一种典型的差分放大电路设计与测试
lm358差分放大电路设计

lm358差分放大电路设计
LM358差分放大电路是一种常用的电路设计,它可以将微小信号放大并转换为可读取的电压信号。
为了设计一个有效的LM358差分放大电路,需要考虑多个因素,包括输入信号源、放大倍数、输入阻抗、输出阻抗等。
首先,输入信号源应该与差分放大电路匹配,并且信号源的输出应该是稳定的,并且具有足够的幅度。
其次,放大倍数应该根据需要进行调整,以确保可读取的电压范围内的最大输出信号不会超出输入信号源的范围。
此外,输入阻抗应该足够高,以避免对信号源的影响,而输出阻抗应该足够低,以避免加载效应。
为了实现这些目标,可以采用一些常见的LM358差分放大电路设计方法,例如使用负反馈电路、添加稳定电容、使用高质量电容和电阻等。
此外,还可以使用仿真工具进行模拟和测试,以确保设计的效果符合要求。
总之,LM358差分放大电路设计是一项重要的任务,需要仔细考虑各种因素,并使用适当的方法和工具进行实现和优化。
- 1 -。
差分放大器实验报告

差分放大器实验报告差分放大器实验报告引言差分放大器是一种常见的电路,广泛应用于模拟电路和信号处理领域。
本实验旨在通过搭建差分放大器电路并进行测试,探究其工作原理和性能特点。
一、实验原理差分放大器是由两个共尺度的放大器组成,分别对输入信号进行放大后再作差。
其主要特点是具有较好的抑制共模干扰能力和较高的增益。
差分放大器的工作原理如下:1. 差模放大差分放大器的输入信号分为差模信号和共模信号。
差模信号是两个输入信号之间的差值,而共模信号是两个输入信号之和的一半。
差分放大器会将差模信号放大,而对共模信号进行抑制。
2. 共模抑制比共模抑制比是衡量差分放大器抑制共模信号能力的指标。
通常用分贝(dB)来表示,计算公式为:CMRR = 20log10(差模增益/共模增益)。
共模抑制比越大,说明差分放大器对共模信号的抑制能力越强。
二、实验器材和步骤实验器材:1. 功放芯片2. 电阻、电容等被动元件3. 示波器4. 函数信号发生器5. 直流电源实验步骤:1. 搭建差分放大器电路,包括两个放大器、输入电阻、反馈电阻等元件。
2. 连接示波器和函数信号发生器,用于输入和观测信号。
3. 打开直流电源,调节电压至适当数值。
4. 调节函数信号发生器,输入差模信号和共模信号。
5. 观察示波器上的输出波形,并记录数据。
6. 根据记录的数据,计算差分放大器的增益和共模抑制比。
三、实验结果与分析通过实验,我们得到了差分放大器的输出波形和相关数据。
根据这些数据,我们可以计算出差分放大器的增益和共模抑制比。
1. 增益差分放大器的增益可以通过测量输出信号的峰值电压和输入信号的峰值电压来计算。
增益的计算公式为:差分增益 = 输出峰值电压 / 输入峰值电压。
根据实验数据,我们可以得到差分放大器的增益值。
2. 共模抑制比共模抑制比的计算需要用到差分增益和共模增益的值。
根据实验数据,我们可以计算出共模抑制比的数值,并进行比较分析。
通过对实验结果的分析,我们可以得出差分放大器具有较高的增益和较好的共模抑制能力。
差分放大电路教学设计

差分放大电路教学设计差分放大电路是一种常用的电路,它可以用于放大微弱的差分信号,同时抑制共模信号。
差分放大电路在实际应用中广泛应用于测量和信号处理领域。
以下是一个差分放大电路的教学设计:实验目的:通过设计差分放大电路,学习和掌握差分放大器的工作原理和特性。
实验器材:- 差分放大器芯片(例如OPA177)- 两个电阻(100欧姆)- 电路连接线- 示波器- 信号发生器实验步骤:1. 将差分放大器芯片与两个电阻连接,形成差分放大器电路。
2. 将示波器连接到差分放大器的输出端,用于观察输出信号。
3. 将信号发生器连接到差分放大器的输入端,用于提供输入信号。
4. 调节信号发生器的频率和幅度,观察差分放大器的输出信号变化。
5. 尝试不同的输入信号,如方波、正弦波等,观察差分放大器的输出信号变化。
6. 记录结果并分析差分放大器的放大倍数和频率响应。
实验讨论:1. 差分放大器的输入信号具有两个引脚,一个是非反相输入端(IN+),另一个是反相输入端(IN-)。
这两个信号的差值将放大并输出。
2. 差分放大器的输出信号是输入信号之间的差值,并且放大了一定倍数。
3. 差分放大器的放大倍数可以通过更改电阻的值来调整。
实验扩展:1. 尝试使用不同的差分放大器芯片,比较它们的性能差异。
2. 使用示波器观察并记录差分放大器的相位响应。
3. 修改电路,添加反馈电阻,实现差分放大器的增益控制。
总结:通过这个差分放大电路的教学设计,学生能够深入了解差分放大器的工作原理和特性,以及如何设计和调整差分放大电路。
这个实验还可以培养学生的实验操作能力和数据分析能力。
差分放大电路实验报告

差分放大电路实验报告差分放大电路实验报告引言:差分放大电路是电子工程中常见的一种电路,它具有放大信号、抑制噪声等优点,因此在信号处理、通信系统等领域得到了广泛的应用。
本实验旨在通过搭建差分放大电路并进行实际测量,验证其性能和特点。
一、实验器材和原理本实验所需器材包括函数发生器、示波器、电阻、电容、运放等。
差分放大电路由两个输入端和一个输出端组成,输入端通过电阻与电源相连,输出端与负反馈电阻相连。
差分放大电路的原理是:当两个输入端的电压不同时,输出端会产生一个差分电压,其放大倍数由负反馈电阻决定。
二、实验步骤1. 按照电路图连接实验电路,注意正确接线和电阻、电容的数值。
2. 将函数发生器的输出接入电路的输入端,设置合适的频率和幅度。
3. 使用示波器测量电路的输入电压和输出电压,并记录数据。
4. 逐渐改变函数发生器的频率和幅度,观察电路的响应情况,并记录数据。
三、实验结果及分析在实验中,我们分别测量了电路的输入电压和输出电压,并记录了数据。
通过数据的分析,我们可以得出以下结论:1. 输入电压与输出电压之间存在一定的线性关系,即差分放大电路具有线性放大的特性。
2. 随着输入电压的增加,输出电压也相应增加,但增长的速率逐渐减小,说明差分放大电路具有饱和特性。
3. 在一定频率范围内,输入电压和输出电压之间的相位差保持不变,说明差分放大电路具有相位不变性。
四、实验总结通过本次实验,我们对差分放大电路的原理和性能有了更深入的了解。
差分放大电路在实际应用中具有很高的实用性,可以用于信号放大、噪声抑制等方面。
在今后的学习和工作中,我们将进一步探索差分放大电路的应用,并不断提高自己的实验技能和理论水平。
结语:差分放大电路是一种重要的电子电路,在信号处理和通信系统中具有广泛的应用。
通过本次实验,我们不仅加深了对差分放大电路的理解,还提高了实验操作和数据分析的能力。
希望今后能够将所学知识应用于实际工程中,为科学技术的发展做出自己的贡献。
恒流源差分放大电路

恒流源差分放大电路1. 介绍恒流源差分放大电路是一种常见的电路设计,用于实现在输入信号变化时输出恒定电流的功能。
该电路由差分放大器和恒流源组成,其结构简单、功耗低、带宽大等特点使其在模拟电路设计中得到广泛应用。
本文将详细探讨恒流源差分放大电路的原理、设计方法以及典型应用场景。
2. 原理恒流源差分放大电路的原理基于差分放大器的工作原理和恒流源的特性。
差分放大器是一种基本的放大电路,具有良好的共模抑制能力和增益稳定性。
恒流源则能够提供稳定的电流输出,使得电路在输入信号变化时输出电流保持不变。
恒流源通常由两个P型或N型晶体管和电流源电路组成,其中晶体管的栅极作为输入端,漏极作为输出端,电流源负责提供稳定的电流。
在差分放大器中,输入信号经过差动放大器的放大作用后,分别与恒流源连接,形成两个输出电流。
这两个输出电流的差值正比于输入信号的差值,而与输入信号的绝对值无关,从而实现了恒定的输出电流。
3. 设计方法恒流源差分放大电路的设计需要考虑多个因素,包括增益、共模抑制比、带宽、电源电压等。
下面将介绍一种常用的设计方法。
3.1 选择差分放大器选择合适的差分放大器是设计恒流源差分放大电路的第一步。
常用的差分放大器包括二极管差分放大器和晶体管差分放大器。
二极管差分放大器具有简单的结构和低功耗的特点,适用于低频电路设计;晶体管差分放大器具有高增益和大带宽的特点,适用于高频电路设计。
3.2 设计恒流源恒流源的设计是恒流源差分放大电路设计的关键。
常用的恒流源包括电流镜、活性负载和电流镜负反馈等。
选择恒流源时需要考虑电流的稳定性、功耗以及制造工艺等因素。
3.3 考虑偏置电路偏置电路用于提供稳定的工作点,使得差分放大器和恒流源能够正常工作。
常用的偏置电路包括电流源、电阻分压、电容耦合等。
选择合适的偏置电路能够提高电路的工作性能。
3.4 调整电路参数根据设计需求和性能指标,对电路参数进行调整。
常用的参数包括电阻、电容、晶体管尺寸等。
差分放大器实验报告

差分放大器实验报告
差分放大器是一种常见的放大电路,用于放大两个输入信号之间的差异。
在电子电路中,差分放大器通常被用来抑制共模干扰,提高信号的传输质量。
在本次实验中,我们将对差分放大器进行测试,并分析其性能。
实验设备和材料包括电源、示波器、信号发生器、电阻、电容、运放等元件。
首先,我们按照电路图连接好电路,并给电路供电。
然后,我们通过信号发生器输入测试信号,观察示波器上的波形变化。
通过调整电路参数,我们可以得到不同的放大倍数和频率响应。
在实验过程中,我们发现差分放大器具有以下特点:首先,它能够有效地放大输入信号的差分部分,抑制共模信号的影响。
其次,差分放大器具有较高的共模抑制比和输入阻抗,能够提高信号的传输质量。
最后,差分放大器的频率响应较宽,适用于不同频率范围内的信号放大。
通过本次实验,我们深入了解了差分放大器的工作原理和性能特点。
差分放大器在实际电路设计中具有重要意义,能够有效提高信号传输的稳定性和质量。
我们相信,在今后的学习和工作中,差分放大器这一知识点将会对我们有很大的帮助。
总的来说,本次实验对差分放大器的理解和应用起到了积极的促进作用。
通过实际操作和观察,我们更加深入地理解了差分放大器的
工作原理,为今后的学习和研究奠定了坚实的基础。
希望在以后的实验中,我们能够继续深入探讨电子电路的相关知识,不断提升自己的实践能力和创新意识。
感谢老师和同学们的支持和帮助,让我们能够顺利完成这次实验,收获满满的成果和收获。
愿我们在未来的学习和工作中,继续努力奋斗,不断进步,为科学技术的发展贡献自己的力量。
利用multisim设计惠斯通电桥差分放大器电路

利用multisim设计惠斯通电桥差分放大器电路1.引言1.1 概述概述部分的内容:概述部分旨在介绍本文的主题,即利用Multisim设计惠斯通电桥差分放大器电路。
在当前电子技术的发展中,电路设计和仿真软件的应用越来越广泛,Multisim作为一款功能强大、易于使用的电路设计工具,被广泛应用于电子教学、科研和工程实践领域。
而惠斯通电桥差分放大器电路作为一种常用的信号放大器电路,具有放大稳定性好、噪声水平低等优点,在传感器信号放大、测量控制系统等领域得到了广泛应用。
本文将重点讨论如何利用Multisim这一工具进行惠斯通电桥差分放大器电路的设计。
在引言部分,首先将简要介绍本文的结构和目的,为读者提供概览。
接着,文章将通过正文部分详细阐述设计的关键要点和步骤,包括电路分析、参数计算和电路优化等内容。
最后,在结论部分对所设计的电路进行总结,并展望未来的发展方向。
通过本文的阅读,读者将能够了解到如何利用Multisim这一工具进行惠斯通电桥差分放大器电路的设计,掌握设计的关键要点,并能够根据实际需求进行电路参数的计算和优化,从而能够更好地应用于实际工程和科研中。
1.2文章结构文章结构部分的内容应该包括对整篇文章的组织结构进行介绍和说明。
下面是一种可能的写法:文章结构本文按照以下结构进行组织。
首先在引言部分进行概述,介绍了设计惠斯通电桥差分放大器电路的目的和意义。
接下来,正文部分将详细介绍设计过程中的两个关键要点。
其中,第一个要点将重点阐述如何使用Multisim软件进行电路设计和仿真,包括电路元件的选取、参数设置以及仿真结果的分析。
第二个要点将着重讲解惠斯通电桥差分放大器电路的原理及其在实际应用中的优势。
最后,结论部分对整个设计过程进行总结,并展望了未来该电路在相关领域中的应用前景。
通过以上结构的设计,本文将全面介绍利用Multisim设计惠斯通电桥差分放大器电路的过程和关键要点,旨在帮助读者更好地了解该电路的原理和应用价值。
cmos差分放大电路设计

cmos差分放大电路设计(原创实用版)目录1.CMOS 差分放大电路概述2.CMOS 差分放大电路的设计要点3.CMOS 差分放大电路的性能分析4.CMOS 差分放大电路的应用实例5.总结正文一、CMOS 差分放大电路概述CMOS 差分放大电路是一种广泛应用于模拟信号处理领域的电路,它具有高输入阻抗、低输出阻抗、高增益和低失真等优点。
与传统的晶体管差分放大电路相比,CMOS 差分放大电路具有更好的电源抑制比和更低的功耗,因此在现代电子系统中得到了广泛的应用。
二、CMOS 差分放大电路的设计要点在设计 CMOS 差分放大电路时,需要考虑以下几个方面:1.输入级设计:输入级通常采用差分对结构,可以有效抑制共模输入信号,提高电路的抗干扰性。
同时,需要选择合适的晶体管尺寸和电流值,以保证输入级的性能。
2.输出级设计:输出级需要提供足够的电流驱动能力,以驱动后级负载。
同时,需要选择合适的晶体管尺寸和电流值,以保证输出级的性能。
3.电源设计:CMOS 差分放大电路需要稳定的电源,以保证电路的性能。
通常需要采用电源抑制技术,以抑制电源噪声对电路性能的影响。
4.布局和布线设计:合理的布局和布线设计可以减小电路的寄生效应,提高电路的性能。
三、CMOS 差分放大电路的性能分析CMOS 差分放大电路的性能主要包括增益、带宽、输入阻抗、输出阻抗、电源抑制比等指标。
在设计过程中,需要合理选择晶体管尺寸和电流值,以满足性能要求。
同时,需要进行性能仿真和测试,以验证电路的性能。
四、CMOS 差分放大电路的应用实例CMOS 差分放大电路广泛应用于各种模拟信号处理领域,如音频放大器、通信放大器、仪器测量等。
例如,在音频放大器中,CMOS 差分放大电路可以提高音频信号的质量和音量;在通信放大器中,CMOS 差分放大电路可以提高信号传输的稳定性和可靠性。
五、总结CMOS 差分放大电路是一种重要的模拟电路,具有高性能和低功耗的特点。
在设计过程中,需要考虑输入级、输出级、电源和布局布线等因素,以满足性能要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种典型的差分放大电路设计与测试
时间:2011-01-11 14:08:49 来源:维库作者:
摘要:简述一种典型的差分输入差分输出放大电路的设计、仿真和测试方法,讨论其设计原理及需要解决的问题。
重点讲述差分滤波器的设计和计算,指出与单端放大电路在设计和测试中的不同之处,并结合实际工作中的经验,就直流信号和交流信号的测试分别给出了一种简易案例。
与普通单端放大器相比,差分放大器可以有效抑制输入信号中的共模噪声和地线电平电压浮动对电路的影响,因此,在工业应用中广受青睐。
差分放大器中以仪表放大器应用最为广泛。
随着技术的发展,支持差分输入的ADC、MCU 越来越多,由于差分传输能更好地抑制共模干扰,信号传输距离更远,越来越多的场合将使用差分传输。
但是,一般的仪表放大器仅支持单端输出。
因此,采用双运放搭建了一种差分输入差分输出放大电路。
与普通的单端放大电路相比,差分放大电路在设计、分析、仿真和测试中有许多不同之处,而这些知识在一般的模拟电路教材中很少介绍。
1 差分放大电路设计
根据被放大信号的不同, 可以将差分放大电路分成两种。
一种是直流耦合差分放大电路,其输入端没有隔直电容,可以同时放大直流和交流信号,如图1 所示。
另一种是交流耦合差分放大电路,其输入端有隔直电容,用来隔离直流分量,放大信号中的交流成分,如图2 所示。
直流耦合差分放大电路
交流耦合差分放大电路
1.1 直流耦合差分放大电路
直流耦合差分放大电路由差分比例放大电路、差分滤波器、保护器件和补偿电阻四部分组成。
其输入-输出关系为:
当信号频率较低时, 电容C1、C2、C3 的容抗很大,差分放大电路的输入阻抗很高,若运放工作在线性放大区,则根据虚短和虚断定理,可得:
将式(3) 、式(4) 代入式(1) 和式(2) ,可得:
假设A 为差分放大电路的差分放大倍数, 则由式(5) 、式(6) 可得:
式(1)~式(7) 中所有加减运算均为矢量相加减,式(7)表明该差分放大电路的差分放大倍数A 由电阻R3、R4、R5 确定。
该差分放大电路中的滤波器采用了典型差分滤波器的形式,由差模滤波器和共模滤波器组成,主要作用是滤除传感器输出信号高频噪声以及RFI 噪声。
假设传感器差模输出阻抗为Rd, 共模输出阻抗为Rc,C1 与C2的串联等效电容为CS12, 则差模滤波器的截止频率fd由Rd、R1、R2、CS12和C3 确定,共模滤波器的截止频率fc由Rc、R1、R2、C1、C2 确定。
由于传感器信号传输线较长,其寄生电感与放大器输入电容容易组成LC 谐振电路, 产生过冲和振荡,为此,在信号线上串联小电阻R1、R2 作为补偿电阻,以减小或消除振荡。
图1
中,电容C4、C5 分别与电阻R3、R5 组成一阶低通滤波器,抑制放大器噪声;电阻R6、R7对运放进行环内补偿,增加运放带容性负载的能力;BAT54S 作为保护器件加在放大器输入端, 防止静电放电以及输入电压超出运放最大输入电压范围而损坏运算放大器。
1.2 交流耦合差分放大电路
交流耦合差分放大电路如图2 所示。
电容C9、C10、C11 的值远小于电容C7、C8 的值,因此,电容C9、C10、C11 对图2 中高通滤波器的影响可以忽略,从而可得共模高通滤波器的截止频率fHPc。
假设电容C7 与C8 的串联等效电容为CS78,则差模高通滤波器的截止fHPd频率为:
电阻R10、R11 为运放提供偏置电压并为运放偏置电流提供流通路径。
2 差分放大电路仿真
在完成电路设计后,采用Multisim仿真软件对电路进行仿真,以检验电路结构是否合理、器件选择是否恰当、滤波器截止频率设计是否正确等。
仿真电路原理图如图3 所示。
表1 所示为虚拟信号发生器XFG1 参数设置,表2 所示为虚拟示波器XSC1 各通道交流信号测量结果以及XBP1 波特图仿真结果。
表2 XSC1 和XBP1 仿真结果。
XFG1 参数设置
表2 XSC1 和XBP1 仿真结果。
XSC1 和XBP1 仿真结果
假设图3 中3、4、9 处的交流信号峰峰值电压分别为V3、V4、V9,则由式(5) 可得:
由表2 结果和式(12) 可知,差分比例放大部分的设计是正确的。
由图3、式(9) 和表2 结果可知,共模滤波器的设计是正确的。
仿真电路原理图
假设一阶RC 低通滤波器通带电压增益为A0,则其幅频响应可以用式(13) 表示。
式中,ω 为信号角频率,ωc为差分滤波器截止角频率。
表3 所示为不同频率信号的仿真结果。
由图3、式(8) 、式(13) 和表3 结果可知,差模滤波器的设计是正确的。
表3 不同频率信号的衰减情况
不同频率信号的衰减情况
3 差分放大电路测试
以直流耦合放大电路为例简要说明测试方法和步骤,测试框图如图4 所示。
差分输入电压由YOKOGAWACA100 系列小型校验仪产生,差分输出电压由四位半精度的VC9806 + 系列数字万用表测量得出。
注意,为了使运放工作在线性放大区,需要给运放提供适当的偏置电压[ 8]。
表4 所示为CA100 输出不同电压时VC9806+ 的测试结果,结果表明直流耦合放大电路的差分比例放大倍数约为21。
直流信号放大测试框图
直流耦合通道交流信号测试框图
在直流电压上叠加交流信号,测试交流信号放大、差分滤波器的设计是否正确。
测试框图如图5 所示。
输入信号由Fluke282 多信道信号发生器产生,输出信号由Tek DPO 4054 示波器测量得出。
由于Fluke 282 信号发生器的输出直流偏置电压受输出交流信号幅值的影响,当交流信号的幅值越小时,直流偏置电压越低,此时,运放共模抑制比很低,而且可能超出运放共模输入电压范围。
因此,采用如下方法:Fluke 282 输出两路同相位正弦波信号,信道1 信号加在a 端,参数设置为1000 mVpp,10 Hz, 2.50 V 偏置电压,0°主模式;信道2 信号加在b 端,参数设置为900 mVpp,10 Hz,2.50 V 偏置电压,0°从模式。
示波器测量结果如表5 所示, 其中CH1、CH2、CH3 、CH4 分别测量TP1、TP2、TP7 、TP8 处交流信号峰峰值电压和相位,设置CH1 相位为0°。
表5 直流耦合通道交流信号测试结果
直流耦合通道交流信号测试结果
由表5 可知,VTP1=980.0 mV,VTP2=880.9 mV, 带入式(5) 和式(6) ,可得VTP7 =1971 mV,VTP8 =-100.1 mV,其中VTP1、VTP2、VTP7、VTP8的值均为矢量值。
表5 所示峰峰值测量结果表明交流信号的放大是正确的。
表6 所示为不同频率时,a、b、TP1、TP2 处测试结果,结果显示通过差分滤波,实际信
号衰减稍大于理论值,这是由信号发生器输出阻抗及电路板寄生电容引起的。
表6 不同频率时a、b、TP1、TP2 处测量结果
不同频率时a、b、TP1、TP2 处测量结果
交流耦合差分放大电路测试方法与交流信号测试方法相似,但是,由于电阻容差、运放输入偏置电流、失调电压及隔直电容漏电流等因素的影响,差分输出端存在一定直流电压差,这与仿真的结果是不同的。
该差分放大电路可以看成两路单端同相放大电路的合成。
但是,差分放大电路放大差分信号,抑制共模信号;两路输出信号之间存在相位差。
因此,采用单端探头测量差分放大电路时,需要同时考虑信号的幅值和相位,以便计算和分析。
使用双运放搭成的具有仪表放大器输入结构的差分输入差分输出放大电路能有效抑制电路温度漂移、零点漂移和共模噪声。
在没有差分探头时,使用单端探头对差分放大电路进行测试,并计算输入通道信号失量差和输出通道信号矢量差来验证差分信号的放大,具有较好的实用价值。