条或3条或6条C. 1条或4条D. 1条或4条或6条4. 下列说法中,正确的是( ) A. 一个角的余角一定比这个角小 B. 一个角的补角一定比这个角大C. 一对对顶角的两条角平分线必在同一条直线上D. 有公共顶点并且相等的两个角是对顶角5. 如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短6. 据《中国宏观经济运行报告2012》预测,2013年中国贸易顺差将为2200亿美元左右,用科学记数法表示为( )A. 111022.0⨯元B. 11102.2⨯元C. 131022.0⨯元D. 13102.2⨯元7. 如图,直线l 与直线a 、b 相交,且b a //,∠1=60°,则∠2的度数是( )A. 30°B. 60°C. 80°D. 120°8. 如图所示,从边长为a 的大正方形中挖去一个边长是b 的小正方形,小明将图甲中的阴影部分拼成了一个如图乙所示的矩形,这一过程可以验证( )A. 222)(2b a ab b a -=-+B. 222)(2b a ab b a +=++C. ))(2(3222b a b a b ab a --=+-D. ))((22b a b a b a -+=-9. 某商场为吸引顾客设计了如图所示的自由转盘,当指针指向阴影部分时,该顾客可获奖品一份,那么该顾客获奖的概率为( )A.61 B.51 C.81 D.101 10. 观察下列顺序排列的等式:1105=+⨯ 7215=+⨯13325=+⨯ 19435=+⨯25545=+⨯……根据该数据表反映的规律,猜想:第n 个等式(n 为正整数)应为( ) A. 1)1(5+-=+n n n B. 1)1(6)1(5+-=+-n n n C. 1)1(52-=-+n n nD. 1615+=++n n n二、填空题(本大题共6个小题,每小题3分,共18分) 11. 计算:55)25.0(4-⨯=___________。
北师大版初中数学七年级下册期末测试题及答案【2020新修】

七年级下册数学期末质量检测试卷一、 选择题(每小题3分,共30分)1、下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-2、下列说法错误的是( )A .两直线平行,内错角相等B .两直线平行,同旁内角相等C .同位角相等,两直线平行D .平行于同一条直线的两直线平行3、下列关系式中,正确..的是( ) A. ()222b 2ab a b a +-=+ B. ()222b a b a -=-C. ()222b a b a +=+ D. ()()22b a b a b a -=-+4、等腰三角形的两边长分别为4和9,则它的周长 ( )A 、17B 、22C 、17或22D 、215、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )(A )带①去 (B )带②去 (C )带③去 (D )带①和②去6、如图,AB ∥ED ,则∠A+∠C +∠D =( )A .180°B .270°C .360°D .540°7、在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为( )A 、0.2;B 、0.25;C 、0.4;D 、0.88、由四舍五入得到近似数5.03万( )A.精确到万位,有1个有效数字B. 精确到个位,有1个有效数字C.精确到百分位,有3个有效数字D. 精确到百位,有3个有效数字9、下列图形中,不一定...是轴对称图形的是( ) A.等腰三角形 B. 直角三角形 C.钝角 D. 线段10、不能判定两个三角形全等的条件是 ( )A 、三条边对应相等B 、两角及一边对应相等C 、两边及夹角对应相等D 、两边及一边的对角相等二、填空题(每小题3分,共30分)11、等腰三角形的三边长分别为:x +1、 2x +3 、9 ,则x = 12、一个角的补角是它的余角的4倍,则这个角是_________度。
2020最新北师大版初中数学七年级下册期末试卷及答案〈精〉

2020最新北师大版初中数学七年级下册期末试卷及答案〈精〉第2题图nm ba70°70°110°第3题图C B A2112第六题图DCB A七年级数学(下)期末考试卷一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。
2、如图,互相平行的直线是。
3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。
4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是。
5、汽车司机在观后镜中看到后面一辆汽车的车牌号为,则这辆车的实际牌照是。
6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是。
7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:则=na 。
8、已知412+-kx x 是一个完全平方式,那么k 的值为。
9、近似数25.08万精确到位,有位有效数字,用科学计数法表示为。
10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是。
二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是() A . a 2+ a 2=a 4B. 211a a a =÷- C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数,让参加者876954521第1页共4页DCBA DC B A FED CBA ED CBA 猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是()A. 91B. 61 C. 51 D. 3113、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是()15、教室的面积约为60m 2,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是() A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个18、如图,点E 是BC 的中点,AB⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是()A. ① ② ④B. ① ② ③C. ② ③ ④D. ① ③ ④第2页共4页乙甲BA OEDCBA三、解答题(共66分)19、计算(每小题4分,共12分)(1)201220112)23()32()31(-?--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分)某地区现有果树24000棵,计划今后每年栽果树3000棵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版数学七年级下学期期末测试卷(时间:120 总分:120分)学校________ 班级________ 姓名________ 座号________一、选择题(本题满分24分,共有8道小题,每小题3分)1.下列计算中,正确的是()A. (3a)2=6a2B. (a3)4=a12C. a2•a5=x10D. a6÷a3=a22.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件属于随机事件的是()A. 掷一次,骰子向上的一面点数大于0B. 掷一次,骰子向上的一面点数是7C. 掷两次,骰子向上的一面点数之和是13D. 掷三次,骰子向上的一面点数之和是偶数3.下列图形中,是轴对称图形且只有一条对称轴的是()A. B.C. D.4.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所已研制出直径小于0.5nm 的碳纳米管,已知lnm=0.000000001m,则将0.5nm这个数据用科学记数法表示为()A. 5×10﹣10B. 0.5×10﹣9C. 5×10﹣8D. 5×10﹣95.下表列出了一项实验的统计数据,表示皮球从高处自由落下时,弹跳高度b(cm)与下落时的高度d(cm)之间的关系,那么下面的式子能表示这种关系的是()d(cm)50 80 100 150b(cm)25 40 50 75A. b =d 2B. b =2dC. b =12d D. b =d +256.如图,下列四个条件中,能判断DE ∥BC 的是( )A .∠A =∠BDF B. ∠l =∠3C. ∠2=∠4D. ∠A +∠ADF =180°7.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,若∠B =56°,∠C =42°,则∠DAE 的度数为( )A. 3°B. 7°C. 11°D. 15°8.如图,在Rt △ABC 中,∠C =90°,D 是AB 的中点,E 在边AC 上,若D与C 关于BE 成轴对称,则下列结论:①∠A =30°;②△ABE 是等腰三角形;③点B 到∠CED 的两边距离相等.其中正确的有( )A. 0个B. 1个C. 2个D. 3个二、填空题:(本题满分24分,共有8道小题,每小题3分)请把正确答案填写在答题卡相应位置的横线上.9.计算:221(2)32ab ab ab g =_____.10.用2,3,4这三个数字排成一个三位数,则排成的三位数是奇数的概率是_____. 11.若一个三角形的两边长为3和5,且周长为偶数,则这个三角形的第三边长为_____.12.将一个等腰直角三角形的直角顶点和一个锐角顶点按如图方式分别放在直线a ,b 上,若a ∥b ,∠1=16°,则∠2的度数为_____.13.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a +2b ),宽为(a +b )的长方形,那么需要B 类长方形卡片_____张.14.如图,点O 是△ABC 的两条角平分线的交点,若∠BOC =110°,则∠A =_____°.15.如图所示,已知△ABC 的周长是18,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,则△ABC 的面积是_____.16.如图①,△ABC 中,AD 为BC 边上的中线,则有S △ABD =S △ACD ,许多面积问题可以转化为这个基本模型解答.如图②,已知△ABC 的面积为1,把△ABC 各边均顺次延长一倍,连结所得端点,得到△A 1B 1C 1,即将△ABC 向外扩展了一次,则扩展一次后的△A 1B 1C 1的面积是_____,如图③,将△ABC 向外扩展了两次得到△A 2B 2C 2,……,若将△ABC 向外扩展了n 次得到△A n B n ∁n ,则扩展n 次后得到的△A n B n ∁n 面积是_____.三、作图题:(本题满分4分)用圆规和直尺作图,不写作法,保留作图痕迹.17.已知:线段a,∠α,∠β.求作:△ABC,使BC=a,∠B=∠α,∠C=∠β.四、解答题:(本题满分68分,共8道小题)18.计算:(1)(13a2b)2•(﹣9ab)÷(-12a3b2);(2)(x+2y)(x﹣2y)﹣(x+y)(x﹣y);(3)[(2a+b)2﹣(a﹣b)(3a﹣b)﹣a]÷(﹣12a),其中a=﹣1,b=12.19.七巧板是我们祖先的一项卓越创造,用它可以拼出多种图形,请你根据下列要求拼图:(画出示意图并标明每块板的标号,在拼图时应注意:相邻的两块板之间无空隙、无重叠)(1)用七巧板中标号为①②③的三块板拼成一个等腰直角三角形;(2)选择七巧板中的三块板拼成一个正方形.20.如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分概率是多少?(2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.21.如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为∠l=∠2,根据,所以∥.又因为AB ∥CD,根据:,所以EF∥AB.22.如图,点E在AB上,AC=AD,∠CAB=∠DAB,那么△BCE和△BDE全等吗?请说明理由.23.已知,在一个盒子里有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据:摸球总次数50 100 150 200 250 300 350 400 450 500摸到红球的频数17 32 44 64 78 103 122 136 148 摸到红球的频率0.34 0.32 0.293 0.32 0.312 0.32 0.294 0.302(1)请将表格中的数据补齐;(2)根据上表,完成折线统计图;(3)请你估计,当摸球次数很大时,摸到红球的频率将会接近(精确到0.1).24.A,B两地相距100千米,甲,乙两人骑车同时分别从A、B两地相向而行,假设他们都保持匀速行驶,直线l1,l2分别表示甲,乙两人与A地的距离S(单位:km)与行驶时间t(单位:h)之间关系的图象.根据图象提供的信息,解答下列问题:(1)甲、乙两人的速度分别是多少?(2)经过多长时间,两人相遇?(3)分别写出甲,乙两人与A地的距离S(单位:km)与行驶时间t(单位:h)之间的关系式.25.(1)操作发现:如图①,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD 为边在CD上方作等边△CDE,连接AE,则AE与BD有怎样的数量关系?说明理由.(2)类比猜想:如图②,若点D是等边△ABC的边BA延长线上一动点,连接CD,以CD为边在CD上方作等边△CDE,连接AE,请直接写出AE与BD满足的数量关系,不必说明理由;(3)深入探究:如图③,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边分别在CD上方、下方作等边△CDE和等边△CDF,连接AE,BF则AE,BF与AB有怎样的数量关系?说明理由.答案与解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.下列计算中,正确的是()A. (3a)2=6a2B. (a3)4=a12C. a2•a5=x10D. a6÷a3=a2【答案】B【解析】【分析】根据幂的乘方以及同底数幂的乘法和除法进行计算即可【详解】A. (3a)2=9a2,故本选项错误B.(a3)4=a12,故本选项正确;C.a2,x10 不是同类型故本选项错误D.a6÷a3=a3,故本选项错误;故选B【点睛】此题考查完全平方公式,同底数幂的除法,幂的乘方与积的乘方,掌握运算法则是解题关键2.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件属于随机事件的是()A. 掷一次,骰子向上的一面点数大于0B. 掷一次,骰子向上的一面点数是7C. 掷两次,骰子向上的一面点数之和是13D. 掷三次,骰子向上的一面点数之和是偶数【答案】D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】A.掷一次骰子,在骰子向上的一面上的点数大于0是必然事件,不合题意;B.掷一次骰子,在骰子向上的一面上的点数为7是不可能事件,不合题意;C.掷两次骰子,在骰子向上的一面上的点数之积刚好是13是不可能事件,不合题意D.掷三次骰子,在骰子向上的一面上的点数之和刚好为偶数是随机事件,符合题意故选D【点睛】此题考查随机事件,难度不大3.下列图形中,是轴对称图形且只有一条对称轴的是()A. B.C. D.【答案】A【解析】【分析】根据轴对称图形的意义判定图形由几条对称轴即可解答【详解】A是对称图形且只有一条对称轴;B是对称图形,有两条对称轴;C不是对称图形D.是对称图形,有三条对称轴故选A【点睛】此题考查轴对称图形,难度不大4.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所已研制出直径小于0.5nm 的碳纳米管,已知lnm=0.000000001m,则将0.5nm这个数据用科学记数法表示为()A. 5×10﹣10B. 0.5×10﹣9C. 5×10﹣8D. 5×10﹣9【答案】A【解析】【分析】0.5纳米=0.5x0.000000001米=0.0000000005米小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,在本题中a为5,n为5前面0的个数【详解】0.5纳米=0.5×0.0000000米故选D=0.000000米=5×10﹣10米故选A【点睛】此题考查科学记数法,难度不大5.下表列出了一项实验的统计数据,表示皮球从高处自由落下时,弹跳高度b(cm)与下落时的高度d(cm)之间的关系,那么下面的式子能表示这种关系的是()d(cm)50 80 100 150b(cm)25 40 50 75A. b=d2B. b=2dC. b=12d D. b=d+25【答案】C【解析】【分析】这是一个用图表表示的函数,可以看出d是b的2倍,即可得关系式.【详解】解:由统计数据可知:d是b的2倍,所以,b=12 d.故选C.6.如图,下列四个条件中,能判断DE∥BC的是()A. ∠A=∠BDFB. ∠l=∠3C. ∠2=∠4D. ∠A+∠ADF=180°【答案】C【解析】【分析】根据选项中角的关系,结合平行线的判定,进行判断【详解】内错角相等,两直线平行∠A=∠BDF是两直线被第三条直线所截得到的同位角,因而能判定DF∥AC但不能判定DE∥BC,故错误∠l=∠3是DF和AC被DC所截得到的内错角,因而可以判定DF∥AC,但不能判定DE∥BC,故错误∠2=∠4这两个角是BC与DE被DC所截得到的内错角,可以判定DE∥AC∠A+∠ADF=180°,是DF和AC被DC所截得到的同旁内角,因而可以判定DF∥AC,但不能判定DE∥BC,故错误故选C【点睛】此题考查平行线的判定,难度不大7.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=56°,∠C=42°,则∠DAE的度数为()A. 3°B. 7°C. 11°D. 15°【答案】B【解析】【分析】由三角形的内角和定理,可求∠BAC=82°,又由AE是∠BAC的平分线,可求∠BAE=41°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=34°,所以∠DAE=∠BAE-∠BAD=7°【详解】在△ABC中,∵∠BAC=180°-∠B-∠C=82°AE是∠BAC的平分线,∠BAE=∠CAE=41°又∵AD是BC边上的高,∴.∠ADB=90°在△ABD中∠BAD=90°-∠B=34°∴.∠DAE=∠BAE-∠BAD=7°故选B【点睛】此题考查三角形内角和定理,掌握运算法则是解题关键8.如图,在Rt △ABC 中,∠C =90°,D 是AB 的中点,E 在边AC 上,若D 与C 关于BE 成轴对称,则下列结论:①∠A =30°;②△ABE 是等腰三角形;③点B 到∠CED 的两边距离相等.其中正确的有( )A. 0个B. 1个C. 2个D. 3个【答案】D【解析】【分析】 根据题意需要证明Rt △BCE ≌Rt △BDE, Rt △EDA ≌Rt △EDB ,即可解答【详解】∵D 与C 关于BE 成轴对称∴Rt △BCE ≌Rt △BDE (SSS )∵△BCE ≌△BDE∴∠EDB=∠EDA=90°,BD=BC 又∵D 是AB 的中点∴AD=DB∴Rt △EDA ≌Rt △EDB(HL)∴∠A =30°(直角三角形含30°角,BC=12AB ) ∴△ABE 是等腰三角形∴点B 到∠CED 的两边距离相等故选D【点睛】此题考查全等三角形的判定和直角三角形的性质,解题关键在于利用全等三角形的判定求解 二、填空题:(本题满分24分,共有8道小题,每小题3分)请把正确答案填写在答题卡相应位置的横线上.9.计算:221(2)32ab ab ab g =_____.【答案】13a 2b 3﹣a 2b 2 【解析】【分析】利用单项式乘多项式的计算方法直接计算出结果即可 【详解】221232ab ab ab ⎛⎫-⋅⎪⎝⎭=22322211123223ab ab ab ab a b a b ⋅-⋅=- 故答案为13a 2b 3﹣a 2b 2 【点睛】此题考查单项式乘多项式,掌握运算法则是解题关键10.用2,3,4这三个数字排成一个三位数,则排成的三位数是奇数的概率是_____. 【答案】13【解析】【分析】根据题意可用概率公式事件A 可能出现的次数除以所有可能出现的次数进行计算.【详解】234、243、324、342、423、432一共有6种情况是奇数的可能为243、423两种,因此概率=21=63【点睛】此题考查简单的排列,概率公式,难度不大11.若一个三角形的两边长为3和5,且周长为偶数,则这个三角形的第三边长为_____.【答案】4或6【解析】【分析】根据三角形三边关系定理可得第三边的范围是:大于已知的两边的差,而小于两边的和.再根据范围确定a的值【详解】第三边a 的取值范围为2<a<8,周长为偶数第三边的长为4或6【点睛】此题考查三角形三边关系,难度不大12.将一个等腰直角三角形的直角顶点和一个锐角顶点按如图方式分别放在直线a ,b 上,若a ∥b ,∠1=16°,则∠2的度数为_____.【答案】29°.【解析】【分析】由两直线平行,同旁内角互补,可得180ABC BCD ∠+∠=°,进而求出∠2的度数.【详解】解:由题意可知,∠EBC=90°,∠BCE=45°,又∠1=16°,∴∠ABC=∠EBC+∠1=106°,∵a ∥b ,∴180ABC BCD ∠+∠=°,∴∠BCD=180°-∠ABC=180°-106°=74°,∴∠2=∠BCD-∠BCE=74°-45°=29°.故答案为29°. 【点睛】本题考查了平行线的性质,熟练掌握相关性质是解题关键.13.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a +2b ),宽为(a +b )的长方形,那么需要B 类长方形卡片_____张.【答案】5.【解析】【分析】因为大长方形的面积为(3a +2b )(a +b )=22352a ab b ++,B 类长方形的面积为ab,分析可得B 类长方形卡片的张数.【详解】解:(3a +2b )(a +b ),=223322a ab ab b +++ ,=22352a ab b ++,∵一张B 类长方形卡片的面积为:ab ,∴需要B 类长方形卡片5张.故答案为5.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解题关键.14.如图,点O 是△ABC 的两条角平分线的交点,若∠BOC =110°,则∠A =_____°.【答案】40°【解析】【分析】先利用三角形的内角和求出∠OBC+∠OCB ,再用角平分线的意义,整体代换求出∠ABC+∠ACB ,最后再用三角形的内角和即可.【详解】在△BOC 中,∠OBC+∠OCB=180°−∠BOC=180°−110°=70°∵点O是△ABC的两条角平分线的交点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=2×70°=140°,在△ABC中,∠A=180°−(∠ABC+∠ACB)=180°−140°=40°故答案为40°【点睛】此题考查三角形内角和定理,解题关键在于求出∠OBC+∠OCB15.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是_____.【答案】36【解析】【分析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解【详解】如图,过点O作OB⊥AB于E作OF⊥AC于F,∵OB、OC分別平分∠ABC和∠ACB,OD⊥BC∴OE=OD=OF=4△ABC的面积=12×18×4=36故答案为36【点睛】此题考查角平分线的性质,解题关键在于做辅助线16.如图①,△ABC 中,AD 为BC 边上的中线,则有S △ABD =S △ACD ,许多面积问题可以转化为这个基本模型解答.如图②,已知△ABC 的面积为1,把△ABC 各边均顺次延长一倍,连结所得端点,得到△A 1B 1C 1,即将△ABC 向外扩展了一次,则扩展一次后的△A 1B 1C 1的面积是_____,如图③,将△ABC 向外扩展了两次得到△A 2B 2C 2,……,若将△ABC 向外扩展了n 次得到△A n B n ∁n ,则扩展n 次后得到的△A n B n ∁n 面积是_____.【答案】 (1). 7, (2). 7n【解析】【分析】(1)利用三角形的中线将三角形分成面积相等的两个三角形,得出S △ACC 1=S △ABC,进而得出S △A 1CC 1=2S △ACC 1=S △ABC,同理:S △A 1AB 1=2S △ABC=2,S △B 1BC 1=2S △ABC=2,求和即可得出结论(2)同(1)的方法即可得出结论【详解】(1)∵△ABC 各边均顺序延长一倍,∴BC= CC 1∴1ACC S V =ABC S V =1∴11A CC S V =21ACC S V =ABC S V =2同理: S 11A AB S V =2ABC S V =2,11B BC S V =2ABC S V =2∴111A B C S V =ABC S V +11A CC S V +11A AB S V+11B BC S V =ABC S V +2ABC S V +2ABC S V+2ABC S V =7 ABC S V =7(2)由(1)的方法可得222A B C S V =7111A B C S V =49;333A B C S V =7222A B C S V =7×72ABC S V =343,…以此类推得出规律n n nA B C S V =7n ABC S V =7n 【点睛】此题考查四边形综合题,解题关键在于找出规律三、作图题:(本题满分4分)用圆规和直尺作图,不写作法,保留作图痕迹.17.已知:线段a ,∠α,∠β.求作:△ABC ,使BC =a ,∠B =∠α,∠C =∠β.【答案】详见解析【解析】【分析】运用基本的尺规作图,即可解答【详解】解:如图所示,△ABC 即为所求.【点睛】此题考查作图-复制作图,解题关键在于掌握作图法则四、解答题:(本题满分68分,共8道小题)18.计算:(1)(13a 2b )2•(﹣9ab )÷(-12a 3b 2); (2)(x +2y )(x ﹣2y )﹣(x +y )(x ﹣y ); (3)[(2a +b )2﹣(a ﹣b )(3a ﹣b )﹣a ]÷(﹣12a ),其中a =﹣1,b =12. 【答案】(1)2a 2b ;(2)﹣3y 2;(3)﹣4【解析】【分析】(1)先算积的乘方,再算多项式乘多项式,最后把除法转化为乘法进行计算即可(2)利用平方差公式化简,再合并同类项即可(3)第一项利用完全平方公式展开,第二项用平方差公式化简,再去括号合并同类项,最后把除法转化为乘法,把a,b的值代入即可【详解】解:(1)原式=﹣a5b3÷(﹣12a3b2)=2a2b;(2)原式=x2﹣4y2﹣x2+y2=﹣3y2;(3)原式=(4a2+4ab+b2﹣3a2+4ab﹣b2﹣a)÷(﹣12a)=(a2+8ab﹣a)÷(﹣12a)=﹣2a﹣16b+2,当a=﹣1,b=12时,原式=2﹣8+2=﹣4.【点睛】此题考查整式的混合运算,掌握运算法则是解题关键19.七巧板是我们祖先的一项卓越创造,用它可以拼出多种图形,请你根据下列要求拼图:(画出示意图并标明每块板的标号,在拼图时应注意:相邻的两块板之间无空隙、无重叠)(1)用七巧板中标号为①②③的三块板拼成一个等腰直角三角形;(2)选择七巧板中的三块板拼成一个正方形.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1) 根据七巧板中有两个较小的等腰直角三角形,且小正方形的边长与等腰三角形的腰长相等进行拼(2) 根据七巧板中有两个较小的等腰直角三角形,且大等腰三角形的斜边长等于2倍小等腰三角形的腰长相等进行拼【详解】解:(1)等腰直角三角形如图所示;(2)正方形如图所示;【点睛】此题考查作图一应用与设计作图,掌握等腰三角形的性质和正方形的性质是解题关键20.如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少?(2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.【答案】(1)310;(2)12【解析】【分析】(1)利用概率公式进行计算即可(2)利用概率公式计算出当有10个阴影时指针落在阴影部分的概率变为12,即可解答【详解】解:(1)指针落在阴影部分的概率是63= 2010;(2)当转盘停止时,指针落在阴影部分的概率变为12.如图所示:【点睛】此题考查概率公式,难度不大21.如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为∠l=∠2,根据,所以∥.又因为AB∥CD,根据:,所以EF∥AB.【答案】内错角相等,两直线平行、CD、EF、平行于同一直线的两条直线平行.【解析】【分析】根据平行线的性质,即可解答【详解】解:因为∠l=∠2,根据内错角相等,两直线平行,所以CD∥EF.又因为AB∥CD,根据:平行于同一直线的两条直线平行,所以EF∥AB.故答案为内错角相等,两直线平行、CD、EF、平行于同一直线的两条直线平行.【点睛】此题考查平行线的性质,难度不大22.如图,点E在AB上,AC=AD,∠CAB=∠DAB,那么△BCE和△BDE全等吗?请说明理由.【答案】△BCE≌△BDE【解析】【分析】根据全等三角形的性质与判断进行解答即可,先求出△ACB≌△ADB(SAS),再利用BC=BD,∠ABC=∠ABD,求出△BCE≌△BDE(SAS)【详解】解:△BCE ≌△BDE ,理由如下: 在△ACB 与△ADB 中AC AD CAB DAB AE AE =⎧⎪=⎨⎪=⎩∠∠ ,∴△ACB ≌△ADB (SAS ), ∴BC =BD ,∠ABC =∠ABD , 在△BCE 与△BDE 中 BC BD ABC ABD AB AB =⎧⎪=⎨⎪=⎩∠∠ , ∴△BCE ≌△BDE (SAS ).【点睛】此题考查全等三角形的判定与性质,掌握判定法则是解题关键23.已知,在一个盒子里有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据:摸球总次数 50 100 150 200 250 300350400 450 500 摸到红球的频数 17 32 44 64 78 103 122136148 摸到红球的频率 0.340.320.2930.320.3120.320.2940.302(1)请将表格中的数据补齐; (2)根据上表,完成折线统计图;(3)请你估计,当摸球次数很大时,摸到红球的频率将会接近 (精确到0.1). 【答案】(1)96;0.305;0.296;(2)详见解析;(3)0.3. 【解析】【分析】(1)根据频率计算公式解答即可(2)画出折线统计图即可(3)利用频率估计概率可得到摸到红球的概率即可【详解】解:(1)300×0.32=96,122148=0.305=0.296400500,,故答案为96;0.305;0.296;(2)折线统计图如图所示:(3)当摸球次数很大时,摸到红球的频率将会接近0.3,故答案为0.3.【点睛】此题考查折线统计图,概率公式,频率分布表,解题关键在于看懂图中数据24.A,B两地相距100千米,甲,乙两人骑车同时分别从A、B两地相向而行,假设他们都保持匀速行驶,直线l1,l2分别表示甲,乙两人与A地的距离S(单位:km)与行驶时间t(单位:h)之间关系的图象.根据图象提供的信息,解答下列问题:(1)甲、乙两人的速度分别是多少?(2)经过多长时间,两人相遇?(3)分别写出甲,乙两人与A地的距离S(单位:km)与行驶时间t(单位:h)之间的关系式.【答案】(1)甲的速度为:15(km/h),乙的速度为:20(km/h);(2)经过207小时,两人相遇;(3)甲:s1=15t;乙:s2=﹣20t+100.【解析】【分析】(1)利用图象上点的坐标得出甲、乙的速度即可;(2)利用待定系数法求出直线l1、l2的解析式,利用两函数相等进而求出相遇的时间;(3)由(2)可得结论【详解】解:(1)如图所示:甲的速度为:30÷2=15(km/h),乙的速度为:(100﹣60)÷2=20(km/h);(2)设l1的关系式为:s1=kt,则30=k×2,解得:k=15,故s1=15t;设s2=at+b,将(0,100),(2,60),则100260ba b=⎧⎨+=⎩,解得:20100ab=-⎧⎨=⎩,故l2的关系式为s2=﹣20t+100;15t=﹣20t+100,t=207,答:经过207小时,两人相遇;(3)由(2)可知:甲:l1的关系式为:s1=15t;乙:l2的关系式为:s2=﹣20t+100.【点睛】此题考查一次函数的应用,列出方程是解题关键25.(1)操作发现:如图①,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD 为边在CD上方作等边△CDE,连接AE,则AE与BD有怎样的数量关系?说明理由.(2)类比猜想:如图②,若点D是等边△ABC的边BA延长线上一动点,连接CD,以CD为边在CD上方作等边△CDE,连接AE,请直接写出AE与BD满足的数量关系,不必说明理由;(3)深入探究:如图③,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边分别在CD上方、下方作等边△CDE和等边△CDF,连接AE,BF则AE,BF与AB有怎样的数量关系?说明理由.【答案】(1)AE =BD ;(2)AE =BD ;(3)AE +BF =AB . 【解析】 【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可以证得△BCD ≌△ACE;然后由全等三角形的对应边相等知AE=BD (2)通过证明△BCD ≌△ACE,即可证明AE=BD;(3)1.AF+BF=AB;利用全等三角形△BCD ≌△ACE(SAS)的对应边BD =AE ;同理△BCF ≌△DCA (SAS),则BF =AD,所以AE +BF =AB【详解】解:(1)AE =BD ,理由如下: ∵△ABC 和△DCE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°, ∴∠ACB ﹣∠ACD =∠DCE ﹣∠ACD , 即∠BCD =∠ACE , 在△BCD 和△ACE 中, AC BCBCD ACE CD CE =⎧⎪=⎨⎪=⎩∠∠ , ∴△BCD ≌△ACE (SAS ), ∴AE =BD ; (2)AE =BD .理由如下:∵△ABC 和△DCE 都是等边三角形, ∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°, ∴∠ACB +∠ACD =∠DCE +∠ACD , 即∠BCD =∠ACE , 在△BCD 和△ACE 中,AC BC BCD ACE CD CE =⎧⎪=⎨⎪=⎩∠∠, ∴△BCD ≌△ACE (SAS ), ∴AE =BD ; (3)AE +BF =AB .证明如下:由(1)知,△BCD ≌△ACE (SAS ), ∴BD =AE ,同理可证,△BCF ≌△DCA (SAS ), ∴BF =AD ,∴AB =AD +BD =AE +BF .【点睛】此题考查全等三角形的判定与性质和等边三角形的性质,解题关键在于利用全等三角形的性质进行求证。