《第十二章轴对称》单元测评05
第12章 轴对称单元综合测评(含答案)

第12章轴对称单元综合测评一、选择题(每小题3分,共30分)题号一1 二2 三3 四4 五5 六6 七7 八8 得分度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
1.下列图形中一定是轴对称图形的是()A.梯形B.直角三角形C.等腰三角形D.平行四边形2.已知△ABC在直角坐标系中的位置如图所示,如果△A'B'C'与△ABC关于y轴对称,那么点A的对应点A'的坐标为()A.(-4,2)B.(-4,-2)C.(4,-2)D.(4,2)(第2题)(第3题)(第4题)3.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°.那么∠BCD 的度数等于()A.40°B.50°C.60°D.70°4.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB 边上的C′处,并且C′D//BC,则C′D的长是()A.409B.509C.154D.2545.在平面直角坐标系中,已知A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.2个B.3个C.4个D.5个6.下列图形中对称轴条数最多的是()A.正方形B.长方形C.等腰三角形D.等边三角形7.下列图案中,是轴对称的是()A.(1)(2)B.(1)(3)(4) C.(1)(4)D.(2)(3)8.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()A.4 B.5 C.8 D.109.如图,在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD.•则∠A等于()A.30°B.36°C.45°D.72°10.如图,在等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,则∠DCB等于()A.44°B.68°C.46°D.22°二、填空题(每小题3分,共30分)11.正六边形的对称轴有_____________条.12.在△ABC中,AB =AC,AB的中垂线与AC所在直线相交所得的锐角是50°,则∠B 的度数为_____________.13.若等腰三角形的两边长分别为6和8,则该等腰三角形的周长为_____________.14.一条船5点从灯塔C南偏东42°的A处出发,以16海里/时的速度向正北航行,8点到达B处,此时灯塔C在船的北偏西84°方向,则船距离灯塔C_____________海里.(第14题)(第15题)15.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=500,则∠BDF=_____________.16.如图,在△ABC中,AB=AC,∠A=50︒,BD为∠ABC的平分线,则∠BDC的度数为_____________.17.如图,由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是_____________.18.一个顶角为40︒的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=_____________度.19.如图,在△ABC中,AB=AC,∠BAD=20°,且AE=•AD,则∠CDE=_____________.20.如图,沿大正三角形的对称轴对折,则互相重合的两个小三角形内的单项式的乘积为_____________.三、解答题(每小题8分,共40分)21.图中的大正三角形是由9个相同的小正三角形拼成的,将其部分涂黑,如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下性质:①都是轴对称图形,②涂黑部分都是三个小正三角形.请你在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.22.如图,已知等腰三角形一腰上的中线把三角形周长分为12cm和15cm两部分,求它的底边长.23.如图,△ABC是等边三角形,BD是AC边上的高,延长BC到E使CE=CD.试判断DB与DE之间的大小关系,并说明理由.24.如图,△ABC中, D、E分别是AC、AB上的点, BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个..条件..可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形, 证明△ABC是等腰三角形.25.如图,有一块三角形田地,AB =AC =10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,请你替测量人员计算BC 的长.参考答案一、1.C 2.D 3.C 4.A 5.C 6.A 7.B 8.C 9.B 10.D二、11.6 12.40︒或20︒ 13.20或22 14.48 15.80︒ 16.825 17.30a 18.220 19.10︒ 20.a ,22a b ,32a b 三、21.图略. 22.7cm 或11cm .23.关系:DE =DB .∵CD =CE ,∴∠E =∠EDC ,又∵∠ACB =60°,∴∠E =30°, 又∵∠DBC =30°,∴∠E =∠DBC ,•∴DB =DE . 24.(1)情形一:①和③;情形二:②和③.(2)选择情形一.证明:∵∠EOB =∠COD ,∠EBO =∠DCO ,BE =CD .∴△BEO ≌△CDO .∴BO =CO .∴∠OBC =∠OCB . ∴∠EBO +∠OBC =∠DCO +∠OCB ,即∠ABC =∠ACB . ∴AB =AC .∴△ABC 是等腰三角形.25.∵ED 是AB 的垂直平分线,∴DA =DB.又∵△BDC 的周长为17m ,AB =AC =10m ,∴BD+DC+BC =17,∴DA+DC+BC =17,即AC+BC =17. ∴10+BC =17,∴BC =7m .可以编辑的试卷(可以删除)。
八年级数学第十二章轴对称整章水平测试(含答案)

八年级数学24分)
1、下列说法正确的是()
A轴对称涉及两个图形,轴对称图形涉及一个图形
B如果两条线段互相垂直平分,那幺这两条线段互为对称轴
C所有直角三角形都不是轴对称图形
D有两个内角相等的三角形不是轴对称图形
2、若等腰三角形的一边长为10,另一边长为7,则它的周长为
()
A17B24C27D24或27
3、若一个三角形的三个外角的度数之比为5∶4∶5,则这个三角形
是()
A等腰三角形,但不是等边三角形,也不是等腰直角三角形
B直角三角形,但不是等腰三角形
C等腰直角三角形
D等边三角形
4、等腰三角形底边长为5cm,一腰上的中线分其周长的两部分的差为
3cm,则腰长为()
A2cmB8cmC2cm或8cmD以上答案都不对
5、下列说法正确的个数有()
⑴等边三角形有三条对称轴⑵四边形有四条对称轴⑶等腰三角形的
一边长为4,另一边长为9,则它的周长为17或22⑷一个三角形中至少有
两个锐角
A1个B2个C3个D4个
请下载附件:
《八年级数学第十二章轴对称整章水平测试》
(本地下载)
点击下一页查看试题答案
第十二章轴对称单元测试题

D C B A 八年级数学第十二章轴对称测试题(时限:100分钟 总分:100分)班级 姓名 座号 总分一、选择题(本大题共12小题,每小题2分,共24分)1.下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称图形的有( )A 、2个B 、3个C 、4个D 、5个2.长方形的对称轴有( )A 、2条B 、4条C 、6条D 、无数条3.把一张长方形的纸沿对角线折叠,则重合部分是( )A 、直角三角形B 、长方形C 、等边三角形D 、等腰三角形4.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.底边上的高C.底边的中线D.顶角平分线所在的直线.5.等腰三角形底边上的高等于腰的一半,则它的顶角度数为( )A 、60°B 、90°C 、100°D 、120°6.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④7.下列图形中不是轴对称图形的是( )8.如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )9.等腰三角形的一个内角是50°,则另外两个角的度数分别为( )A.65°,65°B.50°,80°C.65°,65°或50°,80°D.50°,50°C D BA第1个 第2个 第3个 第4个 第5个 第6个 21题⑴L10.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与点M (m ,n )关于y 轴成轴对称,则m -n 的值为( )A .3 B.-3 C. 1 D. -111.将一等边三角形剪去一个角后,∠BDE +∠CEDA 、120°B 、240°C 、300°D 、1360°12.下图是按一定规律摆放的图案,按此规律,第2011个图案与第1~4个图案中相同的是 (只填数字)二、 填空题13.点A (-2,1)关于y 轴的对称点的坐标是 ,点A 关于x 的对称点的坐标是 。
初中初二数学八年级上册第十二章轴对称单元测试章节测试

初中数学-八年级上册-第十二章轴对称-单元测试-章节测试一、单选题(选择一个正确的选项)1 、下列说法中,正确的有几句?()①内错角相等;②等边对等角;③等腰三角形的角平分线与中线、高线互相重合;④直角三角形的斜边上的中线等于斜边的一半.A、1句B、2句C、3句D、4句2 、将一张矩形纸片ABCD如图所示那样折起,使顶点C落在C′处,其中AB=4,若∠C′ED=30°,则折痕ED的长为()A、4B、4C、8D、3 、如图,菱形ABCD中,∠BAD=120°,BC=10,则对角线AC的长等于()A、5B、10C、15D、204 、身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形纸片ABCD(矩形纸片要足够长),我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF 交AD于F.则∠AFE=()A、60°B、67.5°C、72°D、75°5 、锐角△ABC中,AC<AB<BC,在ABC所在平面内,使△PAB和△PBC都是等腰三角形的点P一共有()A、1个B、9个C、14个D、15个6 、如图,矩形纸片ABCD中,AB=18cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13,则AD的长为()A、5cmB、6cmC、10cmD、12cm7 、等腰三角形有两条边长分别为3cm、5cm,它的周长为()A、11cmB、13cmC、11或13cmD、无法确定8 、如图,平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD 于点M,如果△CDM的周长是10cm,则平行四边形ABCD的周长为()A、20cmB、30cmC、40cmD、50cm9 、如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A、轴对称性B、用字母表示数C、随机性D、数形结合10 、如图,在△ABC中,已知∠B和∠C的平分线相交于点D,过点D作EF∥BC交AB、AC 于点E、F,若△AEF的周长为9,BC=8,则△ABC的周长为()A、18B、17C、16D、15二、填空题(在空白处填写正确的答案)11 、永州市新田县的龙家大院至今已有930多年历史,因该村拥有保存完好的“三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文化名村.如图是龙家大院的一个窗花图案,它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心对称图形的是(只填序号).12 、△ABC中,∠C=b0°,DE是AB的中垂线,AB=2AC,且BC=18cm,则BE的长度是__________.13 、如图,△ABC中,DE是边AB的垂直平分线,AB=6,BC=8,AC=5,则△ADC的周长是___________.14 、若等腰三角形的一个内角为8小°,则这个三角形顶角的大小为_________;若等腰三角形有两边长为七七m、8七m,则这个三角形的周长为__________七m.15 、某校举行数学家“摇篮杯”会徽设计大赛,小明设计的会徽如图所示,正△DEF和正△GMN 是由正△ABC旋转2次得到,其中阴影部分的面积是空白部分面积的3倍,若正△ABC的边长是6cm,则正△GEC的边长是__________cm.三、解答题(在题目下方写出解答过程)16 、如图,把平行四边形ABCD翻折,使B点与D点重合,EF为折痕,连接BE,DF.请你猜一猜四边形BFDE是什么特殊四边形?并证明你的猜想.17 、如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E 和F.求证:DE=DF.18 、如图,△ABE 和△BCD 都是等边三角形,且每个角是60°,那么线段AD 与EC 有何数量关系?请说明理由.19 、如图所示,在四边形ABCD 中,AD=BC ,P 是对角线BD 的中点,M 是DC 的中点,N 是AB 的中点.请判断△PMN 的形状,并说明理由.20 、如图.直角梯形OABC 的直角顶点O 是坐标原点,边OA ,OC 分别在x 轴、y 轴的正半轴上.OA ∥BC ,OA=4OC=32,∠OAB=45°,D 是BC 上一点,.E 、F 分别是线段OA 、AB 上的两动点,且始终保持∠DEF=45°,设OE=x ,AF=y .(1)、AB=_________,BC=________,∠DOE=___________;(2)、证明△ODE ∽△AEF ,并确定y 与x 之间的函数关系;(3)、当AF=EF 时,将△AEF 沿EF 折叠,得到△A ′EF ,求△A ′EF 与五边形OEFBC 重叠部分的面积.参考答案一、单选题答案1. B2. C3. B4. B5. D6. D7. C8. A9. A10. B二、填空题答案11. ①12. 12cm13. 1314. 1小°或8小° 1七15. 3三、解答题答案16.解:四边形BFDE 是菱形.理由如下:设BD 与EF 相交于点O .∵把平行四边形ABCD 翻折,使B 点与D 点重合,EF 为折痕,∴OB=OD ,BF=FD .∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠OBF=∠ODE .在△DOE 和△BOF 中,O D E O BFO D O B D O E BO F∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE ≌△BOF ,∴OE=OF ,又∵OB=OD ,∴四边形BFDE 为平行四边形,又∵BF=FD ,∴四边形BFDE 是菱形.17. 证明:证法一:连接AD .∵点D 是BC 边上的中点∴AD 平分∠BAC (三线合一性质),∵DE 、DF 分别垂直AB 、AC 于点E 和F .∴DE=DF (角平分线上的点到角两边的距离相等).证法二:在△ABC 中,∵AB=AC∴∠B=∠C (等边对等角) …(1分)∵点D 是BC 边上的中点∴BD=DC …(2分)∵DE 、DF 分别垂直AB 、AC 于点E 和F∴∠BED=∠CFD=90°…(3分)在△BED 和△CFD 中∵BED C FDB C BD D C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BED ≌△CFD (AAS ),∴DE=DF (全等三角形的对应边相等).18. 解:AD=EC .证明如下:∵△ABC 和△BCD 都是等边三角形,每个角是60°∴AB=EB ,DB=BC ,∠ABE=∠DBC=60°,∴∠ABE+∠EBC=∠DBC+∠EBC即∠ABD=∠EBC在△ABD 和△EBC 中AB EBABD EBC D B BC=⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△EBC (SAS )∴AD=EC19. 解:△PMN 是等腰三角形.理由如下:∵点P 是BD 的中点,点M 是CD 的中点,∴PM=12BC ,同理:PN=12AD ,∵AD=BC ,∴PM=PN ,∴△PMN 是等腰三角形.20.解: 3245°.(2)证明:∵∠BAO=∠DOE=45°,∵∠ODE=∠DEA-45°,∠FEA=∠DEA-45°,∴∠ODE=∠FEA ,∴△ODE ∽△AEF , ∴O EO DA F A E =, 即xy =∴y=-2133x x +,…即y 与x 的函数关系式是y=-2133x x -+(3)当△AEF 为等腰三角形时,存在EF=AF 或EF=AE 或AF=AE 共3种情况;当EF=AF 时,如图(2),∠FAE=∠FEA=∠DEF=45°,∴△AEF 是等腰直角三角形,D 在A'E 上,A'E ⊥OA ,B 在A'F 上,A'F ⊥EF ,∴△A'EF 与五边形OEBC 重叠部分的面积为四边形EFBD 的面积,∵AE=OA-OE=OA-CD=4=,∴AF=EF=52=, ∴S △AEF =12EF•AF=21525228⎛⎫⨯= ⎪⎝⎭,∴S 梯形AEDB =12(BD+AE )•DE=121224⎛⨯⨯= ⎝, ∴S 四边形BDEF =S 梯形AEDB -S △AEF =212517488-=.(也可用S 阴影=S △A'EF -S △A'BD )(8分)点击查看更多试题详细解析:/index/list/9/1626#list。
第十二章《轴对称》单元测试及答案

(A)(B)(C)(D)玉华中学八年级数学(上) 第十二章《轴对称》单元测试题班级 姓名 学号 得分一、选择题:(30分)1.下列平面图形中,不是轴对称图形的是 ( )2.下列图形:①角②两相交直线③射线④梯形,其中轴对称图形有 ( ) (A)1个 (B)2个 (C)3个 (D)4个3.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是 ( ) (A)圆 (B)正方形 (C)长方形 (D)等腰梯形4.点(3,-2)关于y 轴的对称点是 ( ) (A)(3,2) (B)(-3,-2) (C)(-3,2) (D)(3,-2)5.下列长度的三条线段,能组成等腰三角形的是 ( ) (A) 1,1,2 (B) 2,2,5 (C) 3,3,5 (D) 3,4,56.如图,已知AC ∥BD ,OA=OC ,则下列结论不一定成立的是 ( )(A )∠B=∠D (B )∠A=∠B(C )AD=BC (D )OA=OB7.等腰三角形的一个角是80°,则它的底角是 ( ) (A) 80° (B) 50° (C) 80°或50° (D) 80°或20°8.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是( ) (A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.ABCDOABDC ABCDlO9.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ) (A )75°或30° (B )75°和15° (C )75° (D )15°10.已知∠AOB=45°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O,P 2三点构成的三角形是 ( )(A)直角三角形 (B)等腰三角形 (C)等边三角形 (D)等腰直角三角形二、填空题:(30分)1.在日常生活中,事物所呈现的对称性能给人们以平衡与和谐的美感. 我们的汉语艺术字也有类似的情况,请写出三个艺术字是轴对称图形的汉字 . (笔画的粗细和书写的字体可忽略不计).2.如右图,△ABC 中,AB=AC,AD ⊥BC,BD=5cm,则BC=______.3.等边三角形的内角都等于________.4.等腰三角形一个底角是50°,则它的顶角是__________.5.点(x,y)关于x 轴对称的点的坐标是( );关于y 轴对称的点的坐标是( ).6.等腰三角形中,已知两边的长分别是9cm 和4cm ,则周长为_______.7.小丽从镜子中看到的电子表的读数是 ,则电子表的实际读数是________.8.观察字母A 、N 、H 、O 、T 、G 、W 、X 、Z ,其中不是轴对称的字母是______________.9.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在图中再将两个空白的小正方形涂黑,使它成为轴对称图形.10.如图,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC ,有下列结论:①AB ∥CD ②AB ⊥BC ③AO=OC④AB=CD ,其中正确的结论是___________.(填序号)三、解答题:(40分):1.如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC 关于x 轴和y 轴对称的图形.(5分)2.如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹)(5分)3.如图,在△ABC 中,AB=AD=DC, ∠B+∠C=120°,求∠BAD 的度数.(6分)Aa AB4.如图,在△ABC 中,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于点F ,且BE=CF. 求证:AD ⊥BC .(6分)5.如图,AD ⊥BC,BD=DC,点C 在AE 的垂直平分线上,AB+BD 与DE 的长度有什么关系?并加以证明.(6分)6.如图:△ABC 和△ADE 是等边三角形.证明:BD=CE.(6分)ABCEDE CBAF AE7.如图,一艘轮船从点A 向正北方向航行,每小时航行15海里,小岛P 在轮船的北偏西15°,2小时后轮船航行到点B ,小岛P 此时在轮船的北偏西30°方向,在小岛P 的周围18海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由。
【八年级数学试题】初二数学上册第12章轴对称单元过关试题(带答案)

初二数学上册第12章轴对称单元过关试题(带答案)
一、选择题(每题2分,共4___,b=__-5__。
3点(-2,1)点关于x轴对称的点坐标为_(-2,-1 )__;关于轴对称的点坐标为_(2,1)_。
4等腰三角形中的一个角等于100°,则另外两个内角的度数分别为_40 °_40°_。
5已知△ABc中∠AcB=90°,cD⊥AB于点D,∠A=30°,Bc=2c,则AD=___3c_ _
6Rt△ABc中,cD是斜边AB上的高,∠B=30°,AD=2c,则AB 的长度是___8___c。
7已知等腰三角形中的一边长为5,另一边长为9,则它的周长为_19或23__。
8 如下图,点D在Ac上,点E在AB上,且AB=Ac,Bc=BD,AD=DE=BE,则∠A=__45°_
9如图,DE是△ABc中Ac边的垂直平分线,若Bc=8c,AB=10c,则△ABD的周长为___18__。
10如图,△ABc是等边三角形,cD是∠AcB的平分线,过点D 作Bc的平行线交Ac于点E,已知△ABc的边长为a,则Ec的边长是_ _05a__。
三、解答题(共60分)
1如图,Ac和BD相交于点,且AB//Dc,c=D,求证A =B。
证明∵c=D
∴∠D=∠c(等边对等角)
∵AB//Dc
∴∠B =∠D,∠A =∠c(两直线平行,内错角相等)
∴∠A =∠B
∴A=B。
第12章 轴对称单元试题(含答案)-

第12章 轴对称单元试题班级_______ 学号________ 姓名__________ 总分________一、填空题:(每小题3分,共30分)1、轴对称是指____个图形的位置关系;轴对称图形是指____个具有特殊形状的图形。
2、设A 、B 两点关于直线MN 对称,则______垂直平分________。
3、成轴对称的汉字可以写一些词汇,如“苹果”,请你也写两个:_____。
4、如图1,AB=AC ,∠A=40o,AB 的垂直平分线MN 交AC 于点D ,则∠DBC=_______。
5、如图2,若P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P1P2,连接P1P2交OA 于M ,交OB 于N ,P1P2=15,则△PMN 的周长是________。
6、已知A(a,-2)与B(31,b)关于y 轴对称,则a=___,b=____。
7、等腰三角形的一个角为40o ,那么另外两个角的度数为_____________。
8、等腰三角形的一边长为8cm ,周长为30cm ,另外两边长为_______。
9、等腰三角形的一腰上的高与底边夹角为12o,则顶角的度数为____。
10、如图3,若B 、D 、F 在MN 上,C 、E 在AM 上,且AB=BC=CD ,EC=ED=EF ,∠A=20o ,则∠FEB=________。
二、选择题:(每小题3分,共24分)11、如图4,四个图形中,是轴对称图形的有( )A.4个B.3个C.2个D.1个12、如图5,图中有且只有三条对称轴的是( )13、下列说法正确的是( )A.若两个三角形全等,那么它们一定关于某一条直线对称;B.两个关于某一条直线对称的三角形一定全等;C.两个图形关于某条直线对称,对称点一定在直线同旁;D.两个图形对应点连线垂直于某一条直线,那么这两个图形关于这长直线对称14、如图6,已知矩形ABCD沿着AE折叠,使D点落在BC边上的F处,如果∠BAF=60o,则∠DAE=( )A.15oB.30oC.45oD.60o15、下列叙述正确的语句是( )A.等腰三角形两腰上的高相等;B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等;D.两腰相等的两个等腰三角形全等16、如图7:AB=AC=BD,则∠1和∠2的关系是( )A. ∠1=2∠2B. 2∠1+∠2=180oC. ∠1+3∠2=180oD. 3∠1-∠2=180o17、如图8,△ABC中,AB=AC,∠A=36o,BD平分∠ABC交AC于点D,DE∥AB交BC于E,EF∥BD交CD于F,则图中等腰三角形的个数为( )A.5个B.6个C.7个D.8个18、如图9, △ABC中,AB=AC=BC,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长是( )A.2aB.34aC.23a D.a 三、解答下列各题:(19、20两题各7分,21—24题各8分,共46分)19、如图10,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC 、BD,若A 到河岸CD 的中点的距离为500米.(1) 牧童从A 处放牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?(2)最短路程是多少?20、如图11,斜折一页书的一角,使点A 落在同一页书内的'A 处,DE 为折痕,作DF 平分∠'A DB ,试猜想∠FDE 等于多少度,并说明理由。
八年级数学第十二章轴对称单元检测试卷

(A) (B) (C) (D)课标人教版八年级(上)数学检测试卷第十二章 轴对称(考试时间为90分钟,满分100分)一、填空题(每题3分,共30分) 1.长方形的对称轴有_________________条.2.等腰直角三角形的底角为_____________.3.等边三角形的边长为a ,则它的周长为_____________.4.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_____________个.5.如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为____________. 6.AB 边上的中线CD 将△ABC 分成两个等腰三角形,则∠ACB=_______度.7.(-2,1)点关于x 轴对称的点坐标为__________.8.等腰三角形的顶角为x 度,则一腰上的高线与底边的夹角是___________度.9.仔细观察下列图案,并按规律在横线上画出合适的图形._________10.如图,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC,有下列结论:①AB ∥CD ②AB=CD ③AB ⊥BC ④AO=OC 其中正确的结论是_______________.(把你认为正确的结论的序号都填上)二、选择题(每题3分,共30分)11.下列平面图形中,不是轴对称图形的是 ( )12.下列英文字母属于轴对称图形的是 ( ) (A) N (B) S (C) H (D) K 13.下列图形中对称轴最多的是 ( )(A)圆 (B)正方形 (C)等腰三角形 (D)线段14.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确...的是 ( ) (A)∠B=∠C (B)AD ⊥BC (C)AD 平分∠BAC (D)AB=2BDCDAB A B CDlO AB CDAB D CE(A )80° (B )50° (C )40° (D )30°16.等腰三角形的一个角是80°,则它的底角是 ( )(A) 50° (B) 80° (C) 50°或80° (D) 20°或80°17.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是 ( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.18.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC,AB=8m,∠A=30°,则DE 等于 ( )(A)1m (B) 2m(C)3m (D) 4m19.如图,五角星的五个角都是顶角为36°的等腰三角形,则∠AMB 的度数为( )(A)144° (B)120° (C)108° (D)100°20.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O,P 2三点构成的三角形是 ( )D(A)直角三角形 (B)钝角三角形 (C)等腰三角形 (D)等边三角形三、解答题(每题8分,共40分)21.如图,写出A 、B 、C 关于y 轴对称的点坐标,并作出与△ABC 关于x 轴对称的图形.22.如图,在△ABC 中,AB=AD=DC,∠BAD=26°,求∠B 和∠C 的度数.23.如图,△ABC 和△A ′B ′C ′关于直线l 对称,求证:△ABC ≌△A ′B ′C ′.若△ABC ≌△A ′B ′C ′,那么△ABC 和△A ′B ′C ′一定关于某条直线l 对称吗?若一定请给出证明,若不一定请画出反例图.AB D C24.某居民小区搞绿化,要在一块长方形空地上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆和正方形的个数不限)并且使整个长方形场地成轴对称图形,请在长方形中画出你设计的方案.25.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并加以证明.ABDC E课标人教版八年级(上)数学检测试卷第十二章 轴对称 A 卷答案:1.22.45°3.3a4.35.19cm6.907. (-2, -1)8.2x9. 10. ①②④.11.A 12.C 13.A 14.D 15.B 16.C 17.B 18.B 19.C 20.C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12章轴对称测试题
一.选择题
1. (2008年省青岛市)下列图形中,轴对称图形的个数是()
A.1 B.2 C.3 D.4
2.下列说法中错误的是()
A成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴
B关于某条直线对称的两个图形全等
C全等的三角形一定关于某条直线对称
D若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称
3.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()
A.17cm B.22cm C.17cm或22cm D.18cm
4.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()
A.40°B.50°C.60°D.30°
5.等腰三角形的一个外角是80°,则其底角是()
A.100°B.100°或40°C.40°D.80°
6.已知:在△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC的关系为()
A.平行 B.AO垂直且平分BC
C.斜交
D.AO垂直但不平分BC
7.△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数是()
A.35°
B.40°
C.70 °
D.110°
8.下列叙述正确的语句是( )
A.等腰三角形两腰上的高相等
B.等腰三角形的高、中线、角平分线互相重合
C.顶角相等的两个等腰三角形全等
D.两腰相等的两个等腰三角形全等
9.如图2,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,•则四个结论正确的是().
①点P在∠A的平分线上; ②AS=AR;③QP∥AR;
④△BRP≌△QSP.
A.全部正确; B.仅①和②正确;
C.仅②③正确; D.仅①和③正确
10.△ABC 为等腰直角三角形,∠C=90°,D 为BC 上一点,且AD=2CD ,则∠DAB=( ).
A .30°
B .45°
C .60°
D .15°
二.填空题
11. 如图,OE 是∠AOB 的平分线, AC ⊥OB 于点C, BD ⊥OA 于点D,则关于
直线OE 对称的三角形有 对.
12 .从商场试衣镜中看到某件名牌服装标签上的后5位编码是:
则该编码实际上是. 13.在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,
CD=6cm
,则点D 到AC 的距离为______cm
14.如图3,在△ABC 中BC=5cm ,BP 、CP 分别是∠ABC 和∠ACB 的角的平分线,且PD ∥AB ,PE ∥AC ,则△PDE 的周长是_______cm
15.△ABC 中,AB=AC ,∠ABC=36°,D 、E 是BC 上的点,∠BAD=∠DAE=∠EAC ,则图中等腰三角形有______个
16.如图4,在△ABC 中,∠ACB=90°,∠BAC=30°,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有____个
17.观察规律并填空:
18.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,•则CD •的长度是_______.
三.解答题
19.(6分)如图5,设点P 是∠AOB 内一个定点,分别画点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2交于点M ,交OB 于点N ,若P 1P 2=5cm ,则△PMN 的周长为多少?
20. (6分)等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,•求这个等腰三角形的底边长.
A
B
C
图4 B A
P
A
C
D E 图 3
21.(6分)已知:如图6,D、E是△ABC中BC边上的两点,AD=AE,要证明△ABE≌△ACD,应该再增加一个什么条件?请你增加这个条件后再给予证明
22.(6分)如图7,已知:△ABC的∠B、∠C的外角平分线交于点D。
求证:AD是∠BAC的平分线。
23.(8分)如图,五边形ABCDE中AB=AE,BC=DE,∠ABC=∠AED,点F是CD的中点.•求证:AF ⊥CD.
24.(10分)如图9,△ABC是边长为1的等边三角形,BD=CD,∠BDC=120°,E、F分别在AB、AC上,且∠EDF=60°,求△AEF的周长.
参考答案:
一.选择题
1.B 2、C , 3.B , 4.A , 5.C , 6、B , 7、B , 8、A , 9.A 提示:连结AP .综合运用全等三角形、平行线、角的平分线的性质、•等腰三角形的性质证△PRA ≌△PSA ,AR=AS 来解决问题.
10.D 解析:如答图所示.
∵△ACB 是等腰直角三角形,
∴∠CAB=∠B=45°.
在Rt △CAD 中,∵CD=
12AD , ∴∠CAD=30°,
∴∠DAB=45°-30°=15°.
提示:在直角三角形中,若一条直角边等于斜边的一半,则这条直角边所对的角为30°.
二.填空题
11.4 12.BA629 13.4 14.5 15.6 16. 6
17.解析:观察可知本题图案是由相同的偶数数字构成的轴对称图形,故此题答案为6组成的轴对称图
形.
18.1cm 。
三.解答题 19. 解:△PMN 的周长为P 1P 2的长,即为5cm
20. 解:如答图所示.
·P
A O P 2 P 1
M
N
设AD=DC=x ,BC=y ,
由题意得212,21,x x y x +=⎧⎨
+=⎩ 或221,12,
x x y x +=⎧⎨+=⎩
解得4,17x y =⎧⎨=⎩ 或7,5.x y =⎧⎨=⎩
当时4,17
x y =⎧⎨=⎩,等腰三角形的三边为8,8,17,显然不符合三角形的三边关系.
当时7,5.x y =⎧⎨=⎩,等腰三角形的三边为14,14,5, ∴这个等腰三角形的底边长是5.
答案:5
提示:①分情况讨论;①考虑三角形的三边关系.
21. 解:本题答案不唯一,增加一个条件可以是:EC=BD ,或AB=AC ,或BE=CD ,或∠B=∠C 或∠BAD=∠CAE 或∠BAE=∠CAD 等。
证明过程略
22
解:分别过D 作DE 、DF 、DG 垂直于AB 、BC 、AC ,垂足分别为E 、F 、G ,
∵BD 平分∠CBE
∴DE=DF
同理DG=DF
∴DE=DG
∴点D 在∠EAG 平分线上
∴AD 是∠BAC 的平分线
23..
E
A
B F
证明:连接AC 、AD 在△ABC 和△AED 中
A
B
C
D E F G
()()()AB AE ABC AED BC ED =⎧⎪∠=∠⎨⎪=⎩
已知已知已知
∴△ABC ≌△AED (SAD ) ∴AC=AD (全等三角形的对应边相等) 又∵△ACD 中AF 是CD 边的中线(已知)
∴AF ⊥CD (等腰三角形底边上的高和底边上的中线互相重合)
24. 解:延长AC 至点P ,使CP=BE ,连接PD .
E
D C B
A
P
F
∵△ABC 是等边三角形
∴∠ABC=∠ACB=60°
∵BD=CD ,∠BDC=120°
∴∠DBC=∠DCB=30° ∴∠EBD=∠DCF=90°
∴∠DCP=∠DBE=90°
在△BDE 和△CDP 中BD CD DBE DCP BE CP =⎧⎪∠=∠⎨⎪=⎩
∴△BDE ≌△CDP (SAS )
∴DE=DP ,∠BDE=∠CDP
∵∠BDC=120°,∠EDF=60°
∴∠BDE+∠CDF=60° ∴∠CDP+∠CDF=60°
∴∠EDF=∠PDF=60°
在△DEF ≌△DPF 中DE DP EDF PDF DF DF =⎧⎪∠=∠⎨⎪=⎩
∴△DEF ≌△DPF (SAS ) ∴EF=FP ∴EF=FC+BE
∴△AEF 的周长=AE+EF+AF=AB+AC=2.。