核电站反应堆冷却剂系统讲义
核电站反应堆冷却剂系统讲义

核电站反应堆冷却剂系统讲义本讲义是针对一回路及相关辅助系统的学习。
所包含的内容主要分三个方面:一回路主回路系统(RCP),一回路辅助系统(RCV、REA 、RRA、PTR),核安全系统(RIS、EAS、ASG)等。
故我们的学习应该从这三方面入手分系统的掌握。
本教材在详细介绍OJT206所涉及的系统的基础上结合现场有关操作使大家对OJT206的知识有一个全面的了解。
第一章、反应堆冷却剂系统(RCP)反应堆冷却剂系统是核电站的重要关键系统。
它集中了核岛部分除堆本体外对安全运行至关紧要的主要设备。
反应堆冷却剂系统与压力壳一起组成一回路压力边界,成为防止放射性物质外泄的第二道安全屏障。
核电站通常把核反应堆、反应堆冷却剂系统及相关辅助系统合称为核蒸汽供应系统。
大亚湾压水堆电站一回路冷却剂系统由对称并联到压力壳进出口接管上的三条密封环路构成。
每条环路由一台冷却剂主泵、一台蒸汽发生器以及相应的管道、阀门组成。
整个一回路共用一台稳压器以及与其相当的卸压箱。
反应堆冷却剂系统的压力依靠稳压器的电加热元件和喷雾器自动调节保持稳定。
一、RCP系统的主要安全功能和要求RCP系统的主要功能是利用主泵驱使一回路冷却剂强迫循环流动,将堆芯核燃料裂变产生的热量带出堆外,通过蒸汽发生器传给二回路给水产生蒸汽,冷却剂在导出堆芯热量的过程中冷却堆芯,防止燃料元件棒烧毁。
压力壳内冷却剂还兼作堆芯核燃料裂变产生的快中子的慢化剂和堆芯外围的中子反射层。
冷却剂水中溶有硼酸,因此堆内含硼冷却剂又可作为中子吸收剂。
根据工况需要调节冷却剂中含硼浓度,可配合控制棒组件用以控制、补偿堆芯反应性的变化。
系统内的稳压器用于控制一回路冷却剂系统压力,以防止堆芯产生偏离泡核沸腾。
当一回路冷却剂系统压力过高时,稳压器安全阀则能实现超压保护。
当发生作为第一道安全屏障的燃料元件棒包壳破损、烧毁事故时,RCP系统的压力边界可作为防止放射性物质泄漏的第二道安全屏障。
为此,对RCP系统安全功能和设计的要求是:1.系统应提供足够的传递热量的能力,能将堆芯产生的热量带出并传给二回路介质。
3.1反应堆冷却剂系统(1012)_814802505

21000 18000 23300 23790
4
Claysius-Clapeyron关系式:
(
T (v − v f ) dT ) sat = sat g dp h fg
水的饱和温度与饱和压力的关系近似关系式:
Ts = 178.7 Ps 0.25 − 0.6 Ps
据C-C方程,p↑,(vg-vf) ↓hfg↑→(dt/dp) ↓,压力越 高,加压带来的饱和温度升高效果越差。
2
燃料元件表面的放热过程遵循下述关系:
Pu = Ah(tc − t f )
…………………(3.1a) 3.1a)
THE END
式中A为燃料元件总表面积,m2 ; tc、 tf分别为燃料元件表面温 式中A 为燃料元件总表面积,m 度和冷却剂温度,℃;h为冷却剂与燃料元件表面间的放热系 数,W/(m2.℃);Pu为堆内燃料棒的总热功率,W。 数,W/( );P 为堆内燃料棒的总热功率,W 由于冷却剂与燃料元件表面间的放热系数h与冷却剂流速的0.8 由于 次方成正比。从式(3.1a)看出,增加一回路流量可以提高h, 从而在热功率一定时可以降低包壳温度tc。 t 因而,提高冷却剂流速有利于降低燃料元件表面与冷却剂之间 的温差,从而降低燃料元件表面和元件中心温度。提高冷却剂 流速对提高临界热流密度也是有利的。所以,增加流量对载热 和传热都是有利的。
21500*
二、一回路压力
根据热力学原理,为了提高二回路热效率,应当尽可能提高工质的吸热平均 温度。 由水的热物理性质可知,要想提高反应堆冷却剂的出口温度而不发生冷却剂 容积沸腾,必须提高一回路压力。所以,从提高核电厂的热效率来说,提高 一回路系统冷却剂的工作压力是有利的。但是这方面的潜力非常有限。 例如,水的压力为20MPa时,其饱和温度也仅有365.7℃,而现代压水 堆一回路常用压力为15.5MPa左右,其对应的饱和温度为344.7℃。二者相 比,压力提高了4.5MPa,饱和温度却仅提高21℃。显然如此提高压力,在提 高电厂效率上的收益不大,反而对各主要设备的承压要求、材料和加工制造 等技术难度都大大增加了,最终影响到电厂的经济性。 综合考虑,一般压水堆核电厂一回路系统的工作压力约为15MPa左右。 设计压力取1.10~1.25倍工作压力;冷态水压试验取1.25倍设计压力 (法) , ASME取1.25倍设计压力。
核电站中的冷却剂循环系统

核电站中的冷却剂循环系统核电站是一种利用核能来产生电能的重要设施,而冷却剂循环系统是核电站中至关重要的组成部分。
它的主要功能是将核反应堆中产生的热量带走,并保持反应堆和其他设备的恒定温度,以确保核反应的稳定运行。
本文将详细介绍核电站中的冷却剂循环系统。
一、冷却剂的选用核电站中使用的冷却剂必须具备良好的导热性能、较高的沸点和蒸发潜热,并且要具备较低的腐蚀性。
通常情况下,水和重水是最常用的冷却剂。
水在核反应过程中的吸热能力强,但其腐蚀性较大,因此需要进行特殊处理。
重水则无此腐蚀问题,但成本较高。
二、冷却剂循环系统的结构和原理核电站中的冷却剂循环系统由主要循环系统和辅助循环系统组成。
主要循环系统主要包括核反应堆、蒸汽发生器、冷凝器和泵等设备。
核反应堆产生的热量通过冷却剂传输到蒸汽发生器,在此过程中冷却剂发生相变产生蒸汽。
蒸汽经过冷凝器冷却后,又重新变为冷却剂,由泵再次输送到核反应堆中,循环往复。
辅助循环系统主要包括冷却剂过滤器、压力控制器、水处理设备等。
这些设备的主要作用是保持冷却剂的纯度、控制系统的压力以及处理冷却剂中的杂质。
三、冷却剂循环系统的工作原理核电站中的冷却剂循环系统的工作可以分为两个主要阶段,即正常运行阶段和事故处理阶段。
在正常运行阶段,冷却剂循环系统通过各个设备的协调工作,将核反应堆中产生的热量带走,保持核反应堆的恒定温度。
冷却剂在循环过程中需经过一系列处理来保持其状态良好,如控制压力、温度和流量等。
而在事故处理阶段,冷却剂循环系统则需要应对各种意外情况,如突发的冷却剂泄漏或压力异常等。
此时,系统会根据事故情况采取相应的措施,如紧急关闭泵、切断冷却剂流动等,以确保核反应堆安全。
四、冷却剂循环系统的安全性核电站中的冷却剂循环系统在保证电能输出的同时,也要确保系统的安全性。
为了达到这一目标,核电站需要进行严密的安全措施。
首先,核电站采用多种监测和控制系统,来对冷却剂循环系统进行实时监测。
一旦发现异常情况,系统会及时做出响应,并采取相应的措施。
核反应堆-核电-核技术-核工程-4.4 设备冷却水系统

该系统是核岛设备与海
水之间的一道屏障。它
即可以避免放射性流体 海水(SEC)
不可控地释放到海水中 而污染环境,又可以防 止海水对于核岛设备的 腐蚀。
缓冲箱
泵
设备冷却水系统 (RRI)
RRI系统作用原理
热交换器 核岛设备
2
4.4.2. RRI系统的描述
对于每一个机组,RRI都设有两条 独立管线(A列和B列)和一条公共管 线,在两个机组之间还设有一条共用 管线。
– 板式热交换器:换热面积大,流量1500m3/h(50%); – 波动箱:容积10m3,保持泵两机的组吸共入用管压线力用户,补偿可能的泄漏,承受水容积
的膨胀变化。
二号机组RRI系统
4
• 它能给系统补充水,补充水来自核岛的除盐水系统,波动箱中的水过
1. 独立管线
两条独立管线为反应堆安全设施和冷停堆必不可少的冷却器提 供冷源。这些冷却器都需要有100%的冗余。 独立管线被设计为分别由应急电源A列和B列供电,使在事故情 况下,每条独立管线都有100%的提供必要冷却的能力。
11
4.4.3 设备冷却水系统运行
2.正常运行
反应堆功率运行时,排放的热量为常量,设备冷却水系统的主 要用户是冷却剂泵、化容系统下泄热交换器、轴封水回流热交 换器和控制棒驱动机构空气冷却器以及稳压器卸压箱等。 在此 情况下,只需一条独立管线的一台泵和一台热交换器投运。
3.电站停闭
在停堆期间,通常设备冷却水系统的两个独立系列都需要运行; 核反应堆停堆的第二阶段,正常余热排出系统投入运行(大约在
其主要用户有: TEP001、002EV和001、002DZ TEU001EV TEG001、002RF SVA001RF DWL001、002CS
第四章 反应堆冷却剂系统和设备

动力工程系 宋长华
主要内容
3-1 反应堆冷却剂系统 3-2 反应堆本体结构 ----------系统设备 ----------系统设备 3-3 反应堆冷却剂泵 3-4 蒸汽发生器 3-5 稳压器
3-1 反应堆冷却剂系统
一、系统的功能
反应堆冷却剂系统又称为一回路系统,其主要功能 反应堆冷却剂系统又称为一回路系统, 是: (1)在核电厂正常功率运行时将堆内产生的热量载出 (1)在核电厂正常功率运行时将堆内产生的热量载出, 在核电厂正常功率运行时将堆内产生的热量载出, 并通过蒸汽发生器传给路工质,产生蒸汽, 并通过蒸汽发生器传给路工质,产生蒸汽,驱动汽轮 发电机组发电。 发电机组发电。 (2)在停堆后的第一阶段 (2)在停堆后的第一阶段,经蒸汽发生器带走堆内的衰 在停堆后的第一阶段, 变热。 变热。 (3)系统的压力边界构成防止裂变产物释放到环境中的 (3)系统的压力边界构成防止裂变产物释放到环境中的 一道屏障。 一道屏障。 (4)反应堆冷却剂作为可溶化学毒物硼的裁体, (4)反应堆冷却剂作为可溶化学毒物硼的裁体,并起慢 反应堆冷却剂作为可溶化学毒物硼的裁体 化剂和反射层作用。 化剂和反射层作用。 (5)系统的稳压器用来控制一回路的压力 (5)系统的稳压器用来控制一回路的压力,防止堆内发 系统的稳压器用来控制一回路的压力, 生偏离泡核沸腾,同时对一路系统实行超压保护。 生偏离泡核沸腾,同时对一路系统实行超压保护。
3-1 反应堆冷却剂系统
三、系统参数的选择 4.冷却剂流量 综合上述分析,压水堆核电厂一回路参数范围是: 综合上述分析,压水堆核电厂一回路参数范围是:工作 压力15MPa左右 左右, 压力15MPa左右,冷却剂在反应堆的进口温度取 280℃——300℃ 在反应堆的出口温度取310℃ 280℃——300℃,在反应堆的出口温度取310℃—— 330℃ 进出口的温升为30℃——40℃ 330℃,进出口的温升为30℃——40℃。核电厂变工 况时,反应堆冷却剂平均温度变化允许的最大温差为 况时, 17℃——25℃。反应堆的设计温度为350℃。 17℃——25℃ 反应堆的设计温度为350℃ 一回路系统中冷却剂的流量较大, 一回路系统中冷却剂的流量较大,当单环路对应的电功 率为300 Mw时 冷却剂总质量流量可达到15000t/ 率为300 Mw时,冷却剂总质量流量可达到15000t/ h~21000t/h(即每10MW热功率160t/h~250t/ 21000t/h(即每 即每10MW热功率 热功率160t/ 250t/ h)。主管道内冷却剂流速可达15m/s,一回路系统的 h)。主管道内冷却剂流速可达15m/ 总阻力约为o 6MPa~ 8MPa。 总阻力约为o.6MPa~o.8MPa。
核电站的冷却系统原理

核电站的冷却系统原理核电站是利用核能产生电能的重要设施,其中冷却系统在核电站中起到了至关重要的作用。
冷却系统的主要功能是控制核反应堆的温度,保证核能的稳定释放,并有效保护设施的安全运行。
本文将介绍核电站冷却系统的原理和工作流程。
一、核电站的冷却系统概述核电站的冷却系统主要由循环系统和蒸汽系统组成。
循环系统负责冷却反应堆,并将产生的热量传递至蒸汽系统;蒸汽系统则是将热能转化为动能,带动涡轮发电机产生电能。
二、冷却系统的循环系统核电站的循环系统主要由冷却剂、循环泵和换热器组成。
冷却剂是循环系统的核心,其主要目的是吸收核反应堆产生的热量,并将其带走。
常用的冷却剂有轻水、重水和氦气等。
1. 轻水冷却系统轻水冷却系统是目前最常用的冷却系统。
其基本原理是通过水的循环流动吸收核能释放的热量。
在反应堆中,燃料棒中的核裂变会产生大量热能,轻水冷却系统通过循环泵将冷却剂(轻水)从反应堆中吸收热能后,输送到换热器中,再将冷却剂中的热量传递给蒸汽系统。
2. 重水冷却系统重水冷却系统采用的是重水作为冷却剂。
重水是一种含有重氢的水,对中子的吸收能力较强,具有良好的减速中子效果。
重水冷却系统的工作原理与轻水冷却系统相似,但由于重水的吸收特性,反应堆的控制更为精确,有利于提高核能发电的效率。
3. 氦气冷却系统氦气冷却系统是一种采用高温气体作为冷却剂的新型系统。
该系统常用于高温气冷堆反应堆,可以在极高温度下工作。
氦气冷却系统的冷却原理是通过高温氦气从核反应堆吸收热量后,通过换热器传递给蒸汽系统或直接用于驱动涡轮发电机。
三、冷却系统的蒸汽系统蒸汽系统是核电站冷却系统的另一个重要组成部分。
其主要功能是将循环系统传递过来的热量转化为动能,带动涡轮发电机产生电能。
在蒸汽系统中,高温高压的冷却剂通过换热器将热量传递给工质(常为水)产生蒸汽,然后蒸汽通过高压管道进入涡轮发电机组,推动涡轮快速旋转,最终产生电能。
蒸汽释放完能量后,通过冷凝器冷却成水,再次回到循环系统进行循环。
第三章 反应堆冷却剂系统和设备

3-1 反应堆冷却剂系统
2.压力调节系统 为了保证反应堆冷却剂系统具有好的冷却能力,应 当将堆芯置于具有足够欠热度的冷却剂淹没之中。核 电厂在负荷瞬变过程中,由于量测系统的热惯性和控 制系统的滞后等原因,会造成一、二回路之间的功率 失配,从而引起负荷瞬变过程中一回路冷却剂温度的 升高或降低,造成一回路冷却剂体积膨胀或收缩。 水经波动管涌人或流出稳压器,引起一回路压力升高 或降低。当压力升高至超过没定值时,压力控制系统 调节喷淋阀.由冷管段引来的过冷水向稳压器汽空间 喷淋降压;若压力低于设定值,压力控制系统启动加 热器,使部分水蒸发,升高蒸汽压力。
3-5 稳压器
二、稳压器分类 按原理和结构形式的不同,稳压器分为两类, (1)气罐式稳压器:容积大,易腐蚀,淘汰 (2)电加热式稳压器:大都采用 三、稳压器本体结构(电) 结构图 现代压水堆核电厂普通采用电加热式稳压器。 这种稳压器是一个立式圆柱形高压容器。其典型 的几何参数为高13m,直径2.5m,上下端为半 球形封头,总容积约40m2,净重约80t。立式 安装在下部裙座上。
第3章 反应堆冷却剂系 统和设备
动力工程系 余廷芳
主要内容
3-1 反应堆冷却剂系统 3-2 反应堆本体结构 ----------系统设备 3-3 反应堆冷却剂泵 3-4 蒸汽发生器 3-5 稳压器
3-1 反应堆冷却剂系统
一、系统的功能
反应堆冷却剂系统又称为一回路系统,其主要功能 是: (1)在核电厂正常功率运行时将堆内产生的热量载出, 并通过蒸汽发生器传给路工质,产生蒸汽,驱动汽轮 发电机组发电。 (2)在停堆后的第一阶段,经蒸汽发生器带走堆内的衰 变热。 (3)系统的压力边界构成防止裂变产物释放到环境中的 一道屏障。 (4)反应堆冷却剂作为可溶化学毒物硼的裁体,并起慢 化剂和反射层作用。 (5)系统的稳压器用来控制一回路的压力,防止堆内发 生偏离泡核沸腾,同时对一路系统实行超压保护。
核电设备培训讲义(3)

(4)承压设备的形位公差
①容器园筒节和锥形筒节
-椭圆度小于(D+1250)/200或D/100中的较小值 (D公称直径)
-直筒段的圆心偏差:当壁厚小于10mm时,不 应超过钢板厚度5%再加3mm
②容器封头的形位公差:最大与最小的内径之差 应小于(D+1250)/200或(D+300)/100 (取两 式中较小值)
②奥氏体不锈钢成形的注意点 -工具需清洗除油
-热成形应在低燃油炉、电炉或燃气炉内在中性 或氧化气氛中加热
-避免与碳钢接触 -在热弯前或弯后、热处理前应按规定洗涤除油 ③2级和3级热交换器管的弯管尺寸公差 -壁厚减薄不应大于直径最小壁厚10% -算弯值曲的部7分%椭圆度不超过(d最大-d最小)/dN×100计
17
③各有关专业按RCC要求编制的专用通用技术条 件。如安全壳钢衬里用6mm厚20HR钢板技术 条件,IE级电气设备抗震鉴定试验技术条件
④根据RCC-M编制的安装技术要求
18
3.不同标准的处理情况
(1)问题的由来: -多国采购 -部分外商只能执行ASME (2)解决办法:
- RCC-M与ASME作比较,主要区别在:材料,
BOP共有110个子项,其中PX子项包括海水循环 泵,海水蝶阀,鼓形滤网及水闸门等。
8
二.设备分级
1.设备分级目的
(1)保证执行安全功能的设备的可靠性。 安全功能包括: -反应堆紧急停堆和维持反应堆在安全停堆状态 -堆芯和安全壳厂房的冷却(中期和长期冷却) -放射性物质的封存和限制向环境的排放 (2)按分级规定不同的设计、制造和检验要求,
(2)法国规范标准 ① RCC系列 RCC-P、 RCC-M、 RCC-E、 RCC-G、 RCC-I、16
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核电站反应堆冷却剂系统讲义本讲义是针对一回路及相关辅助系统的学习。
所包含的内容主要分三个方面:一回路主回路系统(RCP),一回路辅助系统(RCV、REA 、RRA、PTR),核安全系统(RIS、EAS、ASG)等。
故我们的学习应该从这三方面入手分系统的掌握。
本教材在详细介绍OJT206所涉及的系统的基础上结合现场有关操作使大家对OJT206的知识有一个全面的了解。
第一章、反应堆冷却剂系统(RCP)反应堆冷却剂系统是核电站的重要关键系统。
它集中了核岛部分除堆本体外对安全运行至关紧要的主要设备。
反应堆冷却剂系统与压力壳一起组成一回路压力边界,成为防止放射性物质外泄的第二道安全屏障。
核电站通常把核反应堆、反应堆冷却剂系统及相关辅助系统合称为核蒸汽供应系统。
大亚湾压水堆电站一回路冷却剂系统由对称并联到压力壳进出口接管上的三条密封环路构成。
每条环路由一台冷却剂主泵、一台蒸汽发生器以及相应的管道、阀门组成。
整个一回路共用一台稳压器以及与其相当的卸压箱。
反应堆冷却剂系统的压力依靠稳压器的电加热元件和喷雾器自动调节保持稳定。
一、RCP系统的主要安全功能和要求RCP系统的主要功能是利用主泵驱使一回路冷却剂强迫循环流动,将堆芯核燃料裂变产生的热量带出堆外,通过蒸汽发生器传给二回路给水产生蒸汽,冷却剂在导出堆芯热量的过程中冷却堆芯,防止燃料元件棒烧毁。
压力壳内冷却剂还兼作堆芯核燃料裂变产生的快中子的慢化剂和堆芯外围的中子反射层。
冷却剂水中溶有硼酸,因此堆内含硼冷却剂又可作为中子吸收剂。
根据工况需要调节冷却剂中含硼浓度,可配合控制棒组件用以控制、补偿堆芯反应性的变化。
系统内的稳压器用于控制一回路冷却剂系统压力,以防止堆芯产生偏离泡核沸腾。
当一回路冷却剂系统压力过高时,稳压器安全阀则能实现超压保护。
当发生作为第一道安全屏障的燃料元件棒包壳破损、烧毁事故时,RCP系统的压力边界可作为防止放射性物质泄漏的第二道安全屏障。
为此,对RCP系统安全功能和设计的要求是:1.系统应提供足够的传递热量的能力,能将堆芯产生的热量带出并传给二回路介质。
2.在正常运行及预期瞬态工况下能对堆芯提供适当的冷却,并保证足够的烧毁余量,防止发生燃料包壳损伤。
在事故工况下,为保证反应堆具有冷源,系统的布置要能够使冷却剂淹没堆芯并形成充分的自然循环,以导出堆芯余热,避免燃料超过温度极限。
3.系统应做到冷却剂中含硼浓度均匀;能限制冷却剂温度变化的速率,以保证不出现由这些因素而引起的反应性变化失控。
4.RCP压力边界应能适应与运行瞬态工况相应的温度、压力,并留有余度。
5.任一冷却剂环路管道断裂,不会导致其他管道的损坏,并仍能确保堆芯的冷却。
6.主泵应能提供足够的流量以满足热量转移和堆芯冷却要求。
系统和主泵在事故状态下应具有足够的惯性流量;即使在一台主泵转子卡死时也不影响堆芯冷却。
7.蒸汽发生器是系统中唯一与二回路存在交界面的设备,因此要求蒸汽发生器的管子、管板的边界面尽可能避免将堆芯产生的放射性物质泄漏到二回路系统。
8.应能对系统进行泄漏检测。
对预料的泄漏,如压力壳密封、主泵及某些阀杆的密封,应通过引漏系统进行收集,防止一回路冷却剂释放到安全壳空间。
9.稳压器应能维持系统正常运行压力,在电站负荷变化和冷却剂温度、体积变化时,压力能被限制在规定的范围内。
在电站满功率下甩负荷而反应堆功率未能及时跟踪情况下,反应堆与汽轮机功率失配而引起系统压力上升时,稳压器超压保护应能及时动作。
安全阀的排放能力应能使压力波动限制在规定范围内。
10.全部RCP 系统压力边界设备应按照相应安全一级的规范要求,在设计、选材、加工组装、安装调试及运行中遵循最高的质量要求。
二、 RCP 系统说明主系统描述大亚湾核电站压水堆具有三条相同的传热环路。
每条环路设一台主泵、一台蒸汽发生器。
运行时,主泵强迫冷却剂在压力壳及环路内循环流动。
被堆芯加热的冷却剂从压力壳出口接管流出,进入蒸汽发生器,将热量传递给二回路介质,然后通过主泵将冷却剂由压力壳入口接管压入堆芯,如此重复循环。
位于压力壳出口和蒸汽发生器入口之间的管段称为环路热段,主泵与压力壳入口之间的管段为环路冷段。
蒸汽发生器与主泵间的管段为过渡段。
RCP 系统还包括一个稳压器及其与之相关的卸压箱和冷却剂压力控制、超压保护设备。
稳压器通过波动管接到1号环路的热段(图2—1)。
三、 RCP系统运行工况大亚湾核电站压水堆运行工况有冷停堆、中间停堆、热停堆、热备用和功率运行五种。
其中冷停堆又可分为换料冷停堆、维修冷停堆和正常冷停堆三种;中间停堆可分为单相中间停堆、两相中间停堆和正常中间停堆三种。
因此也可以认为其运行工况共有九种。
各种运行工况分类主要受反应堆临界状态、RCP系统运行方式、反应堆及一回路系统冷却剂温度、压力等条件制约。
运行工况1、换料冷停堆换料冷停堆是指反应堆更换核燃料操作时的停堆运行方式,部分一回路压力边界维修也可在此时进行。
此工况的反应堆处于次临界,停堆深度大于5000 pcm,冷却剂硼浓度不小于2100 ppm,所有控制棒插入堆芯。
压力壳顶盖打开,堆内上部构件移出。
一回路冷却剂压力为大气压,温度在10~60 ℃之间。
设置温度低限是为了避免冷却剂内硼酸结晶;高限是为了便于堆顶装卸料操作。
冷却剂温度控制及硼浓度均匀化由RRA系统进行(至少投入一台泵和一台热交换器),PTR系统作备用。
冷却剂化学和容积控制由RCV、REA及PTR 系统完成。
换料水池水位高于压力壳法兰面8.5 m,以保证换料过程有足够的生物屏蔽。
已采取防硼酸稀释隔离措施。
停堆状态中子通量高报警系统投入,其报警定值为停堆测量值的2~3倍。
2、维修冷停堆维修冷停堆是指允许对一回路部分设备进行维修的停堆运行方式。
此工况一回路打开(稳压器人孔打开作为标志),压力等于大气压。
冷却剂平均温度在10~70 ℃之间。
回路维修部分根据需要水被排空,但RCP系统水位不能低于保证RRA系统泵正常运行所要求的低限值。
在接近低水位限值状态时,冷却剂最高温度被限制在60 ℃。
其余要求条件与换料冷停堆工况相同。
3、正常冷停堆此工况要求反应堆处于次临界状态,停堆深度大于1000 pcm,除停堆棒组(S棒组)和温度棒组(R棒组)外,其余控制棒组插入堆芯5步处。
RCP系统封闭(稳压器人孔已盖封,但排气疏水系统(RPE)可投用),压力在30 bar(abs)以下。
冷却剂平均温度在10~90 ℃之间。
一回路压力低于5.5 bar(abs),则S、R棒组也需插入堆芯5步处,且要求冷却剂硼浓度大于2100 ppm。
这是因为压力低时,冷却剂对控制棒驱动机构的润滑不充分,有可能会发生卡棒;2100 ppm的硼浓度要求是为了保证有足够的停堆余度。
冷却剂平均温度大于70 ℃时必须有一台主泵运行,这是为了避免70 ℃以上启动第一台主泵可能会造成超压。
冷却剂温度控制及硼浓度均匀化由RRA系统进行,蒸汽发生器可投用。
系统压力由RCV系统控制,由RRA系统安全阀提供超压保护,一组稳压器安全阀作备用。
RCP系统充水、补水、净化由RCV、REA及RTR系统进行。
4、单相中间停堆单相中间停堆是指一回路充水排气后稳压器充满水(单相)的运行方式。
此工况要求RCP系统冷却剂温度控制在90~180 ℃之间,压力控制在24~30 bar(abs)之间,至少有一台主泵投运。
RCP系统由RCV和REA系统进行补水和净化。
其余要求条件与正常冷停堆工况相同。
5、两相中间停堆两相中间停堆是指RCP系统的稳压器由单相向两相过渡,RCP系统冷却剂压力由RCV 系统控制向RCP系统压力调节系统控制过渡的过渡运行方式(或者向反方向过渡)。
此工况反应堆处于次临界,停堆深度大于1000 pcm,除停堆棒组(S棒组)和温度棒组(R棒组)外,其余控制棒组插入堆芯5步处。
RCP系统压力在24~30 bar(abs)之间,冷却剂温度在120~180 ℃之间。
120 ℃为在稳压器中建立汽腔的最低温度。
当稳压器汽腔形成时,RCV 系统对冷却剂压力控制已变得困难,所以当较为稳定的稳压器汽腔形成后,应尽快转入由稳压器控制系统压力。
稳压器水位由水位调节系统控制。
至少有一台主泵投运,有二台蒸汽发生器可以投用。
RCV和REA系统正常运行,运行的RRA系统准备退出运行(或者相反,停运的RRA系统已准备好,即将投入运行)。
在此工况下,如果三台主泵均不能投运时,反应堆停堆深度必须大于3200pcm。
RCP系统冷却剂温度180 ℃是RRA系统运行的最高温度极限。
6、正常中间停堆当RRA系统与RCP系统完成隔离后,反应堆就由两相中间停堆进入到正常中间停堆运行方式。
此工况反应堆处于次临界,停堆深度大于1000 pcm,控制棒位置状态同上。
RCP 系统压力由稳压器控制在24~155 bar(abs)之间,冷却剂温度在160~291.4 ℃之间。
稳压器水位维持在零负荷整定值上。
冷却剂温度至少由2台蒸汽发生器控制,至少2台主泵投运。
RCV、REA系统和S.G GCT系统及ARE或ASG在运行中。
应急安全设施已准备好。
7、热停堆此工况反应堆处于次临界,要求停堆深度在1000~1770 pcm之间(相对应于冷却剂硼浓度690~0 ppm,大于690 ppm时,停堆深度在1000pcm),除S棒组外,其余控制棒组插入堆芯5步处。
RCP系统压力由稳压器控制在155 bar(abs)。
冷却剂温度在~291.4 ℃,由蒸汽发生器GCT系统控制(排向大气或冷凝器)。
稳压器水位维持在零负荷整定值上。
至少有二台主泵二台蒸汽发生器运行,其中一组为1号环路。
蒸汽发生器给水由ASG或ARE系统供给。
RCP系统化容控制由RCV和REA系统进行。
在此工况下如果三台主泵均不能投运或仅一台主泵运行超过24小时,则要求反应堆停堆深度大于3200 pcm或者使反应堆转入冷停堆运行方式。
8、热备用此工况反应堆处于临界状态,堆功率≤2 %额定功率(主要受ASG供水限制)。
S棒组位于堆顶,R棒组件位于调节带,G棒组处于整定棒位上。
三个环路的主泵和蒸汽发生器均投入运行。
其余运行条件要求同热停堆运行方式。
反应堆在计划降负荷后或在换料后的物理试验期间,均要经过热备用状态。
9、功率运行此工况反应堆处于临界状态,堆功率在2 %~100 %额定功率之间,控制棒位置同上(其中堆功率在2 %~15 %额定功率之间也可称为低功率运行工况)。
此时RCP系统冷段温度、热段温度、平均温度及蒸汽温度与负荷之间的关系如图2—33。
稳压器维持RCP系统压力155 bar(abs),稳压器水位在20.4 %~64.3 %(相应饱和温度291.4~310 ℃)之间变化。
此时主给水系统(ARE)和主蒸汽系统(VVP)正常运行,蒸汽旁路系统(GCT)处于备用。