长沙初中升高中 数学真题
2023-2024学年湖南省长沙市中考数学试题(3月)(含答案)

...A .B .C .D .50︒55︒60︒65︒6.如图,点A ,B ,C ,D ,E 是上的五等分点,则的度数为()O EBD∠(第6题图)A .B .C .D .32︒34︒36︒38︒7.《九章算术》中记载有盈不足问题、今有共买金、人出四百,盈三千四百;人出三百,盈一百,问人数、金价各几何?其大意是:今有人合伙买金,每人出钱400,会多出3400钱;每人出钱300,会多出100钱,问合伙人数、金价各是多少?设合伙人数为x 人,金价为y 钱,则可列方程为()(第7题图)A .B .3400400100300y x y x +=⎧⎨-=⎩3400400100300y x y x +=⎧⎨+=⎩C .D .3400400100300y x y x-=⎧⎨-=⎩3400400100300y x y x-=⎧⎨+=⎩9.已知关于x 的一次函数,则该一次函数图象经过( )32y x =+A .第一、二、三象限B .第二、二、四象限C .第一、三、四象限D .第二、三、四象限10.如图,已知线段BC ,按照如下步骤作图:(第10题图)(第14题图)根据图表中提供的信息,解答下列问题.22.“双减”在行动,教有在提质.由长沙市教育局倾力打造的△24.如图,在ABC25.我们不妨约定:在平面直角坐标系,我们就说点P 和点Q 是该坐标平面内的一对“共赢点”.若函数,()212120a a b b -++=1y 的图象上存在一对或一对以上“共赢点”(其中点P 在的图象上,点Q 在的图象上),2y 1y 2y 我们就说函数,互为“共赢函数”.据约定,解答下列问题:1y 2y (1)若一次函数,,且.当自变量时,函数,12y kx k =+223y kx k =-0k ≠x k =1y 的图象上恰好是一对“共赢点”,试求一次函数,的解析式.2y 1y 2y (2)已知反比例函数,,且.试判断函数,是否互为“共赢函1m y x =2ny x=0mn ≠1y 2y 数”.若是,请求出“共赢点”的坐标;若不是,请说明理由.(3)已知以x 为自变量的二次函数,函数与互为“共赢函()22120y x mx mm =-+>1y 2y 数”,且当自变量x 取任意实数时,函数,的图象上都存在“共赢点”.记函数,1y 2y 1y 的图象分别交y 轴于A ,B 两点,函数的图象交x 轴于点C ,经过A ,B ,C 三点的圆与2y 1y x 轴的另一个交点为D ,点P 是x 轴下方圆上的动点,且点P 不与点B ,C ,D 重合,设,,令,当f 取最大值时,试判断四边形ACBD 的形状,并22PA PB t -=PCD S s =△1f s=说明理由.图图22.解:(1)设第一周到第三周(3)解:如图2,连接EF。
长沙2024年中考数学试卷

中考数学试卷一、单项选择题(共12分)(k≠0),下列所给的四个结论中,正确的是()1.对于反比例函数y=kxA.过图象上任一点P作x轴、y轴的垂线,垂足分别A,B,则矩形O APB的面积为kB.若点(2,4)在其图象上,则(−2,4)也在其图象上C.反比例函数的图象关于直线y=x和y=−x成轴对称D.当k>0时,y随x的增大而减小2.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈3.在同一平面直角坐标系中,函数y=x﹣1与函数y=1的图象可能是()xA.B. C.D.4.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对二、填空题(共24分)5.已知△ABC,若有|sinA−1|与(tanB−√3)2互为相反数,则∠C的度数2是。
6.两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是。
三、解答题7.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件。
(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润。
8.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。
(1)求证:△ADE∽△MAB;(2)求DE的长。
9.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1)。
(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C 的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3的图形。
长沙数学中考试题库答案

长沙数学中考试题库答案长沙作为湖南省的省会城市,每年都会举行中考,其中数学科目是中考的重要组成部分。
中考数学试题库包含了大量的历年真题和模拟题,旨在帮助学生更好地复习和准备考试。
以下是对长沙数学中考试题库的一些答案解析,供同学们参考。
一、选择题1. 题目:若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是直角三角形。
答案:正确。
根据勾股定理,若三角形的两边的平方和等于第三边的平方,则这个三角形是直角三角形。
2. 题目:下列哪个数是有理数?A. πB. √2C. 0.1010010001...D. √3答案:C。
π和√3都是无理数,√2是无理数,而0.1010010001...是一个有理数,因为它是无限循环小数。
3. 题目:若x^2 - 5x + 6 = 0,求x的值。
答案:(x - 2)(x - 3) = 0,所以x = 2或x = 3。
二、填空题1. 题目:一个数的平方根是4,这个数是____。
答案:16。
因为4的平方是16。
2. 题目:若一个圆的半径为r,那么它的面积是____πr^2。
答案:πr^2。
圆的面积公式是A = πr^2。
3. 题目:若a > 0,b < 0,且|a| < |b|,则a + b ____ 0。
答案:< 0。
因为b的绝对值大于a的绝对值,所以a + b的结果为负数。
三、解答题1. 题目:证明:对于任意实数x,x^3 - x 能被x - 1整除。
证明:我们可以将x^3 - x写成(x - 1)(x^2 + x + 1),这样可以看出x^3 - x确实能被x - 1整除。
2. 题目:一个长方体的长、宽、高分别是a、b、c,求它的体积。
答案:体积V = a * b * c。
长方体的体积是其长、宽、高的乘积。
3. 题目:解一元二次方程x^2 + 4x + 4 = 0。
答案:(x + 2)^2 = 0,所以x = -2。
长沙中考初中数学试卷真题

长沙中考初中数学试卷真题一、选择题1. 请计算 15 ÷(3 + 2) - 1 = ______。
A. 1B. 2C. 3D. 42. 某数除以2,商是3余1;除以3,商是2余2;除以5,商是1余4。
这个数是多少?A. 43B. 51C. 73D. 913. 若 7 ÷ 0.5 = x,则 x 的值为多少?A. 0.5B. 1C. 14D. 28二、填空题1. 下面的有理数绝对值大小关系由小到大依次是:①-2.2,②1,③-10.5,请将其按顺序填写在下面的方框中:______ < ______ < ______2. 已知△ABC 中,∠ACB = 90°,AB = 5 cm,BC = 12 cm,求∠ABC 的正弦值。
3. 有一矩形,长为 6 cm,宽为 4 cm,将其等分为正方形,请问每个正方形的边长是多少?三、解答题1. 已知平行四边形 ABCD,AB = 10 cm,ADE 是一条与 AB 平行的直线,交 BC 延长线于点 E。
若 AE:EB = 2:3,求 CE 的长度。
2. 长方体的长、宽、高分别为 8 cm、5 cm、3 cm,请计算它的表面积和体积,并用适当的单位表示。
3. 甲、乙两个数的和是 45,甲比乙大 5,求甲、乙两个数各自是多少?四、应用题某校初中一年级共有 6 个班级,每个班级男生和女生人数比例都为2:3。
请回答以下问题:1. 某班班级男生人数为 20 人,求该班级女生人数。
2. 新进校的学生中男生比例为 40%,女生比例为 60%。
若新进校的学生共有 150 人,求男生和女生的人数各是多少?3. 六个班级中男生一共有多少人?女生一共有多少人?感谢使用智能助教,祝您顺利完成数学试卷!。
湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.整式的混合运算—化简求值(共2小题)1.(2023•长沙)先化简,再求值:(2﹣a)(2+a)﹣2a(a+3)+3a2,其中a=﹣.2.(2021•长沙)先化简,再求值:(x﹣3)2+(x+3)(x﹣3)+2x(2﹣x),其中x=﹣.二.负整数指数幂(共1小题)3.(2022•长沙)计算:|﹣4|+()﹣1﹣()2+20350.三.二次根式的混合运算(共1小题)4.(2021•长沙)计算:|﹣|﹣2sin45°+(1﹣)0+×.四.二元一次方程的应用(共1小题)5.(2022•长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案. ②刘三姐的姐妹们给出的答案是唯一正确的答案. ③该歌词表达的数学题的正确答案有无数多种. (2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.五.一元一次不等式的应用(共1小题)6.(2021•长沙)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?六.解一元一次不等式组(共1小题)7.(2022•长沙)解不等式组:.七.全等三角形的判定与性质(共1小题)8.(2022•长沙)如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.八.线段垂直平分线的性质(共1小题)9.(2021•长沙)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.九.圆的综合题(共1小题)10.(2022•长沙)如图,四边形ABCD内接于⊙O,对角线AC,BD相交于点E,点F在边AD上,连接EF.(1)求证:△ABE∽△DCE;(2)当=,∠DFE=2∠CDB时,则﹣= ;+= ;+﹣= .(直接将结果填写在相应的横线上)(3)①记四边形ABCD,△ABE,△CDE的面积依次为S,S1,S2,若满足=+,试判断△ABE,△CDE的形状,并说明理由.②当=,AB=m,AD=n,CD=p时,试用含m,n,p的式子表示AE•CE.一十.作图—应用与设计作图(共1小题)11.(2021•长沙)人教版初中数学教科书八年级上册第35﹣36页告诉我们作一个三角形与已知三角形全等的方法:已知:△ABC.求作:△A′B′C′,使得△A′B′C′≌△ABC.作法:如图.(1)画B'C′=BC;(2)分别以点B′,C′为圆心,线段AB,AC长为半径画弧,两弧相交于点A′;(3)连接线段A′B′,A′C′,则△A′B′C′即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的空上):证明:由作图可知,在△A′B′C′和△ABC中,∴△A'B'C′≌ .(2)这种作一个三角形与已知三角形全等的方法的依据是 .(填序号)①AAS②ASA③SAS④SSS一十一.解直角三角形的应用-坡度坡角问题(共1小题)12.(2022•长沙)为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB表示该小区一段长为20m的斜坡,坡角∠BAD=30°,BD⊥AD于点D.为方便通行,在不改变斜坡高度的情况下,把坡角降为15°.(1)求该斜坡的高度BD;(2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)一十二.利用频率估计概率(共1小题)13.(2021•长沙)“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?湖南省长沙市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.整式的混合运算—化简求值(共2小题)1.(2023•长沙)先化简,再求值:(2﹣a)(2+a)﹣2a(a+3)+3a2,其中a=﹣.【答案】4﹣6a,原式=6.【解答】解:(2﹣a)(2+a)﹣2a(a+3)+3a2=4﹣a2﹣2a2﹣6a+3a2=4﹣6a,当a=﹣时,原式=4﹣6×(﹣)=4+2=6.2.(2021•长沙)先化简,再求值:(x﹣3)2+(x+3)(x﹣3)+2x(2﹣x),其中x=﹣.【答案】﹣2x,1.【解答】解:原式=x2﹣6x+9+x2﹣9+4x﹣2x2=﹣2x,当x=﹣时,原式=﹣2×(﹣)=1.二.负整数指数幂(共1小题)3.(2022•长沙)计算:|﹣4|+()﹣1﹣()2+20350.【答案】6.【解答】解:|﹣4|+()﹣1﹣()2+20350=4+3﹣2+1=6.三.二次根式的混合运算(共1小题)4.(2021•长沙)计算:|﹣|﹣2sin45°+(1﹣)0+×.【答案】5.【解答】解:原式=﹣2×+1+=﹣+1+4=5.四.二元一次方程的应用(共1小题)5.(2022•长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案. √ ②刘三姐的姐妹们给出的答案是唯一正确的答案. × ③该歌词表达的数学题的正确答案有无数多种. × (2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.【答案】(1)√,×,×;(2)“三多“的每群狗有85条,“一少“的狗有45条.【解答】解:(1)设“三多“的每群狗有x条,则“一少“的狗有(300﹣3x)条,根据题意得:,解得75<x<100,∵x为奇数,∴x可取77,79,81......99,共12个,∴①正确,②③错误,故答案为:√,×,×;(2)设“三多“的每群狗有m条,“一少“的狗有n条,根据题意得:,解得,答:“三多“的每群狗有85条,“一少“的狗有45条.五.一元一次不等式的应用(共1小题)6.(2021•长沙)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)22道;(2)23道.【解答】解:(1)设该参赛同学一共答对了x道题,则答错了(25﹣1﹣x)道题,依题意得:4x﹣(25﹣1﹣x)=86,解得:x=22.答:该参赛同学一共答对了22道题.(2)设参赛者需答对y道题才能被评为“学党史小达人”,则答错了(25﹣y)道题,依题意得:4y﹣(25﹣y)≥90,解得:y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.六.解一元一次不等式组(共1小题)7.(2022•长沙)解不等式组:.【答案】﹣2<x≤4.【解答】解:,解不等式①得:x>﹣2,解不等式②得:x≤4,∴原不等式组的解集为:﹣2<x≤4.七.全等三角形的判定与性质(共1小题)8.(2022•长沙)如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.【答案】(1)证明见见解答过程;(2)四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.八.线段垂直平分线的性质(共1小题)9.(2021•长沙)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.【答案】(1)详见证明过程;(2)周长为16+4,面积为22.【解答】解:(1)证明:∵AD⊥BC,BD=CD,∴AD是BC的中垂线,∴AB=AC,∴∠B=∠ACB;(2)在Rt△ADB中,BD===3,∴BD=CD=3,AC=AB=CE=5,∴BE=2BD+CE=2×3+5=11,在Rt△ADE中,AE===4,∴C△ABE=AB+BE+AE=5+11+4=16+4,S△ABE===22.九.圆的综合题(共1小题)10.(2022•长沙)如图,四边形ABCD内接于⊙O,对角线AC,BD相交于点E,点F在边AD上,连接EF.(1)求证:△ABE∽△DCE;(2)当=,∠DFE=2∠CDB时,则﹣= 0 ;+= 1 ;+﹣= 0 .(直接将结果填写在相应的横线上)(3)①记四边形ABCD,△ABE,△CDE的面积依次为S,S1,S2,若满足=+,试判断△ABE,△CDE的形状,并说明理由.②当=,AB=m,AD=n,CD=p时,试用含m,n,p的式子表示AE•CE.【答案】(1)证明见解答过程;(2)0,1,0;(3)①△ABE,△DCE都为等腰三角形,理由见解答过程;②AE•CE=.【解答】(1)证明:∵,∴∠ACD=∠ABD,即∠ABE=∠DCE,又∵∠DEC=∠AEB,∴△ABE∽△DCE;(2)解:∵△ABE∽△DCE,∴==,∴AE•CE=BE•DE,∴﹣==0,∵∠CDB+∠CBD=180°﹣∠BCD=∠DAB=2∠CDB,又∵∠DFE=2∠CDB,∴∠DFE=∠DAB,∴EF∥AB,∴∠FEA=∠EAB,∵=,∴∠DAC=∠BAC,∴∠FAE=∠FEA,∴FA=FE,∵EF∥AB,∴△DFE∽△DAB,∴=,∴====1,∵+==1,∴+=1,∴=0,故答案为:0,1,0;(3)解:①△ABE,△DCE都为等腰三角形,理由:记△ADE、△EBC的面积为S3、S4,则S=S1+S₂+S3+S4,∵==,∴S1S2=S3S4①,∵,即S=S 1+S2+2,∴S 3+S4=2②,由①②可得S3+S4=2,即(﹣)2=0,∴S3=S4,∴S△ABE+S△ADE=S△ABE+S△EBC,即S△ABD=S△ABC,∴CD∥AB,∴∠ACD=∠BAC,∠CDB=∠DBA,∵∠ACD=∠ABD,∠CDB=∠CAB,∴∠EDC=∠ECD=∠EBA=∠EAB,∴△ABE,△DCE都为等腰三角形;②∵=,∴∠DAC=∠EAB,∵∠DCA=∠EBA,∴△DAC∽△EAB,∴=,∵AB=m,AD=n,CD=p,∴EA•AC=DA×AB=mn,∵∠BDC=∠BAC=∠DAC,∴∠CDE=∠CAD,又∠ECD=∠DCA,∴△DCE∽△ACD,∴=,∴EA•AC+CE•AC=AC2=mn+p2,则AC=,.EC==,∴AE=AC﹣CE=,∴AE•CE=.一十.作图—应用与设计作图(共1小题)11.(2021•长沙)人教版初中数学教科书八年级上册第35﹣36页告诉我们作一个三角形与已知三角形全等的方法:已知:△ABC.求作:△A′B′C′,使得△A′B′C′≌△ABC.作法:如图.(1)画B'C′=BC;(2)分别以点B′,C′为圆心,线段AB,AC长为半径画弧,两弧相交于点A′;(3)连接线段A′B′,A′C′,则△A′B′C′即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的空上):证明:由作图可知,在△A′B′C′和△ABC中,∴△A'B'C′≌ △ABC(SSS) .(2)这种作一个三角形与已知三角形全等的方法的依据是 ④ .(填序号)①AAS②ASA③SAS④SSS【答案】见试题解答内容【解答】解:(1)由作图可知,在△A′B′C′和△ABC中,,∴△A'B'C′≌△ABC(SSS).故答案为:AB,AC,△ABC(SSS).(2)这种作一个三角形与已知三角形全等的方法的依据是SSS,故答案为:④.一十一.解直角三角形的应用-坡度坡角问题(共1小题)12.(2022•长沙)为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB表示该小区一段长为20m的斜坡,坡角∠BAD=30°,BD⊥AD于点D.为方便通行,在不改变斜坡高度的情况下,把坡角降为15°.(1)求该斜坡的高度BD;(2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)【答案】(1)10m;(2)20m.【解答】解:(1)在Rt△ABD中,∵∠ADB=90°,∠BAD=30°,BA=20m,∴BD=BA=10(m),答:该斜坡的高度BD为10m;(2)在△ACB中,∠BAD=30°,∠BCA=15°,∴∠CBA=15°,∴AB=AC=20(m),答:斜坡新起点C与原起点A之间的距离为20m.一十二.利用频率估计概率(共1小题)13.(2021•长沙)“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?【答案】(1)0.25;(2)36.【解答】解:(1)参与该游戏可免费得到景点吉祥物的频率为=0.25;(2)设纸箱中白球的数量为x,则=0.25,解得x=36,经检验x=36是分式方程的解且符合实际,所以估计纸箱中白球的数量接近36.。
2024年长沙市中考数学试卷

选择题:在平面直角坐标系中,点A(3, -4)关于x轴对称的点的坐标是:A. (-3, -4)B. (3, 4)(正确答案)C. (-3, 4)D. (4, -3)下列二次根式中,与√8是同类二次根式的是:A. √12B. √18C. √24D. √32(正确答案)已知等腰三角形的两边长分别为3和7,则这个等腰三角形的周长是:A. 13B. 17(正确答案)C. 13或17D. 无法确定下列运算正确的是:A. 3a + 2b = 5abB. (a2)3 = a5C. a6 ÷a2 = a3D. a2 ·a3 = a5(正确答案)已知反比例函数y = k/x的图象经过点(2, -3),则当x = -1时,y的值为:A. -6(正确答案)B. 6C. -1/6D. 1/6下列图形中,一定是轴对称图形的是:A. 平行四边形B. 等腰三角形(正确答案)C. 直角三角形D. 梯形已知一组数据x₁,x₂,…,xₙ的平均数为5,方差为2,则另一组数据5x₁-2,5x₂-2,…,5x ₙ-2的平均数和方差分别为:A. 23,10B. 23,50(正确答案)C. 25,10D. 25,50下列命题中,真命题是:A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形(正确答案)D. 对角线互相垂直平分的四边形是正方形在平面直角坐标系中,点P(m, n)是线段AB上一点,以原点O为位似中心把线段AB放大到原来的2倍,则点P的对应点的坐标为:A. (2m, n)B. (m, 2n)C. (2m, 2n)(正确答案)D. (2m, n)或(m, 2n)。
2024年湖南省长沙市中考数学试题(解析版)

2024年长沙市初中学业水平考试试卷数学注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共25个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查轴对称图形和中心对称图形的识别,熟知定义:轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.据此逐项判断即可.【详解】解:A 中图形轴对称图形,不是中心对称图形,故本选项不符合题意;B 中图形既是轴对称图形又是中心对称图形,故本选项符合题意;C 中图形是轴对称图形,不是中心对称图形,故本选项不符合题意;D 中图形不是轴对称图形,是中心对称图形,故本选项不符合题意,故选:B .2. 我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )A. 81.2910×B. 812.910×C. 91.2910×D. 712910×【答案】C 是【解析】【分析】本题考查科学记数法,科学记数法的一般形式为10n a ×,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:用科学记数法将数据1290000000表示为91.2910×,故选:C .3. “玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是180−℃、最高温度是150℃,则它能够耐受的温差是( )A. 180−℃B. 150℃C. 30℃D. 330℃【答案】D【解析】【分析】本题考查了温差的概念和有理数的运算,解决本题的关键是气温最高值与最低值之差,计算解决即可. 【详解】解:能够耐受的温差是()150180330−−=℃, 故答案为:D .4. 下列计算正确的是( )A. 642x x x ÷=B.C. 325()x x =D. 222()x y x y +=+【答案】A【解析】【分析】此题主要考查同底数幂的除法、二次根式的加减、幂的乘方、完全平方公式的运算,解题的关键是熟知运算法则.【详解】解:A 、 642x x x ÷=,计算正确;BC 、326()x x =,原计算错误;D 、222()2x y x xy y +=++,原计算错误;故选A .5. 为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )A. 9.2B. 9.4C. 9.5D. 9.6【答案】B【解析】 【分析】本题考查了中位数的定义,中位数是一组数据从小到大排列后居于中间的一个数或中间两个数的平均数,根据中位数的定义解题即可.【详解】解:甲班演唱后七位评委给出的分数为:8.8,9.2,9.4,9.4,9.5,9.5,9.6,∴中位数为:9.4,故选B .6. 在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为( )A. ()1,5B. ()5,5C. ()3,3D. ()3,7【答案】D【解析】【分析】本题考查坐标与图形变换-平移变换,根据点的坐标平移规则:左减右加,上加下减求解即可.【详解】解:在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为()3,52+,即()3,7,故选:D . 7. 对于一次函数21y x =−,下列结论正确的是( ) A. 它的图象与y 轴交于点()0,1−B. y 随x 的增大而减小C. 当12x >时,0y <D. 它的图象经过第一、二、三象限【答案】A【解析】【分析】本题考查一次函数的性质,根据一次函数的性质逐个判断即可得到答案.【详解】解:A.当0x =时,1y =−,即一次函数21y x =−的图象与y 轴交于点()0,1−,说法正确; B.一次函数21y x =−图象y 随x 增大而增大,原说法错误; C.当12x >时,0y >,原说法错误; D.一次函数21y x =−图象经过第一、三、四象限,原说法错误; 故选A .的的8. 如图,在ABC 中,60BAC ∠=°,50B ∠=°,AD BC ∥.则1∠的度数为( )A. 50°B. 60°C. 70°D. 80°【答案】C【解析】 【分析】本题主要考查了三角形内角和定理、平行线的性质等知识点,掌握平行线的性质成为解题的关键. 由三角形内角和定理可得70C ∠=°,再根据平行线的性质即可解答.【详解】解:∵在ABC 中,60BAC ∠=°,50B ∠=°, ∴18070C BAC B ∠∠−∠−=°=°,∵AD BC ∥,∴170C ∠∠==°.故选:C .9. 如图,在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,则O 的半径长为( )A. 4B.C. 5D. 【答案】B【解析】 【分析】本题考查垂径定理、勾股定理,先根据垂径定理得到AE ,再根据勾股定理求解即可.【详解】解:∵在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,∴OE AB ⊥,142AE AB ==,在Rt AOE △中,OA, 故选:B .10. 如图,在菱形ABCD 中,6AB =,30B ∠=°,点E 是BC 边上的动点,连接AE ,DE ,过点A 作AF DE ⊥于点P .设DE x =,AF y =,则y 与x 之间的函数解析式为(不考虑自变量x 的取值范围)( )A. 9y x =B. 12y x =C. 18y x =D. 36y x= 【答案】C【解析】【分析】本题考查菱形的性质、含30度角的直角三角形的性质、相似三角形的判定与性质,利用相似三角形的性质求解x 、y 的关系式是解答的关键.过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,根据菱形的性质和平行线的性质得到6CD AD AB ===,ADF DEH ∠=∠,30DCH B ∠=∠=°,进而利用含30度角的直角三角形的性质132DH CD ==,证明AFD DHE ∽得到AF AD DH DE=,然后代值整理即可求解. 【详解】解:如图,过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,∵在菱形ABCD 中,6AB =,30B ∠=°,∴AB CD ∥,AD BC ∥,6CD AD AB ===,∴ADF DEH ∠=∠,30DCH B ∠=∠=°, 在Rt CDH △中,132DH CD ==, ∵AF DE ⊥, ∴90AFD DHE ∠=∠=°,又ADF DEH ∠=∠,∴AFD DHE ∽, ∴AF AD DH DE=, ∵DE x =,AF y =,∴63yx =,∴18yx =,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11. 为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).【答案】甲【解析】【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵3.610.815.8<<,∴甲种秧苗长势更整齐,故答案为:甲.12. 某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为______.【答案】15##0.2【解析】【分析】本题考查概率公式,掌握概率的意义是解题的关键.利用概率公式直接进行计算.【详解】解:小明家参与抽奖,获得一等奖的概率为21 2355=++,故答案为:15.13. 要使分式619x−有意义,则x需满足的条件是______.【答案】19x≠【解析】【分析】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.【详解】解:∵分式619x −有意义, ∴190x −≠,解得19x ≠,故答案为:19x ≠.14. 半径为4,圆心角为90°的扇形的面积为______(结果保留π).【答案】4π【解析】 【分析】本题考查扇形的面积公式,根据扇形的面积公式2π360n r S =(n 为圆心角的度数,r 为半径)求解即可.【详解】解:由题意,半径为4,圆心角为90°的扇形的面积为290π44π360×=, 故答案为:4π.15. 如图,在ABC 中,点D ,E 分别是AC BC ,的中点,连接DE .若12DE =,则AB 的长为______.【答案】24【解析】【分析】本题主要考查三角形中位线定理,熟知三角形的中位线平行于第三边且等于第三边的一半是解题的关键.【详解】解:∵D ,E 分别是AC ,BC 的中点,∴DE 是ABC 的中点,∴221224AB DE ==×=,故答案为:24.16. 为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是______.【答案】2009【解析】【分析】本题考查二元一次方程的解,理解题意是解答的关键.设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意列二元一次方程,整理得1001109x a =+,根据a 的取值得到x 的9种可能,结合实际即可求解.【详解】解:设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意,得()10 4.6101978915a x +×+−=, 整理,得100461978915a x ++−=∴1001109x a =+, ∵a 是从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,∴x 的值可能为1209,1309,1409,1509,1609,1709,1809,1909,2009,∵是为庆祝中国改革开放46周年,且参与者均为在校中学生,∴x 只能是2009,故答案为:2009.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第2425题每小题10分,共72分解答应写出必要的文字说明、证明过程或演算步骤)17. 计算:()011()π 6.84−−°−. 【答案】3【解析】【分析】本题考查了实数的混合运算,先根据绝对值、零指数幂、负整数指数幂的意义,特殊角的三角函值化简,再算加减即可.【详解】解:原式41=+3=.18. 先化简,再求值:()()()2233m m m m m −−++−,其中52m =. 【答案】49m −;1【解析】【分析】本题考查整式的混合运算及其求值,先根据整式的混合运算法则化简原式,再代值求解即可.【详解】解:()()()2233m m m m m −−++−22229m m m m =−++−49m =−. 当52m =时,原式54910912=×−=−=.19. 如图,在Rt ABC △中,90ACB ∠=°,AB =2AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点M 和N ,作直线MN 分别交AB BC ,于点D ,E ,连接CD AE ,.(1)求CD 的长;(2)求ACE 的周长.【答案】(1(2)6【解析】【分析】本题考查了线段垂直平分线的性质:线段垂直平分线的点到线段两个端点的距离相等,斜中半定理:直角三角形中,斜边上的中线等于斜边的一半,以及勾股定理等知识点,熟记相关结论是解题关键. (1)由题意得MN 是线段AB 的垂直平分线,故点D 是斜边AB 的中点.据此即可求解;(2)根据EA EB =、ACE 的周长AC CE EA AC CE EB AC BC =++=++=+即可求解;【小问1详解】解:由作图可知,MN 是线段AB 的垂直平分线,∴在Rt ABC △中,点D 是斜边AB 的中点.∴1122CD AB ==×. 【小问2详解】解:在Rt ABC △中,4BC =.∵MN 是线段AB 的垂直平分线,∴EA EB =.∴ACE 的周长246AC CE EA AC CE EB AC BC =++=++=+=+=.20. 中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图 类型人数 百分比 纯电m 54% 混动 n %a氢燃料 3%b 油车 5 %c请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_____人;表中=a ______,b =______;(2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?【答案】(1)50;30,6(2)见解析 (3)108°(4)3600人【解析】【分析】本题考查统计表、条形统计图和扇形统计图的综合,理解题意,能从统计图中获取有用信息是解答的关键.(1)用喜欢油车人数除以其所占的百分比可求得调查人数,用喜欢氢燃料人数除以调查人数可求得b ,进而用1减去喜欢其他车型所占的百分比可求解a ;(2)先求得n ,进而可补全条形统计图;(3)用360度乘以喜欢混动所占的百分比即可求解;(4)用总人数乘以样本中喜欢新能源汽车所占的百分比即可求解.【小问1详解】解:本次调查活动随机抽取人数为510%50÷=(人), %350100%6%b =÷×=,则6b =,%154%6%10%30%a =−−−=,则30a =,故答案为:50;30,6;【小问2详解】解:∵5030%15n =×=,∴补全条形统计图如图所示:【小问3详解】解:扇形统计图中“混动”36030%108°×=°;【小问4详解】解:()400054%30%6%3600×++=(人). 答:估计喜欢新能源(纯电、混动、氢燃料)汽车的有3600人.21. 如图,点C 在线段AD 上,AB AD =,B D ∠=∠,BC DE =.(1)求证:ABC ADE △≌△;(2)若60BAC ∠=°,求ACE ∠的度数. 【答案】(1)见解析 (2)60ACE ∠=°【解析】【分析】本题考查全等三角形的判定与性质、等边三角形的判定与性质,证明ACE △是等边三角形是解答的关键.(1)直接根据全等三角形的判定证明结论即可;(2)根据全等三角形的性质得到AC AE =,60CAE BAC ∠=∠=°,再证明ACE △是等边三角形,利用等边三角形的性质求解即可.【小问1详解】证明:在ABC 与ADE 中,AB AD B D BC DE = ∠=∠ =, 所以()SAS ABC ADE ≌;【小问2详解】解:因为ABC ADE △≌△,60BAC ∠=°, 所以AC AE =,60CAE BAC ∠=∠=°,所以ACE △是等边三角形.所以60ACE ∠=°.22. 刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A 、B 两种奥运主题的湘绣作品作为纪念品.已知购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元. (1)求A 种湘绣作品和B 种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A 种湘绣作品和B 种湘绣作品共200件,总费用不超过50000元,那么最多能购买A 种湘绣作品多少件?【答案】(1)A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元(2)最多能购买100件A 种湘绣作品【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用.(1)设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元,根据“购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元”,即可得出关于x ,y 的二元一次方程组,解之即可解题;(2)设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件,总费用=单价×数量,结合总费用不超过50000元,即可得出关于a 的一元一次不等式,解之即可得出a 的值,再取其中的最大整数值即可得出该校最大可以购买湘绣的数量.【小问1详解】设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元.根据题意,得2700231200x y x y += +=, 解得300,200x y = = .答:A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元.【小问2详解】设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件.根据题意,得()30020020050000a a +−≤,解得100a ≤.答:最多能购买100件A 种湘绣作品.23. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,90ABC ∠=°.(1)求证:AC BD =;(2)点E 在BC 边上,满足CEO COE ∠=∠.若6AB =,8BC =,求CE 的长及tan CEO ∠的值.【答案】(1)见解析 (2)5CE =,tan 3CEO ∠=【解析】【分析】本题考查矩形的判定与性质、勾股定理、等腰三角形的判定与性质、锐角三角函数等知识,熟练掌握矩形的判定与性质是解答的关键.(1)直接根据矩形的判定证明即可;(2)先利用勾股定理结合矩形的性质求得10AC =,OB OC =.进而可得152CO AC ==,再根据等腰三角形的判定得到5CE CO ==,过点O 作OF BC ⊥于点F ,根据等腰三角形的性质,结合勾股定理分别求得4CF =,1EF =,3OF =,然后利用正切定义求解即可.【小问1详解】证明:因为四边形ABCD 是平行四边形,且90ABC ∠=°,所以四边形ABCD 是矩形.所以AC BD =;【小问2详解】解:在Rt ABC △中,6AB =,8BC =,所以10AC =,因为四边形ABCD 是矩形, 所以152CO AC ==,OB OC =. 因为CEO COE ∠=∠,所以5CE CO ==.过点O 作OF BC ⊥于点F ,则142==CF BC ,所以541EF CE CF =−=−=,在Rt COF △中,3OF, 所以tan 3OF CEO EF∠==. 24. 对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,①平行四边形一定不是“平凡型无圆”四边形; ( )②内角不等于90°的菱形一定是“内切型单圆”四边形; ( )③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R ,内切圆半径为r ,则有=R .( ) (2)如图1,已知四边形ABCD 内接于O ,四条边长满足:AB CD BC AD +≠+.①该四边形ABCD 是“______”四边形(从约定的四种类型中选一种填入); ②若BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,连接EF .求证:EF 是O 的直径.(3)已知四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H .①如图2.连接EG FH ,交于点P .求证:EG FH ⊥.②如图3,连接OA OB OC ,,,,若2OA =,6OB =,3OC =,求内切圆O 的半径r 及OD 的长.【答案】(1)①×;②√;③√(2)①外接型单圆;②见解析(3)r =OD = 【解析】【分析】(1)根据圆内接四边形和切线长定理可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,结合题中定义,根据对角不互补,对边之和也不相等的平行四边形无外接圆,也无内切圆,进而可判断①;根据菱形的性质可判断②;根据正方形的性质可判断③;(2)①根据已知结合题中定义可得结论; ②根据角平分线的定义和圆周角定理证明 EBF EDF=即可证得结论; (3)①连接OE 、OF 、OG 、OH 、HG ,根据四边形ABCD 是“完美型双圆”四边形,结合四边形的内角和定理可推导出180A EOH ∠+∠=°,180FOG C ∠+∠=°,180A C∠+∠=°,进而可得EOH C ∠=∠,180FOG EOH∠+∠=°,然后利用圆周角定理可推导出90HPG ∠=°,即可证得结论;②连接OE 、OF 、OG 、OH ,根据已知条件证明OAH COG ∠=∠,进而证明AOH OCG ∽得到32CG r =,再利用勾股定理求得r =,BE =BEO OHD ∽求解OD 即可. 【小问1详解】解:由题干条件可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,所以 ①当平行四边形对角不互补,对边之和也不相等时,该平行四边形无外接圆,也无内切圆, ∴该平行四边形是 “平凡型无圆”四边形,故①错误;②∵内角不等于90°的菱形的对角不互补,∴该菱形无外接圆,∵菱形的四条边都相等,∴该菱形的对边之和相等,∴该菱形有内切圆,∴内角不等于90°的菱形一定是“内切型单圆”四边形,故②正确;③由题意,外接圆圆心与内切圆圆心重合的“完美型双圆”四边形是正方形,如图,则OM r =,ON R =,OM MN ⊥,45ONM ∠=°,∴Rt OMN △为等腰直角三角形,∴ON =,即=R ;故③正确,故答案为:①×;②√;③√;【小问2详解】解:①∵四边形ABCD 中,AB CD BC AD +≠+,∴四边形ABCD 无内切圆,又该四边形有外接圆,∴该四边形ABCD 是“外接型单圆”四边形,故答案为:外接型单圆;的②∵BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,∴BAE DAE ∠=∠,BCF DCF ∠=∠, ∴ BEDE =, BF DF =, ∴ BEBF DE DF +=+, ∴ EBF EDF=,即 EBF 和 EDF 均为半圆, ∴EF 是O 的直径.【小问3详解】①证明:如图,连接OE 、OF 、OG 、OH 、HG ,∵O 是四边形ABCD 的内切圆,∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,∴90OEA OHA ∠=∠=°,在四边形AEOH 中,3609090180A ∠+∠°−°−°=°,同理可证,180FOG C ∠+∠=°,∵四边形ABCD 是“完美型双圆”四边形,∴该四边形有外接圆,则180A C ∠+∠=°,∴EOH C ∠=∠,则180FOG EOH∠+∠=°, ∵12FHG FOG ∠=∠,12EGH EOH ∠=∠, ∴()1902FHG EGH FOG EOH ∠+∠=∠+∠=°, ∴()18090HPGFHG EGH ∠=°−∠+∠=°, ∴EG FH ⊥;②如图,连接OE 、OF 、OG 、OH ,∵四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H ,∴∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,OE OF OG OH ===,∴180EAH FCG ∠+∠=°,OAH OAE ∠=∠,OCG OCF ∠=∠, ∴90OAH OCG ∠+∠=°,∵90COG OCG ∠+∠=°,∴OAH COG ∠=∠,又90AHO OGC ∠=∠=°,∴AOH OCG ∽, ∴OA OH OC CG=, ∵2OA =,3OC =, ∴23r CG =,则32CG r =, 在Rt OGC △中,由222OG CG OC +=得222332r r +=,解得r = 在Rt OBE 中,6OB =,∴BE 同理可证BEO OHD ∽, ∴BE OB OH OD=,6OD=,∴OD =【点睛】本题主要考查平行四边形的性质、正方形的性质、菱形的性质、圆周角定理、内切圆的定义与性质、外接圆的定义与性质、相似三角形的判定与性质、四边形的内角和定理、勾股定理、角平分线的判定等知识,理解题中定义,熟练掌握这些知识和灵活运用性质和判定是解题的关键.另外还要求学生具备扎实的数学基础和逻辑思维能力,备考时,重视四边形知识的学习,提高解题技巧和速度,以应对中考挑战.25. 已知四个不同的点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y 都在关于x 的函数2y ax bx c ++(a ,b ,c 是常数,0a ≠)的图象上.(1)当A ,B 两点的坐标分别为()1,4−−,()3,4时,求代数式3202410127a b ++的值; (2)当A ,B 两点的坐标满足212122()40a y y a y y +++=时,请你判断此函数图象与x 轴的公共点的个数,并说明理由;(3)当0a >时,该函数图象与x 轴交于E ,F 两点,且A ,B ,C ,D 四点的坐标满足:222121222()0a y y a y y ++++=,222343422()0a y y a y y −+++=.请问是否存在实数(1)m m >,使得AB ,CD ,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3?若存在,求出m 的值和此时函数的最小值;若不存在,请说明理由(注:m EF ⋅表示一条长度等于EP 的m 倍的线段).【答案】(1)3320241012202477a b ++= (2)此函数图象与x 轴的公共点个数为两个,理由见解析(3)存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =此时该函数的最小值为2a −【解析】【分析】本题主要考查了二次函数的性质、二次函数与一元二次方程的关系、二次函数与x 轴交点问题、直角三角形存在性问题等,熟练掌握相关知识和分类讨论是解题关键.(1)将A B 、代入得到关于a 、b 的关系式,再整体代入求解即可;(2)解方程212122()40a y y a y y +++=求解,再根据a 的正负分类讨论即可; (3)由内角之比可得出这是一个3060°°、的直角三角形,再将线段表示出来,利用特殊角的边角关系建立方程即可.【小问1详解】将()1,4A −−,()3,4B 代入2y ax bx c ++得4934a b c a b c −+=− ++=①②, ②-①得848a b +=,即22a b +=. 所以333202*********(2)2024777a ba b ++=++=. 【小问2详解】此函数图象与x 轴的公共点个数为两个. 方法1:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 当0a >时,<02a −,此抛物线开口向上,而A ,B 两点之中至少有一个点在x 轴的下方,此时该函数图象与x 轴有两个公共点;当0a <时,>02a −,此抛物线开口下,而A ,B 两点之中至少有一个点在x 轴的上方,此时该函数图象与x 轴也有两个公共点.综上所述,此函数图象与x 轴必有两个公共点.方法2:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 所以抛物线上存在纵坐标为2a −的点,即一元二次方程22a ax bx c ++=−有解. 所以该方程根的判别式24()02ab ac ∆=−+≥,即2242b ac a −≥. 因为0a ≠,所以240b ac −>.所以原函数图象与x 轴必有两个公共点.方法3:由()21212240a y y a y y +++=,可得12a y =−或22a y =−. 当12a y =−时,有2112a ax bx c ++=−,即2112a ax bx c ++=−, 所以2222211144()2(2)02ab ac b a ax bx a ax b ∆=−=+++=++>. 此时该函数图象与x 轴有两个公共点. 当22a y =−时,同理可得0∆>,此时该函数图象与x 轴也有两个公共点.综上所述,该函数图象与x 轴必有两个公共点.【小问3详解】因为0a >,所以该函数图象开口向上.由222121222()0a y y a y y ++++=,得()()22120a y a y +++=,可得12y y a ==−.由222343422()0a y y a y y −+++=,得2234()()0a y a y −+−=,可得34y y a ==. 所以直线AB CD ,均与x 轴平行.由(2)可知该函数图象与x 轴必有两个公共点,设()5,0E x ,()6,0F x . 由图象可知244ac b a a−−>,即2244b ac a −>. 所以2ax bx c a ++=−的两根为1x ,2x,可得12AB x x =−= 同理2ax bx c a ++=的两根为3x ,4x,可得34CD x x =−= 同理20ax bx c ++=的两根为5x ,6x,可得56m EF m x x m ⋅=⋅−= 由于1m >,结合图象与计算可得AB EF m EF <<⋅,<AB CD .若存在实数()1m m >,使得AB CD ,,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3,则此三角形必定为两锐角分别为30°,60°的直角三角形,所以线段AB 不可能是该直角三角形的斜边.①当以线段CD 为斜边,且两锐角分别为30°,60°时,因为m EF AB ⋅>,所以必须同时满足:222()AB m EF CD +⋅=,m EF ⋅. 将上述各式代入化简可得2222288244a a m b ac a =<=−,且22223(44)4b ac a m b ac −−=−, 联立解之得222043a b ac −=,22286245a m b ac ==<−,解得1m =>符合要求.所以m =,此时该函数最小值为2220453443a acb a a a −−==−. ②当以线段m EF ⋅为斜边时,必有222()AB CD m EF +=⋅,同理代入化简可得的2222(4)(4)b ac m b ac −−,解得m =为斜边,且有一个内角为60°,而CD AB >,所以tan 60CD AB =⋅°, 化简得222484b ac a a −=>符合要求.所以m =2824a a a −==−. 综上所述,存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =2a −.。
最新长沙中考数学试卷真题

最新长沙中考数学试卷真题第一题:选择题(共15小题,每小题3分,共45分)在下面的每组数中,有且只有一个数与其他数不属于同一类,找出这个不同类的数。
1.(),182,546,10922.72,84,96,1023.9,15,21,284.7,18,31,495.20,40,80,120第二题:填空题(共10小题,每小题3分,共30分)根据题目要求,在空格中填入相应的数字或字母。
1.一个三位数减去一个一位数后的差是依然是一个三位数,这个三位数最多是____。
2.x-15=19,x=_____。
3. 103-27=_____。
4.18÷(-3)=______。
5.1÷2+1÷4-2÷8=_______。
第三题:解答题(共6小题,每小题9分,共54分)解答下列各题,注意理清思路,用正确的方法解答问题,写出完整的解答步骤。
1.已知直线上有三个点A,B,C,它们的坐标分别是A(-1,2),B(3,-1),C(-2,-3),求直线AB的斜率。
2.某商品原价是180元,商店为了促销将价格降低了20%,现在的售价是原价的多少?3.解方程:3x-5=17。
4.一个长方形的长是宽的5倍,如果长方形的周长是30cm,求长方形的长和宽各为多少cm。
5.已知正方形的面积是49cm²,求正方形的边长。
6.若正方体的体积为64cm³,求正方体的边长。
第四题:应用题(共4小题,每小题14分,共56分)根据题目要求,解答下列各题。
1.某公司计划用一种特殊的原料生产一种新产品,已知每生产100件新产品需要原料6吨,求生产200件新产品需要的原料量。
2.小珍去商店买了一本价格为45元的图书,收银员打了8折,然后又减去了促销优惠券5元,最后小珍给了收银员两张50元的纸币,收银员找了小珍多少钱?3.在一个有20个棋子的箱子中,有10个红色棋子、5个蓝色棋子和5个绿色棋子。
从箱子中任意抓出一个棋子,求抓到红色或蓝色棋子的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷8
时间:90分钟 总分:100分
一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入答卷的括号内,每小题3分,共18分)
1.已知AC 、BD 是⊙O的两条直径,则四边形ABCD 一定是( )
A .矩形
B .菱形
C .正方形
D .等腰梯形
2.代数式a
a 2
(a ≠0)的值是( ).
A .1
B .-1
C .±1
D .1(a >0时)或-1(a <0时)
3.在△ABC 中,∠A 、∠B 都是锐角,且sin A =21
,cos B =2
2,则△ABC 三个角的大小关
系是( ).
A .∠C >∠A >∠
B B .∠B >∠
C >∠A C .∠A >∠B >∠C
D .∠C >∠B >∠A
4.使分式6
3
||2---x x x 没有意义的x 的取值是( )
(A )―3 (B )―2 (C )3或―2 (D )±3
5.估计1711+大小的范围,正确的是( ) (A )7.2<1711+<7.3 (B )7.3<1711+<7.4
(C )7.4<1711+<7.5
(D )7.5<1711+<7.6
6、甲、乙两人相距k 公里,他们同时乘摩托车出发。
若同向而行,则r 小时后并行。
若相向而行,则t 小时后相遇,则较快者的速度与较慢者速度之比是 (A )
t
r t
r -+ (B )
t
r r
- (C)
k
r k
r -+ (D)
k
r k
r +- 二、填空题: (本题共10小题,每小题3分,满分30分) 7、代数式-22+(π-3.14)0-(
2
1)-1 的值为 8.不等式组
2x -1>x+1的解集是
x+8≤4x -1
9.已知点P 的坐标为(8,-1),则点P 关于x 轴的对称点的坐标为 . 10.已知方程2x 2+5x -3=0,则此方程的两个根的倒数和是 。
11.两个圆的半径分别为7cm 和R,圆心距为10cm,若这两个圆相切,则R 的值是 cm 。
12.圆外切等腰梯形的底角为300,中位线的长为8,则该圆的直径长为 。
13.如下左图,取一张长方形纸片,它的长AB =10cm ,宽BC =cm ,然后以虚线CE (E 点在AD 上)为折痕,使D 点落在AB 边上,则AE =________cm ,∠DCE =________
14.如下右图,⊙C 通过原点,并与坐标轴分别交于A ,D 两点,已知∠OBA =30º,点D 的坐标为(0,2),则点A ,C 的坐标分别为A ( );C ( )
原就读学校:________市(县)____________学校 姓名:___________ 考号:_______ 联系电话:______________
密 封 线 内 请 不 要 答 题
15.直角三角形ABC 中,∠A =90º,AB =5cm ,AC =4cm ,则∠A 的平分线AD 的长为________cm 16.若关于x 的方程()()2
2770rx r x r -+++=的根是正整数,则整数r 的值可以是______
数学答卷8
一.选择题18分
二.填空题30分 7、 ;8、 ;9、 ; 10、 ;11、 ;12、 ;13、 、 ;14、 、 ;15、 ;16、 ; 三.综合题 52分
17、已知:△ABC (如图)(6分)
求作:△ABC 的外接圆(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).
B
C
18.(8分)在一服装厂里有大量形状为等腰直角三角形的边角布料(如图所示).现找出其中的—种,测得∠C=90°,AC=BC=4,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在△ABC的边上,且扇形的弧与△ABC的其他边相切,请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).
19.(8分)为办好2009年全国第十届中学生运动会,须改变长沙市的交通状况,在香樟东路拓宽工程中,要伐掉一棵树AB.在地面上事先划定以B为圆心,半径与AB等长的圆形危险区.现在某工人站在离B点3米处的D处测得树的顶端点A的仰角为60°,树的底部点B的俯角为30°(如图所示).问距离B点8米远的保护物是否在危险区内?A
B C
4
4
A
B C
D
树
60
30
o
o
20.(12分)已知二次函数y =x 2+ax +a -2.
⑴ 求证:不论a 取何值,抛物线y =x 2+ax +a -2的顶点Q 总在x 轴的下方.
⑵ 设抛物线y =x 2+ax +a -2与y 轴交于点C ,如果过点C 且平行于x 轴的直线与该抛物
线有两个不同的交点,并设另一个交点为点D .问:△QCD 能否是等边三角形?若能,请求出相应的二次函数解析式.若不能,请说明理由.
⑶ 在第⑵题的已知条件下,又设抛物线与x 轴的交点之一为点A ,则能使△ACD 的面积等
于
4
1
的抛物线有几条?并证明你的结论.
21.(18分)设a ,b ,c 都是正整数,关于x 的方程02
=+-c bx ax 有两个小于1
的不等正数根βα,. (1)求证:βα,中一个小于21,另一个大于2
1; (2)求出a 的最小值.
密 封 线 内 请 不 要 答 题。