河北省2018年中考数学总复习精讲(课件)第2编 专题突破篇 专题9 圆的有关计算、证明与探究
河北省2018年中考数学复习专题2图形变式与拓展课件

解:(1)四边形EFGH是平行四边形,理由如下: 如图,连接AC, ∵E是AB的中点,F是BC的中点,
∴EF∥HG,EF=HG. 故四边形EFGH是平行四边形. (2)①当AC=BD时,四边形EFGH为菱形.理由如下: 由(1)知,四边形EFGH是平行四边形, ∴当AC=BD时,FG=HG.∴▱EFGH是菱形. ②当AC⊥BD时,四边形EFGH为矩形.
类型2 关于四边形的变式拓展问题
【例2】[2017·长春中考]【再现】如图1,在△ABC中,点D,E分别
是AB,AC的中点,可以得到:DE∥BC,且DE= (不需要证明)
【探究】如图2,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,
DA的中点,判断四边形EFGH的形状,并加以证明.
【应用】(1)在【探究】的条件下,四边形ABCD中,满足什么条件时,
解:(1)在Rt△AHB中,∠ABC=45°, ∴AH=BH. 在△BHD和△AHC中,
∴△BHD≌△AHC(SAS).∴BD=AC. (2)①在Rt△AHC中, ∵tanC=3,
设CH=x,则BH=AH=3x. ∵BC=4,∴3x+x=4.∴x=1.∴AH=3,CH=1. 由旋转,知∠EHF=∠BHD=∠AHC=90°,EH=AH=3,FH= DH=CH=1,
∴△EHA∽△FHC.∴∠EAH=∠C.∴tan∠EAH=tanC=3. 如图,过点H作HP⊥AE于点P, ∴HP=3AP,AE=2AP. 在Rt△AHP中,AP2+HP2=AH2, ∴AP2+(3AP)2=9.
②EF=2GH.理由如下: 设AH与CG交于点Q, 由①知,△AEH和△FHC都为等腰三角形. 又∵旋转角为30°,∴∠FHD=∠BHE=30°.∴∠EHA=∠FHC =120°.∴∠HCG=∠GAH=30°.∴△AGQ∽△CHQ.∴∠AGQ= ∠CHQ=90°.
【初中数学】河北省2018年中考数学总复习:精讲试题(91份) 人教版52

第二节 平移与旋转以三角形旋转题.,河北五年中考真题及模拟)图形平移的相关计算1.(2017保定中考模拟)边长为1和2的两个正方形的一边在同一水平线上,小正方形沿水平线自左向右匀速平移穿过大正方形,如图反映了这个运动的全过程.设小正方形的运动时间为t ,两正方形重叠部分为s ,则s 与t 的函数图像大约为( B ),A ) ,B ) ,C ) ,D )2.(2016保定十七中一模)如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A ′B ′C ′,当两个三角形重叠部分的面积为32时,它移动的距离AA ′等于__4或8__.图形旋转的相关计算3.(2016沧州十三中一模)如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B 的度数是( B )A .70°B .65°C .60°D .55°4.(2016张家口中考模拟)如图,线段OA 垂直射线OB 于点O ,OA =4,⊙A 的半径是2.将OB 绕点O 沿顺时针方向旋转,当OB 与⊙A 相切时,OB 旋转的角度为__60°或120°__.,(第4题图)) ,(第5题图))5.(2016邯郸中考模拟)如图所示,在正方形ABCD 中,AD =1,将△ABD 绕点B 顺时针旋转45°得到△A ′BD ′,此时A ′D ′与CD 交于点E ,则DE 的长度为.6.(2014河北中考)如图,△ABC 中,AB =AC 40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ; (2)求∠ACE 的度数;(3)求证:四边形ABFE 是菱形.解:(1)根据图形旋转的性质可得△ABC ≌△ADE ,且AB =AC ,∴∠BAC =∠DAE ,AB =AC =AD =AE .∵∠BAC +∠CAD =∠DAE +∠CAD ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS);(2)根据图形旋转的性质可知,∠CAE =100°,且AC =AE ,∴∠ACE =∠AEC =(180°-100°)÷2=40°,∴∠ACE 的度数为40°;(3)∵∠BAC =∠ACE =40°,∴BA ∥CE .由(1)知∠ABD =∠ACE =40°,∠BAE =∠BAC +∠CAE =140°,∴∠BAE +∠ABD =180°,∴AE ∥BD .∴四边形ABFE 是平行四边形.又∵AB =AE ,∴平行四边形ABFE 是菱形.,中考考点清单)图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离. 3.性质:(1)平移前后,对应线段__平行且相等__、对应角相等; (2)各对应点所连接的线段平行(或在同一条直线上)且相等; (3)平移前后的图形全等. 4.作图步骤:(1)根据题意,确定平移的方向和平移的距离; (2)找出原图形的关键点;(3)按平移方向和平移距离、平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.图形的旋转5.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.6.三大要素:旋转中心、旋转方向和__旋转角度__. 7.性质:(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前后的图形全等. 8.作图步骤:(1)根据题意,确定旋转中心、旋转方向及旋转角; (2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点; (4)按原图形依次连接对应点,得到旋转后的图形. 【方法技巧】坐标系中的旋转问题:1.关于原点对称的点的坐标的应用.其基础知识为:点P (x ,y )关于原点对称点的坐标为(-x ,-y ),在具体问题中一般根据坐标特点构建方程组来求解,常用到的关系式:点P (a ,b ),P 1(m ,n )关于原点对称,则有⎩⎪⎨⎪⎧a +m =0,b +n =0. 2.坐标系内的旋转作图问题.与一般的旋转作图类似,其不同点在于若是作关于原点的中心对称图形,可以根据点的坐标规律,直接在坐标系内找到对应点的坐标,描点后连线.,中考重难点突破)图形平移的相关计算【例1】如图,已知△ABC 的面积为3,且AB =AC ,现将△ABC 沿CA 方向平移CA 长度得到△EFA.(1)求四边形CEFB 的面积;(2)试判断AF 与BE 的位置关系,并说明理由; (3)若∠BEC =15°,求AC 的长.【解析】(1)根据平移的性质和平行四边形的性质可得S △EFA =S △BAF =S △ABC =3,进而求即可;(2)容易证▱EFBA 为菱形,再据菱形的对角线的性质可得AF 与BE 的位置关系;(3)过点B 作高,用面积法求解即可.【答案】解:(1)由平移的性质得:AF∥BC 且AF =BC ,△EFA ≌△ABC ,∴四边形AFBC 为平行四边形.∴S △EFA=S △BAF =S △ABC =3.∴四边形CEFB 的面积为9;(2)BE⊥AF.理由如下:由(1)知四边形AFBC 为平行四边形,∴BF ∥AC 且BF =CA.又∵AE=CA ,∴BF ∥AE 且BF =AE.∴四边形EFBA 为平行四边形.又∵AB=AC ,∴AB =AE.∴▱EFBA 为菱形,∴BE ⊥AF ;(3)过点B 作BD⊥AC 于点D ,∠BAC =∠ABE+∠AEB=15°×2=30°.在Rt △ABD 中,sin 30°=BD AB =12,故AB=2BD =AC.S △ABC =12AC ·BD =12AC ·12AB =14AC 2=3,∴AC =2 3.1.(泉州中考)如图,△ABC 沿着由点B 到E 的方向,平移到△DEF ,已知BC =5,EC =3,那么平移的距离为( A )A .2B .3C .5D .7图形旋转的相关计算【例2】如图①,在△ABC 中,AB =AC ,∠BAC =90°,D ,E 分别是AB ,AC 边的中点.将△ABC 绕点A 顺时针旋转α角(0°<α<180°),得到△AB ′C ′(如图②).(1)探究DB ′与EC ′的数量关系,并给予证明; (2)当DB ′∥AE 时,试求旋转角α的度数.【解析】(1)由于AB =AC ,∠BAC =90°,D ,E 分别是AB ,AC 边的中点,则AD =AE =12AB ,再根据旋转的性质得到∠B ′AD =∠C ′AE =α,AB ′=AB ,AC ′=AC ,则AB ′=AC ′,根据三角形全等的判定方法可得到△B ′AD ≌△C ′AE (SAS),则有DB ′=EC ′;(2)由于DB ′∥AE ,根据平行线的性质得到∠B ′DA =∠DAE =90°,又因为AD =12AB =12AB ′,根据含30°的直角三角形三边的关系得到∠AB ′D =30°,利用互余即可得到旋转角∠B ′AD 的度数.【答案】解:(1)DB ′=EC ′.证明如下:∵AB =AC ,∠BAC =90°,D ,E 分别是AB ,AC 边的中点,∴AD =AE =12AB .∵△ABC 绕点A 顺时针旋转α角(0°<α<180°)得到△AB ′C ′,∴∠B ′AD =∠C ′AE =α,AB ′=AB ,AC ′=AC ,∴AB ′=AC ′,在△B ′AD 和△C ′AE 中,⎩⎪⎨⎪⎧AB ′=AC ′,∠B ′AD =∠C ′AE ,AD =AE ,∴△B ′AD ≌△C ′AE (SAS),∴DB ′=EC ′;(2)∵DB ′∥AE ,∴∠B ′DA =∠DAE =90°.在Rt△B ′DA 中,∵AD =12AB ′,∴∠AB ′D =30°,∴∠B ′AD =90°-30°=60°,即旋转角α的度数为60°.2.(2016石家庄四十二中三模)如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A(-2,3),B(-1,2),C(-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为________;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标. 解:(1)如图所示;(2)132π; (3)∵点B ,B 1在y 轴两旁,连接BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B+D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的表达式为y =kx +b ,依据题意,得⎩⎪⎨⎪⎧-k +b =2,2k +b =1,解得⎩⎪⎨⎪⎧k =-13,b =53.1 3x+53,∴D⎝⎛⎭⎪⎫0,53.∴y=-。
河北省2018年中考数学总复习-圆专题

圆1、如图1,AB 是⊙O 的弦,AC 切⊙O 于点A ,且∠BAC =45°,2=AB ,则⊙O 的面积为 (结果可保留π).2、如图2,O ⊙表示一个圆形工件,图中标注了有关尺寸,并且MB ∶MA =1∶4.求工件半径的长.3、某机械传动装置在静止状态时,如图3所示.连杆PB 与点B 运动所形成的⊙O 交于点A , 测量得PA =4cm ,AB =5cm, ⊙O 半径为4。
5cm .求点P 到圆心O 的距离.4、如图4—1,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成图4-2所示的一个圆锥模型.设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径之间的关系为A .2R r =B .94R r =C .3R r =D .4R r = 5、某工件形状如图5所示,圆弧BC 的度数为60°,AB =6cm ,点B 到点C 的距离等于AB ,∠BAC =30°,则工件的面积等于 【 】(A )π4 (B )π6 (C )π8 (D )π10 6、如图6-1,一个圆球放置在V 形架中.图6—2是它的平面示意图,CA 和CB 都是⊙O 的切线,切点分别是A ,B .如果⊙O 的半径为23cm ,且AB =6cm ,求∠ACB .7、如图7,已知圆锥的母线长OA =8,底面圆的半径r =2.若一只小虫从A 点出 发,绕圆锥的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是 (结果保留根式).8、(2005)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图8—1所示的工件槽,其中工件槽的两个底角均为90º,尺寸如图(单位:cm ).将形状规则的铁球放入槽内时,若同时具有图8—1所示的A ,B ,E 三个接触点,该球的大小就符合要求.图8—2是过球心O 及A ,B ,E 三点的截面示意图.已知⊙O 的直径就是铁球的直径,AB 是⊙O 的弦,CD 切⊙O 于点E ,AC ⊥CD ,BD ⊥CD .请你结合图8-1中的数据,计算这种铁球的直径.9、图9中,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB=2,半圆O 的半径为2,则BC 的长为( )A .2 B .1 C .1.5 D .0。