一元二次不等式及其解法试题(含答案)1.doc
(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
一元二次不等式及其解法试题(含答案)1

一元二次不等式及其解法试题(含答案)1一元二次不等式及其解法试题(含答案)1基础达标:1.不等式x 2-ax -12a 2<0(其中a <0)的解集为( ) A .(-3a ,4a ) B .(4a ,-3a ) C .(-3,-4) D .(2a ,6a )2221x x --+x 的取值范围是( )A .1{|1}2x x x ≥≤-或B .1{|1}2x x -≤≤C .1{|1}2x x x ≥≤-或 D .1{|1}2x x -≤≤3.不等式ax 2+5x+c >0的解集为11{|}32x x <<,则a ,c 的值为( ) A .a=6,c=1 B .a=-6,c=-1 C .a=1,c=1 D .a=-1,c=-64.解不等式220ax bx ++>得到解集11{|}23x x -<<,那么a b +的值等于( )(A)10 (B)-10 (C)14 (D)-145.不等式x 2-ax -b <0的解集是{x|2<x <3},则bx 2-ax -1>0的解集是( )A .{|23}x x <<B .11{|}32x x << C .11{|}23x x -<<- D .{|32}x x -<<-6.抛物线y=-x 2+5x -5上的点位于直线y=1的上方,则自变量x 的取值范围是________。
7.如果关于x 的方程x 2-(m -1)x+2-m=0的两根为正实数,则m 的取值范围是________。
8.解下列不等式(1) 14-4x 2≥x ; (2) x 2+x+1>0;(3) 2x 2+3x+4<0; (4)23620x x -+<;(5)2223x x ->--;(6)01442>+-x x ;(7)0322>-+-x x 9.已知不等式ax 2-3x+6>4的解集为{x|x <1或x >b}。
(十)一元二次不等式及其解法(答案)

§7.2 一元二次不等式及其解法题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ ) 题组二 教材改编2.已知全集U =R ,集合A ={x |x 2-x -6≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4-x x +1≤0,那么集合A ∩(∁U B )等于( )A .[-2,4)B .(-1,3]C .[-2,-1]D .[-1,3] 答案 D解析 因为A ={x |-2≤x ≤3},B ={x |x <-1或x ≥4}, 故∁U B ={x |-1≤x <4},所以A ∩(∁U B )={x |-1≤x ≤3},故选D. 3.y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0, 得-4<x <1.5.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.6.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集为空集,则实数a 的取值范围为____________. 答案 ⎣⎡⎭⎫-2,65 解析 当a 2-4=0时,a =±2.若a =-2,不等式可化为-1≥0,显然无解,满足题意;若a =2,不等式的解集不是空集,所以不满足题意;当a ≠±2时,要使不等式的解集为空集,则⎩⎪⎨⎪⎧a 2-4<0,(a +2)2+4(a 2-4)<0,解得-2<a <65.综上,实数a 的取值范围为⎣⎡⎭⎫-2,65.题型一 一元二次不等式的求解命题点1 不含参的不等式典例 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0,得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞, 即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 命题点2 含参不等式典例 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a=-1,即a =-2时,解得x =-1满足题意;当2a <-1,即-2<a <0时,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥2a 或x ≤-1; 当-2<a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 2a ≤x ≤-1;当a =-2时,不等式的解集为{-1};当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤2a . 思维升华 含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式; (3)对方程的根进行讨论,比较大小,以便写出解集. 跟踪训练 解下列不等式: (1)0<x 2-x -2≤4; (2)12x 2-ax >a 2(a ∈R ). 解 (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4,则⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0, 可得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,∴原不等式的解集为{x |-2≤x <-1或2<x ≤3}. (2)∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得x 1=-a 4,x 2=a3.当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-a 4或x >a 3; 当a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为 ⎩⎨⎧x ⎪⎪⎭⎬⎫x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <a 3或x >-a 4.题型二 一元二次不等式恒成立问题命题点1 在R 上的恒成立问题典例 (1)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0) 答案 D解析 ∵2kx 2+kx -38<0为一元二次不等式,∴k ≠0,又2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. (2)设a 为常数,对于∀x ∈R ,ax 2+ax +1>0,则a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,+∞) D .(-∞,4) 答案 B解析 对于∀x ∈R ,ax 2+ax +1>0,则必有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0或a =0,∴0≤a <4. 命题点2 在给定区间上的恒成立问题典例 设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 命题点3 给定参数范围的恒成立问题典例 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围. 解 由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4, 令g (m )=(x -2)m +x 2-4x +4.由题意,知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0. 解得x <1或x >3.故当x 的取值范围为(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零. 思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数. 跟踪训练 函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, ∴实数a 的取值范围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示):①如图①,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2. ②如图②,g (x )的图象与x 轴有交点, 但当x ∈[-2,+∞)时,g (x )≥0,即⎩⎪⎨⎪⎧Δ≥0,x =-a2≤-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≤-2,4-2a +3-a ≥0,可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅.③如图③,g(x)的图象与x轴有交点,但当x∈(-∞,2]时,g(x)≥0.即⎩⎪⎨⎪⎧Δ≥0,x=-a2≥2,g(2)≥0,即⎩⎪⎨⎪⎧a2-4(3-a)≥0,-a2≥2,7+a≥0,可得⎩⎪⎨⎪⎧a≥2或a≤-6,a≤-4,a≥-7.∴-7≤a≤-6,综上,实数a的取值范围是[-7,2].(3)令h(a)=xa+x2+3.当a∈[4,6]时,h(a)≥0恒成立.只需⎩⎪⎨⎪⎧h(4)≥0,h(6)≥0,即⎩⎪⎨⎪⎧x2+4x+3≥0,x2+6x+3≥0,解得x≤-3-6或x≥-3+ 6.∴实数x的取值范围是(-∞,-3-6]∪[-3+6,+∞).题型三一元二次不等式的应用典例甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100·⎝⎛⎭⎫5x+1-3x元.(1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润. 解 (1)根据题意,得200⎝⎛⎭⎫5x +1-3x ≥3 000, 整理得5x -14-3x ≥0,即5x 2-14x -3≥0,又1≤x ≤10,可解得3≤x ≤10.即要使生产该产品2小时获得的利润不低于3 000元,x 的取值范围是[3,10]. (2)设利润为y 元,则y =900x ·100⎝⎛⎭⎫5x +1-3x =9×104⎝⎛⎭⎫5+1x -3x 2=9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112, 故当x =6时,y max =457 500元.即甲厂以6千克/小时的生产速度生产900千克该产品时获得的利润最大,最大利润为457 500元. 思维升华 求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型. (3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.跟踪训练 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意,得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价,所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2]. (2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.转化与化归思想在不等式中的应用典例 (1)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.(2)已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.思想方法指导 函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题. 解析 (1)由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. ∵f (x )的值域为[0,+∞), ∴b -a 24=0,即b =a 24.∴f (x )=⎝⎛⎭⎫x +a 22. 又∵f (x )<c ,∴⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .∴⎩⎨⎧-a2-c =m , ①-a2+c =m +6. ②②-①,得2c =6,∴c =9.(2)∵当x ∈[1,+∞)时,f (x )=x 2+2x +a x >0恒成立,即x 2+2x +a >0恒成立.即当x≥1时,a>-(x2+2x)恒成立.令g(x)=-(x2+2x),则g(x)=-(x2+2x)=-(x+1)2+1在[1,+∞)上单调递减,∴g(x)max=g(1)=-3,故a>-3.∴实数a的取值范围是{a|a>-3}.答案(1)9(2){a|a>-3}1.不等式(x-1)(2-x)≥0的解集为()A.{x|1≤x≤2} B.{x|x≤1或x≥2} C.{x|1<x<2} D.{x|x<1或x>2}答案A解析由(x-1)(2-x)≥0可知,(x-2)(x-1)≤0,所以不等式的解集为{x|1≤x≤2}.2.(2018·河北省三市联考)若集合A={x|3+2x-x2>0},集合B={x|2x<2},则A∩B等于()A .(1,3)B .(-∞,-1)C .(-1,1)D .(-3,1)答案 C解析 依题意,可求得A =(-1,3),B =(-∞,1),∴A ∩B =(-1,1).3.(2018·商丘调研)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( ) A .[-1,1] B .[-2,2] C .[-2,1] D .[-1,2]答案 A解析 方法一 当x ≤0时,x +2≥x 2,∴-1≤x ≤0;①当x >0时,-x +2≥x 2,∴0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.方法二 作出函数y =f (x )和函数y =x 2的图象,如图所示,由图知f (x )≥x 2的解集为[-1,1].4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}答案 D解析 由题意知,当a =0时,满足条件.当a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0, 得0<a ≤4,所以0≤a ≤4.5.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件售价提高1元,销售量就会减少10件.那么要保证每天所赚的利润在320元以上,售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间答案 C解析 设售价定为每件x 元,利润为y ,则y =(x -8)[100-10(x -10)],依题意有(x -8)[100-10(x -10)]>320,即x 2-28x +192<0,解得12<x <16,所以每件售价应定为12元到16元之间.6.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.7.若不等式-2≤x 2-2ax +a ≤-1有唯一解,则a 的值为________.答案 1±52解析 若不等式-2≤x 2-2ax +a ≤-1有唯一解,则x 2-2ax +a =-1有两个相等的实根,所以Δ=4a 2-4(a +1)=0,解得a =1±52. 8.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是____________. 答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪ a <x <1a 解析 原不等式即(x -a )⎝⎛⎭⎫x -1a <0, 由0<a <1,得a <1a ,∴a <x <1a. ∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a <x <1a . 9.(2018·济南模拟)若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是________.答案 (-2,2]解析 原不等式等价于,(m -2)x 2+2(m -2)x -4<0,①当m -2=0,即m =2时,对任意x ,不等式都成立;②当m -2<0,即m <2时,Δ=4(m -2)2+16(m -2)<0,解得-2<m <2.综合①②,得m ∈(-2,2].10.(2018·湛江调研)已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3,则f (e x )>0(e 是自然对数的底数)的解集是__________. 答案 {x |-ln 2<x <ln 3}解析 依题意可得f (x )=a ⎝⎛⎭⎫x -12(x -3)(a <0),则f (e x )=a ⎝⎛⎭⎫e x -12(e x -3)(a <0), 由f (e x )=a ⎝⎛⎭⎫e x -12(e x -3)>0,可得12<e x <3, 解得-ln 2<x <ln 3.11.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集;(2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ).当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a, ∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .12.已知不等式(a +b )x +2a -3b <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-34,求不等式(a -2b )x 2+2(a -b -1)x +a -2>0的解集.解 因为(a +b )x +2a -3b <0,所以(a +b )x <3b -2a ,因为不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-34, 所以a +b <0,且3b -2a a +b=-34, 解得a =3b <0,则不等式(a -2b )x 2+2(a -b -1)x +a -2>0,等价于bx 2+(4b -2)x +3b -2>0,即x 2+⎝⎛⎭⎫4-2b x +3-2b<0, 即(x +1)⎝⎛⎭⎫x +3-2b <0.因为-3+2b<-1, 所以所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3+2b <x <-1.13.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是____________.答案 ⎝⎛⎭⎫-235,+∞ 解析 方法一 ∵x 2+ax -2>0在x ∈[1,5]上有解,令f (x )=x 2+ax -2,∵f (0)=-2<0,f (x )的图象开口向上,∴只需f (5)>0,即25+5a -2>0,解得a >-235. 方法二 由x 2+ax -2>0在x ∈[1,5]上有解,可得a >2-x 2x =2x-x 在x ∈[1,5]上有解. 又f (x )=2x-x 在x ∈[1,5]上是减函数, ∴⎝⎛⎭⎫2x -x min =-235,只需a >-235. 14.不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为__________. 答案 [-8,4]解析 因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0对于任意的a ,b ∈R 恒成立,即a 2-λba +(8-λ)b 2≥0恒成立,由一元二次不等式的性质可知,Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.15.(2018·郑州质检)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,x 2-2x ,x <0, 若关于x 的不等式[f (x )]2+af (x )-b 2<0恰有1个整数解,则实数a 的最大值是( )A .2B .3C .5D .8答案 D解析 作出函数f (x )的图象如图实线部分所示,由[f (x )]2+af (x )-b 2<0, 得-a -a 2+4b 22<f (x )<-a +a 2+4b 22, 若b ≠0,则f (x )=0满足不等式,即不等式有2个整数解,不满足题意,所以b =0,所以-a <f (x )<0,且整数解x 只能是3,当2<x <4时,-8<f (x )<0,所以-8≤-a <-3,即a 的最大值为8,故选D.16.(2017·宿州模拟)若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为__________.答案 (-∞,0]解析 因为不等式4x -2x +1-a ≥0在[1,2]上恒成立,所以4x -2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1.因为1≤x ≤2,所以2≤2x ≤4.由二次函数的性质可知,当2x =2,即x =1时,y 取得最小值0,所以实数a 的取值范围为(-∞,0].。
(完整版)一元二次不等式及其解法练习题

一元二次不等式及其解法练习班级: 姓名: 座号:1 比较大小:(1)2 6+ (2)2 21)-;(3; (4)当0a b >>时,12log a _______12log b .2. 用不等号“>”或“<”填空:(1),____a b c d a c b d ><⇒--; (2)0,0____a b c d ac bd >><<⇒;(3)0a b >>⇒ (4)22110___a b a b>>⇒.3. 已知0x a <<,则一定成立的不等式是( ).A .220x a <<B .22x ax a >>C .20x ax <<D .22x a ax >>4. 如果a b >,有下列不等式:①22a b >,②11a b<,③33a b >,④lg lg a b >,其中成立的是 .5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 .6.比较(3)(5)a a +-与(2)(4)a a +-的大小.7. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化8.(1)已知1260,1536,aa b a b b<<<<-求及的取值范围.(2)已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围.9. 已知22ππαβ-≤<≤,则2αβ-的范围是( ).A .(,0)2π-B .[,0]2π-C .(,0]2π-D .[,0)2π- 10.求下列不等式的解集.(1)2230x x +->; (2)2230x x -+-> (3)2230x x -+-≤.(4)24410x x -+> (5)24415x x -> (6)21340x ->(7)23100x x --> (8)2450x x -+< (9)23710x x -≤(10)2250x x -+-< (11)23100x x --+> (12)(9)0x x ->11.(1)不等式230x x -<的解集是 . (2)不等式2524x x -<的解集是 . (3)不等式(5)(2)0x x --<的解集为 . 12.不等式12--x x ≥0的解集是( ) A.[2,+∞] B.(-∞,1)∪[2,+∞) C.(-∞,1) D.(-∞,1)∪[2,+∞) 13、不等式13+-x x ≤ 3的解集为 .14 y =的定义域为 .15. 函数y =的定义域是( ).A .{|4x x <-或3}x >B .{|43}x x -<<C .{|4x x ≤-或3}x ≥D .{|43}x x -≤≤ 16. 集合A ={2|540}x x x -+≤,B =2{|560}x x x -+≥,则AB =( ).A .{|12x x ≤≤或34}x ≤≤B .{|12x x ≤≤且34}x ≤≤C .{1,2,3,4}D .{|41x x -≤≤-或23}x ≤≤17.2{|430}A x x x =-+<,2{|280}B x x x a =-+-≤,且A B ⊆,求a 的取值范围.18.不等式2223931711()()33x x x x --+-≤的解集是( ).A .[2,4]B .(,2][4,)-∞+∞C .RD .(,2][4,)-∞-+∞19.(1)若关于x 的一元二次方程2(1)0x m x m -+-=有两个不相等的实数根,求m 的取值范围.(2)当m 是什么实数时,关于x 的一元二次方程2(1)0mx m x m --+=没有实数根.20. 已知方程20ax bx c ++=的两根为12,x x ,且12x x <,若0a <,则不等式20ax bx c ++<的解为( ).A .RB .12x x x <<C .1x x <或2x x >D .无解21若不等式220ax bx +->的解集为1{|1}4x x -<<-,则,a b 的值分别是 .22设关于x 的不等式210ax bx ++>的解集为1{|1}3x x -<<,求a b .23.不等式220ax bx ++>的解集是11{|}23x x -<<,则a b +等于( ).A .-14B .14C .-10D .1024.若方程20ax bx c ++=(0a <)的两根为2,3,那么20ax bx c ++>的解集为( ). A .{|3x x >或2}x <- B .{|2x x >或3}x <- C .{|23}x x -<< D .{|32}x x -<< 25已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为( ) A .11{|}32x x -<< B .11{|}32x x x <->或 C .{|32}x x -<< D .{|32}x x x <->或 26已知二次不等式20ax bx c ++<的解集为1{|3x x <或1}2x >,求关于x 的不等式20cx bx a -+>的解集.27.二次不等式的解集是全体实数的条件是(1)20ax bx c ++>对一切x R ∈都成立的条件为( ) (2)20ax bx c ++<对一切x R ∈都成立的条件为( )A .00a >⎧⎨∆>⎩B .00a >⎧⎨∆<⎩C .00a <⎧⎨∆>⎩D .00a <⎧⎨∆<⎩28.关于x 的不等式20x x c ++>的解集是全体实数的条件是( ). A .14c < B .14c ≤ C .14c > D .14c ≥29.若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是 30. 在下列不等式中,解集是∅的是( ).A .22320x x -+>B .2440x x ++≤C .2440x x --<D .22320x x -+-> 31. 关于x 的不等式2(1)10x a x ---<的解集为∅,则实数a 的取值范围是( ).A .3(,1]5-B .(1,1)-C .(1,1]-D .3(,1)5-32. 若关于m 的不等式2(21)10mx m x m -++-≥的解集为空集,求m 的取值范围.33. 解关于x 的不等式2(2)20x a x a +--<(a ∈R ).34(1). 设2280x x a -+-≤对于一切(1,3)x ∈都成立,求a 的范围.(2)若方程2280x x a -+-=有两个实根12,x x ,且13x ≥,21x ≤,求a 的范围.35.设函数2()(8),f x ax b x a ab =+---的两个零点分别是-3和2;(1)求()f x ;(2)当函数()f x 的定义域是[0,1]时,求函数()f x 的值域.1< < < < 2.> < > < 3B 4 ③5.ab ab a <<26 <7 A 8.35、解:(1)∵f(x)的两个零点是-3和2,∴函数图象过点(-3,0)、(2,0)∴有9a -3(b -8)-a -ab =0 ……⑴ 4a +2(b -8)-a -ab =0 ……⑵ ⑴ -⑵得:b =a +8 … ⑶ ⑶代入⑵得:4a +2a -a -a(a +8)=0即a 2+3a =0∵a≠0 ∴a =-3 ∴b =a +8=5 ∴f(x)=-3x 2-3x +18 (2)由(1)得f(x)=-3x 2-3x +18, 图象的对称轴方程是:21-=x ,且10≤≤x ∴12)1()(min ==f x f , 18)0()(max ==f x f ∴f(x)的值域是[12,18]。
高二数学一元二次不等式及其解法试题

高二数学一元二次不等式及其解法试题1.如果不等式ax2+bx+c<0(a≠0)的解集为空集,那么()A.a<0,Δ>0B.a<0,Δ≤0C.a>0,Δ≤0D.a>0,Δ≥0【答案】C【解析】只能是开口朝上,最多与x轴一个交点情况∴a>0,Δ≤0;故选C。
【考点】主要考查一元二次不等式解法。
点评:基本题型,记清不等式ax2+bx+c<0(a≠0)的解集的各种情况。
2.不等式(x+5)(3-2x)≥6的解集为()A.{x|x≤-1或x≥}B.{x|-1≤x≤}C.{x|x≥1或x≤-}D.{x|-≤x≤1}【答案】D【解析】首先移项,合并同类项,分解因式可得-≤x≤1,故选D。
【考点】主要考查一元二次不等式解法。
点评:基本题型,解不等式ax2+bx+c>0(<0)(a≠0)首选因式分解法,注意各因式中x系数化为正。
3.若二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:x-3-2-101234则不等式ax2+bx+c>0的解集是。
【答案】(-∞,-2)∪(3,+∞)【解析】两个根为2,-3,由函数值变化可知a>0∴ax2+bx+c>0的解集是(-∞,-2)∪(3,+∞)。
【考点】主要考查一元二次不等式的概念及解法。
点评:基本题型,一元二次方程的根为“变号零点”。
4.若集合A={x∈R|x2-4x+3<0},B={x∈R|(x-2)(x-5)<0},则A∩B=_______________________________.【答案】{x│2<x<3}【解析】因为,,所以A∩B={x│2<x<3}。
【考点】主要考查一元二次不等式解法、集合的运算。
点评:基本题型,求集合的交集、并集,往往先解不等式,明确集合中的元素。
借助数轴,避免出错。
5.不等式(x-2)≥0的解集为________________.【答案】{x│x≥3或x=2或x=-1}【解析】等价于x-2=0或x2-2x-3=0或取并集可得{x│x≥3或x=2或x=-1}。
一元二次不等式及其解法练习题

一元二次不等式及其解法练习题一元二次不等式及其解法练1.比较大小:1) $(3+2)^2<2^6+2^6$;2) $(3-2)^2<(6-1)^2$;3) $\frac{5-2}{2}-6<\frac{5}{2}-2^6$;4) 当$a>b>1$时,$\log_a 1 - \log_b 1$。
2.用不等号“>”或“<”填空:1) $a>b,c<d\Rightarrow a-c< b-d$;2) $a>b>0,c<d<XXX<bd$;3) $a>b>0\Rightarrow 3a>3b$;4) $a>b>1\Rightarrow \frac{2}{a}<\frac{2}{b}$。
3.已知$x<a<b$,则一定成立的不等式是().A.$x^2<a^2<b^2$;B.$x^2>ax>a^2$;C.$x^2<ax<b^2$;D.$x^2>a^2>ax$。
4.如果$a>b$,有下列不等式:①$a^2>b^2$,②$\frac{1}{a}3b$,④$\log_a x>\log_b x$,其中成立的是()。
5.设$a<1$,$-1<b<0$,则$a,ab,ab^2$三者的大小关系为()。
6.比较$(a+3)(a-5)$与$(a+2)(a-4)$的大小。
7.若$f(x)=3x^2-x+1$,$g(x)=2x^2+x-1$,则$f(x)$与$g(x)$的大小关系为()。
A.$f(x)>g(x)$;B.$f(x)=g(x)$;C.$f(x)<g(x)$;D.随$x$值变化而变化。
8.(1)已知$12<a<60$,$15<b<36$,求$a-b$及$\frac{a}{b}$的取值范围。
高考数学 一元二次不等式及其解法大全(含练习和答案)

一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。
2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。
一元二次不等式及其解法练习及同步练习题(含答案)

一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。
一.二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解)解:()a a 422--=∆ (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当 (i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21aa a x --+-=,()242)2(22aa a x ----=.()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为: ①当0<a 时,{11><x ax x 或}; ②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--aa a a x 242++-<< (3)当a<0时, 原式可化为:012>-+ax x aa 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ; ②当0=∆即4-=a 时,解得:21-≠x ; ③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,aa a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); (4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如: 解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(* 1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1);当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础达标:1.不等式 x 2-ax -12a 2<0(其中 a <0)的解集为( )A .(- 3a ,4a )B .(4a ,-3a )C .(- 3,-4)D .(2a ,6a )2.使 2 x 2 x 1 有意义的 x 的取值范围是()A . { x | x 1或 x1}B . { x | 1 x 1}C . { x | x 1或 x12 2 }12x 1}D . { x |23.不等式 ax 2+5x+c >0 的解集为 { x |1x1} ,则 a ,c 的值为( )32A . a=6,c=1B .a=-6,c=-1C .a=1,c=1D .a=-1,c=-64.解不等式 ax2bx2 0 得到解集 { x | 1x1} ,那么 a b 的值23等于( )(A)10(B)-10(C)14(D)-145.不等式 x 2-ax -b <0 的解集是 {x|2 <x <3} ,则 bx 2-ax - 1>0的解集是()A . { x | 2 x 3}B . { x |1x 1} C . { x |1x1}32 23D . { x | 3 x2}6.抛物线 y=-x 2+5x -5 上的点位于直线 y=1 的上方,则自变量 x 的取值范围是 ________。
7.如果关于 x 的方程 x 2-(m -1)x+2-m=0 的两根为正实数,则 m 的取值范围是 ________。
8. 解下列不等式(1) 14-4x 2 ≥ x ; (2) x 2 +x+1>0; (3) 2x 2+3x+4<0; ( 4 )3x 2 6x 2 0 ;( 5) 3x 2 2 x 2 ;(6) 4x 2 4x 1 0 ;(7) x 2 2x 3 09.已知不等式 ax 2-3x+6>4 的解集为 {x|x <1 或 x >b} 。
(1)求 a ,b ;(2)解不等式 ax 2-(ac+b)x+bc <0。
210. 不等式 mx+1>mx 的解集为实数集 R ,求实数 m 的取值范围.能力提升:11.不等式 ax 2 ax (a 1) 0 的解集是全体实数, 则 a 的取值范围 是( )(A) ( ,0)(B)(,0)U(4,) (C)(,0]43(D) (, ),0] U(312.对于满足 0≤p ≤4 的实数 p ,使 x 2 px 4 x p 3恒成立的 x的取值范围是 _____________.13.已知 ax 2 bx c 0 的解集为 { x | 0x} ,则不等式cx 2bx a 0 的解集是 _________.14.若函数 f ( x)2 x22 ax a1 的定义域为 ,则 a 的取值范围为R________________.15.若使不等式 x 2 4 x 3 0 和 x 2 6x 80 同时成立的 x 的值使关于 x 的不等式 2x 2 9x a 0 也成立,则 a 的取值范围是 ________________.16. 若不等式 ax 2+bx+c >0 的解集为 {x|2 <x < 3} ,则不等式ax2-bx+c < 0 的解集是 ________;不等式cx2+bx+a> 0 的解集是_____________.17.已知f ( x)x22( a 2) x 4 ,(1)如果对一切 x∈R,f(x)>0 恒成立,求实数 a 的取值范围;(2)如果对 x∈[-3 ,1] ,f(x)>0 恒成立,求实数 a 的取值范围 .18.解下列关于 x 的不等式(ax 1)( x 1) 0;综合探究:19.解关于 x 的不等式:a(x 1)1(a 1) .x 220.设集合A={x|x 2-2x-8<0},B={x|x 2+2x-3>0}, C={x|x 2-3ax+2a 2<0},若 C (A∩B),求实数 a 的取值范围.参考答案:基础达标:1.B;2.B;3.B;4.D;5.C6.{ x | 2x 3} ;7.{ m | 1 2 2m2}8.答案:(1)原不等式的解集为{ x | 2x7} ;4(2)原不等式的解集为R;(3)原不等式的解集为;(4)原不等式的解集是(5)原不等式的解集是(6)原不等式的解集是x 1 3 x 1 3 ;3 3x x1, 或 x 2 ;2x x 1 ;2(7)原不等式的解集是.9.答案:(1)a=1,b=2;(2)当 c>2 时,解集为 {x|2 <x<c} ;当 c=2 时,解集为空集;当 c<2 时,解集为 {x|c <x<2} ;10.解析:当 m=0 时,不等式即为1>0,满足条件.当 m≠0 m 0,时,若不等式的解集为 R,则应有( m)2 4m 0 解得 0<m<4.综上, m的取值范围是 {m|0 ≤m<4}.能力提升:11.C12.{ x | x1或 x 3} ;13.{ x |1x1 } ;14.[-1,0]15.( ,9]; 16.{x|x<-3 ,或 x>-2} ;{x| 1x 1} 3 217.解析:(1)由题意得:△ =[2( a 2)]216 0,即 0<a<4;(2)由 x∈[-3 ,1] ,f(x)>0 得,有如下两种情况:2 a [ 3,1]f ( 3) 0或2 a[ 3,1]f (1)f (2 a) 0 01,4 .综上所述: a218.解析:当 a=0 时,原不等式即为 -(x+1)>0 ,解得 x<-1 ;当 a≠0 时,原不等式为关于 x 的一元二次不等式,方程 (ax-1)(x+1)=0 有两个实数根 x1 1和 x21.x2,即1 a( Ⅰ) 当x1 1,1 a 0时,a函数 f (x) (ax 1)( x 1) 的图象开口向下,与x轴有两个交点,其简图如下:故不等式 (ax 1)( x 1) 0 的解集为1, 1 ;a( Ⅱ) 当x1 x2 ,即11, a1时,a函数 f (x) (ax 1)( x 1) 的图象开口向下,与x轴有一个交点,其简图如下:故不等式(ax 1)( x 1) 0 的解集为空集;( Ⅲ) 当x1 x2,即1a1 ,a 1或a0 ,①若a 1,函数 f (x) ( ax 1)( x 1) 的图象开口向下,与x 轴有两个交点,其简图如下:故不等式 (ax 1)( x 1) 0 的解集为1, 1;a②若 a>0,数 f ( x) ( ax 1)( x 1) 的图象开口向上,与 x 轴有两个交点,其简图如下:故不等 (ax 1)( x 1) 0 的解集为 (, 1) U1,;a综上所述,当 a<-1 时,不等式的解集为11,;当 a=-1 时,不等式的解集为空集;当-1<a<0 时,不等式的解集为 1, 1 ;a当 a=0 时,不等式的解集为当 a>0 时,不等式的解集为综合探究:19.解析:原不等式可化为:(, 1) ;( , 1)1 , .aa( x 1) 1 0 a( x 1) x 2( a 1)x 2 a 0x 2x 2x 2( a1) 2 a(a 1) x1x111aa 0x 2x 2当 a-1>0 时,原不等式的解为: x11 或 x>2;a 1 1当-1<a-1<0 时,原不等式的解为: 2 x 1 ;a 1当 a-1=-1 时,原不等式无解;当 a-1<-1 时,原不等式的解为: 1 1 x 2 .a 120. 解析:解不等式 x2-2x-8<0 ,得 -2 <x<4,所以 A={x|-2<x<4}解不等式x2+2x-3>0,得 x<-3 或 x>1,所以 B={x|x<-3 ,或x>1}所以 A∩B={x|1<x<4}解方程 x2-3ax+2a 2=0,得到 x1=a, x 2=2a,由 C (A∩B),分如下两种情况讨论:(1)C=ф,所以有 x2-3ax+2a 2≥0 恒成立,对于方程 x2-3ax+2a2=0,△=a2≤0,∴a=0.a0(2)C≠,所以有 a 1 1 a 2,2a 4从而得到 1 a 2 。
综上所述,实数 a 的取值范围是{ a |1 a 2或 a0}。