棱柱、棱锥、棱台

合集下载

棱柱棱台棱锥知识点总结

棱柱棱台棱锥知识点总结

棱柱棱台棱锥知识点总结一、棱柱的定义和性质1. 棱柱的定义:棱柱是一个多边形和一个平行于它的平面所围成的几何图形。

2. 棱柱的特征:(1)棱柱的底面是一个多边形,顶面与底面平行,并且顶面的每个点和底面的对应点之间的连线都垂直于底面。

(2)如果底面是正多边形,棱柱就称为正棱柱;如果底面是不规则多边形,棱柱就称为斜棱柱。

(3)棱柱的高等于顶面到底面的距离,底面的面积乘以高就是棱柱的体积。

二、棱台的定义和性质1. 棱台的定义:棱台是由平行多边形和连通它们的矩形棱所围成的空间图形。

2. 棱台的特征:(1)如果底面和顶面都是正多边形,且它们的对边平行,那么这个棱台称为正棱台;如果底面和顶面是正多边形,但它们不一定平行,那么这个棱台称为斜棱台。

(2)棱台的体积等于底面积与高的乘积,而斜棱台的体积还需要乘以一个高与底面中较大边的比值。

三、棱锥的定义和性质1. 棱锥的定义:棱锥是由一个多边形和以它为底的三棱锥棱所围成的几何图形。

2. 棱锥的特征:(1)如果底面是正多边形,棱锥称为正棱锥;如果底面不是正多边形,那么棱锥就称为斜棱锥。

(2)棱锥的体积等于底面积与高的乘积,并除以3。

(3)棱锥的侧棱的延长线与底面平面的交点称为顶点。

四、棱柱、棱台、棱锥的计算公式1. 棱柱的体积公式:V=Sh,其中V表示棱柱的体积,S表示底面的面积,h表示高。

2. 棱台的体积公式:V=(S1+S2+√S1S2)h/3,其中V表示棱台的体积,S1和S2表示底面和顶面的面积,h表示高。

3. 棱锥的体积公式:V=Sh/3,其中V表示棱锥的体积,S表示底面的面积,h表示高。

以上就是关于棱柱、棱台、棱锥的知识点总结,希望对你有所帮助。

如果还有其他问题,欢迎继续提问。

课件6:8.1 第1课时 棱柱、棱锥、棱台

课件6:8.1 第1课时 棱柱、棱锥、棱台

解析:A 选项不符合棱柱的特点;B 选项中,如图①所示,构造四 棱柱 ABCD-A1B1C1D1,令四边形 ABCD 是梯形,可知平面 ABB1A1 ∥平面 DCC1D1,但这两个面不能作为棱柱的底面;C 选项中,如 图②所示,底面 ABCD 可以是平行四边形;D 选项是棱柱的特点.


答案:D
方法规律
用一个 平行 于棱锥 棱台 底底部面面分的叫与平做截面棱面去台之截间棱的锥,上可台面记AB的作CD棱:-台棱
A'B'C'D'
续表
相关概念 上底面:截面. 下底面:原棱锥的底 面. 侧面:其余各面. 侧棱:相邻侧面的公 共边. 顶点:侧面与上(下) 底面的公共顶点
[基础测试] 2.判断.(正确的画“√”,错误的画“×”) (1)棱柱的侧面都是平行四边形. ( ) (2)有一个面是多边形,其余各面都是三角形的几何体叫 棱锥. ( ) (3)用一个平面去截棱锥,底面和截面之间的部分叫做 棱台.( )
棱柱结构特征问题的解题策略
(1)有关棱柱概念辨析问题应紧扣棱柱的定义:
①两个面互相平行;
②其余各面都是四边形;
③相邻两个四边形的公共边互相平行.
求解时,首先看是否有两个面平行,再看是否满足其他特征.
(2)多注意观察一些实物模型和图片,便于举反例.
【跟踪训练】 1.下列说法错误的是 ( ) A.多面体至少有四个面 B.棱柱的两个底面是全等的多边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 解析:三棱柱的底面是三角形,其侧面一定是平行四边形,故 D 错误. 答案:D
【跟踪训练】 3.下列四个平面图形中,每个小四边形都是正方形,其中可以沿 相邻正方形的公共边折叠围成一个正方体的是( )

高二数学棱柱、棱锥和棱台知识精讲

高二数学棱柱、棱锥和棱台知识精讲

高二数学棱柱、棱锥和棱台【本讲主要内容】棱柱、棱锥和棱台棱柱的概念及性质、棱锥的概念及性质和棱台的概念及性质【知识掌握】 【知识点精析】1. 棱柱的有关概念和性质。

(1)棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

(2)棱柱的几个概念。

这里,两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面;两个面的公共边叫做棱柱的棱,其中两个侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点,不在同一个面内的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。

(3)棱柱的表示方法:棱柱用表示底面各顶点的字母来表示,如三棱柱ABC A B C -111(4)棱柱的分类。

棱柱按底面边数可以分为三棱柱、四棱柱、五棱柱…… 按侧面与地面是否垂直,棱柱又可以分为直棱柱和斜棱柱。

底面是正多边形的直棱柱叫做正棱柱。

正棱柱是特殊的直棱柱。

(5)棱柱的性质: ①侧棱都相等;②侧面都是平行四边形;③两个底面与平行于底面的截面是全等的多边形;④过不相邻的两条侧棱的截面是平行四边形。

平行六面体:底面是平行四边形的四棱柱; 直平行六面体:侧棱与底面垂直的平行六面体; 长方体:底面是矩形的直平行六面体; 正方体:棱长都相等的长方体叫做正方体。

四棱柱与特殊的平行六面体有如下关系:{正方体}⊂{正四棱柱}⊂{长方体}⊂{直平行六面体}⊂{平行六面体}⊂{四棱柱} 长方体的性质:长方体的一条对角线的长的平方等于一个顶点上三条棱长的平方和。

2. 棱锥的有关概念。

(1)棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

(2)棱锥的几个概念。

这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。

(3)棱锥的表示方法:棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示,如棱锥S -ABCDE ,或者棱锥S -AC 。

棱柱、棱锥和棱台

棱柱、棱锥和棱台

棱柱、棱锥和棱台知识点一 棱柱思考以下几何体是有什么共同特点,是怎样形成的?(1) (2) (3) (4)1、概念:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱.2、元素:底面:平移起止位置的两个面叫做棱柱的底面.侧面:多边形的边平移所形成的面叫做棱柱的侧面.侧棱:相邻两侧面的公共边叫做棱柱的侧棱.3、性质:(1)两个底面是全等的多边形,且对应边互相平行 (2)侧面都是平行四边形.(3)所有侧棱平行且相等。

不具以上条件的多面体便不是棱柱,如图:4、表示:图(1)三棱柱'''C B A ABC -;图(4)六棱柱''''''F E D C B A ABCDEF -5、分类:(1)按底面的边数分:底面是三角形、四边形、五边形……的棱柱称为三棱柱、四棱柱、五棱柱……。

即底面是几边形就为几棱柱.(2)按侧面是否与底面垂直分:不垂直的叫做斜棱柱,垂直的叫做直棱柱。

底面是正多边形的直棱柱叫做正棱柱。

例如正方体就是正四棱柱。

(3)特殊棱柱侧棱与底面不垂直的棱柱叫做 ,侧棱与底面垂直的棱柱叫做 。

底面是正多边形的直棱柱叫做 。

底面是平行四边形的棱柱叫做 ,侧棱与底面垂直的平行六面体叫做 底面是矩形的直平行六面体是 ,棱长都相等的长方体是 。

例1、下列命题中不正确的是( B )A .直棱柱的侧棱就是直棱柱的高B .有一个侧面是矩形的棱柱是直棱柱C .直棱柱的侧面是矩形D .有一条侧棱垂直于底面的棱柱是直棱柱例2、设有三个命题(1)底面是平行四边形的四棱柱是平行六面体(2)底面是矩形的平行六面体是长方体 (3)直四棱柱是直平行六面体 以上命题中正确的有 (1)例3、长方体交与同一顶点的三条棱长分别为3,4,5,求长方体的对角线的长。

例4、在棱柱中( )A 只有两个面平行B 所有的棱都相等C 所有的面都是平行四边行D 两底面平行,且各侧棱也平行例5、判断下列说法是否正确(1)棱柱的各个侧面都是平行四边形。

【课件】棱柱、棱锥、棱台的结构特征

【课件】棱柱、棱锥、棱台的结构特征

棱柱的表示:
用表示底面各顶点的字母表示 棱柱ABC- A'B'C'
C'
A'
B'
D' A'
C' B'
D'
E'
C'
A' B'
A
C
D
BA
C B
三棱柱
四棱柱
E DC
A五棱柱B
棱柱的结构特征
思考:对于棱柱,
1.侧棱长相等吗? 相等
侧面是什么四边形?
平行四边形
E' F'
A'
D' C'
B'
2.两个底面多边形是什么关系? E D
C’ B’
有两个面互相平行,
其余各面都是四边形,

并且每相邻两个四边形

的公共边都互相平行。
ED
侧棱 F
C
A
B
侧面
顶点
棱柱的结构特征
1.棱柱的概念:
棱柱的底面:两个互相平行的面. 底面
简称底.
E' D'
F'
C'
棱柱的侧面:其余各面.
A'
B' 侧
棱柱的侧棱:


棱 ED
相邻侧面的公共边. F
棱柱的顶点:
【解析】面最少的棱柱是三棱柱,它有 5 个面;顶点最少的一个棱台 是三棱台,它有 3 条侧棱.
5.画一个三棱台,再把它分成: (1)一个三棱柱和另一个多面体; (2)三个三棱锥,并用字母表示.
【解析】画三棱台一定要利用三棱锥. (1)如图①所示,三棱柱是棱柱 A′B′C′-AB″C″,另一个多

空间图形(棱柱,棱锥,棱台)

空间图形(棱柱,棱锥,棱台)

三. 正棱柱、正棱锥、正棱台
侧棱垂直于底面的棱柱叫做直棱柱.直棱柱的 特征为侧面是矩形,侧棱等于高.
直棱柱
如果直棱柱的底 面是矩形,就是 长方体
如果长方体的 所有棱的长都 相等,就是正 方体
正棱柱: 底面是正多边形的直棱柱
正棱锥: 底面是正多边形且顶点到底面的垂 足是底面的中心的棱锥
正棱台: 由正棱锥截得的棱台
S下
S上S下
l
(适用于一般棱锥)
斜高l
l : 斜高 h : 高 p : 底面周长
直棱柱、正棱锥和正棱台的面积和体积公式
名称
直棱柱
正棱锥
正棱台
侧面积
S侧 =lp
全面积 S全= lp+2 S底
V= S底h
体积
(适用于一般 棱
柱)
S侧 =12 lp
S侧
1
=2
l(
p上+p下
)
S全
=
1 2
lp+S底
1
V= 3 S底 h
一. 一般棱柱,棱锥,棱台的定义
图1
图2
图3
棱柱:由一个平面多边形平移形成的空间几何体叫 做棱柱
棱锥:当棱柱的上面收缩为一点时,可得到棱锥; 棱台:用一个平行于底面的平面去截棱锥,底面和 平行截面间的部分叫做棱台.
二. 棱柱、棱锥和棱台的基本性质
名 称
棱柱
棱锥
棱台
上底面

侧棱
顶点
侧棱
上底面
侧棱

解:上底面积S上=64,下底面积S下=144,
V=
1 3
h
(
S上
S下
S上S下
)=1 (6 64+144+ 3

棱柱、棱锥、棱台

棱柱、棱锥、棱台
E
A O
B
顶点 侧棱 侧面
D C
S
A
B
D
C
思考:仿照棱柱,说出棱锥的分类
棱锥的分类:
按底面多边形的边数,可以分为三棱锥、四棱
锥、五棱锥、……
棱锥的表示方法:
图中的四棱锥可用棱锥S-ABCD表示
棱锥的性质:底面是多边形,侧面是有一个 公共点的三角形.
思考:有一个面是多边形其余各面是 三角形,这个多面体是棱锥吗?
平行四边形 平行且相等
⑤平行于底面的截面与底面的关系? 全等
⑥过不相邻的两侧棱的截面是什么 平行四边形 图形?
6.棱柱的性质
1. 两个底面及平行于底面的截面是全等的多边 形,且对应边互相平行; 2. 侧棱都相等,侧面是平行四边形; 3. 过不相邻的两条侧棱的截面是平行四边形。
只要有两个面平行,其余各 面都是平行四边形的几何体是 不是棱柱?
问题:指出该几何体的底面和侧面;所有棱柱、 棱锥、棱台的底面是唯一确定的吗?
例 4.如图,长方体 ABCD-A1B1C1D1 的长、宽、 高分别是 5cm、4cm、3cm,一只蚂蚁从 A 到 C1 点, 沿着表面爬行的最短距离是多少?
变式训练:四面体 P-ABC 中,PA=PB=PC=2,
APB= BPC= APC=30°,一只蚂蚁从 A
缩为一点 多边形(没变)
三角形 交于一点
棱锥的定义:当棱柱的一个底面收缩为一 个点时,得到的几何体叫棱锥。
埃及卡夫拉王金字塔
墨西哥太阳金字塔
与棱柱相仿,棱锥中常用名称的含义
S
侧面:有公共顶点的各三角形面 底面(底):余下的那个多边形 侧棱:两个相邻侧面的公共边 顶点:所有侧面的公共顶点 底面多边形的顶点:如图中A B C

棱柱、棱锥、棱台的结构特征.

棱柱、棱锥、棱台的结构特征.

(2)相关概念:
①面:围成多面体的各个_多__边__形__; 顶点
②棱:相邻两个面的_公__共__边__;

③顶点:_棱__与__棱__的公共点.

(3)多面体的分类:按围成多面体
的_面__的个数分为四面体、五面体、六面体等.
2.旋转体
(1)定义:由一个平面图形绕它所在
平面内的一条_定__直__线__旋转所形成的
锥 _顶__点__的三角
棱:相邻侧 面是三角
形,由这些面
面的_公__共__边__. 形)、四
所围成的多 面体叫做棱 锥
如图,棱锥可记 顶点:各侧 棱锥(底
作:棱锥_S_-_A_B_C_D_ 面的_公__共__顶__ 面是四边
_点__
形)……
类别 定义
图形
相关概念
分类
用一个
上底面:原 依据:由
平行于 棱锥底
_余__各__面__. 举例:
侧棱:相 _三__棱__柱__
柱 四边形的公
顶点
邻侧面的 (底面是
共边都互相 _平__行__,由这 些面所围成 的多面体叫
如图,棱柱可记作: 棱柱_A_B_C_D_E_F_-_
__A_′__B_′__C_′__D_′__E_′__F_′_
_公__共__边__. 顶点:_侧__ _面__与底面 的公共顶
(1)一个棱锥至少有
个面;一个N棱锥分别有_____个
底面,
个侧面,
条侧棱,
个顶点.
答案:4 1 N N 1
(2)用一个平行于棱锥底面的平面去截棱锥,截面与底面的关
系如何?
提示:它们是相似的多边形.
(3)棱锥所有的面可以都是三角形吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

棱锥
梯形
棱台
数学运用
练一练:以三角形ABC为底面画一个三棱柱.
C
A B
C C
A B
C
A
A
B
B
棱柱、棱锥、棱台都是由一些平面多边形围成的几何体.
由若干个平面多边形围成的几何体叫做多面体(polyhedron).
食盐晶体
明矾晶体
石膏晶体
思考:多面体至少有几个面?这个多面体是怎样的几何体? 四 棱锥
侧面
侧面
侧棱
相邻两侧面 的公共边
侧棱 相邻两侧面 的公共边 能否类比棱柱的表示法与分类给出棱锥的表示法与分类?
思考题:
3.棱锥的性质
观察下列棱锥,归纳它们的底面和侧面各有什么特征? 在同一个棱锥中的各个侧面三角形有什么特征?
棱锥的性质:
①底面是多边形(如三角形、四边形、五边形等) ②侧面是三角形 有一个公共顶点的
1.棱台的定义
观察下图,如何将棱锥变换成下方的几何体?
棱锥被平行于底面的一个平面所截后,截面和底面之间 的部分叫做棱台(truncated pyramid).
2.棱台的元素
上底面 底面 侧面 侧棱 下底面 底面
学生活动
概念辨析:下图中的几何体是不是棱台?为什么?
几何体
侧棱
图形
底面
两个底面是全等 的多边形且对应 边互相平行
D
C
B
③画下底面——顺次连结这些线段的 另一个端点
A
注意:被挡住的线要画成虚线.
数学运用
(2)画一个三棱台
S
A B
A B
①画一个三棱锥
C C
②在侧棱上任取一点,从这点开始, 顺次在各个侧面内画出与底面 对应边平行的线段
③将多余的线段擦去
回顾反思
线段 平行四边形
平面多边形 棱柱
三角形
①底面 ②侧面
平移起止位置的两个面叫做棱柱的底面(base). 多边形的边平移所形成的面叫做棱柱的侧面(lateral face).
③侧棱
相邻两侧面的公共边叫做棱柱的侧棱.
3.棱柱的表示
A B
C
F
E
Hale Waihona Puke ADBFC
E D
A B
C
A
B
C
棱柱 ABC ABC
棱柱 ABCDEF ABC DE F
侧面都是平行四边形.
埃及卡夫拉王金字塔
墨西哥太阳金字塔
1.棱锥的定义
观察下图,如何将棱柱变换成下方的几何体?
当棱柱的一个底面收缩为一个点时,得到的几何体 叫做棱锥(pyramid).
2.棱锥的元素
A B
类比棱柱,给棱锥各元素命名 顶点
C
S
由棱柱的一个 底面收缩而成 底面
底面
A
C
B
A B
C
(1)
(2)
(3)
(4)
(5)
这些几何体可以分成几类? 每一类各有哪些图形?
(6) (12)
(11)
(10)
(9)
(8)
(7)
三棱镜
魔方
1.棱柱的定义
这些几何体是否可以看作由什么图形平移运动得到?
一般地,由一个平面多边形沿某一方向平移 形成的空间几何体叫做棱柱(prism).
2.棱柱的元素
底面 侧面 侧棱
侧面
平行四边形
侧棱
互相平行 且相等
棱柱
侧面 底面 侧棱
棱锥
侧面 底面
一底面是多边形, 有一个公共顶 交于一点 另一底面缩为一点 点的三角形
棱台
上底面 侧棱 侧面 下底面
两个底面是相似 的多边形且对应 边互相平行
梯形
数学运用
动动手(1)画一个四棱柱
D A B
C
①画上底面——画一个四边形
②画侧棱——从四边形的每一个顶点 画平行且相等的线段
4.棱柱的分类
它们的底面 分别是什么平面图形? 三棱柱 三角形 四边形 四棱柱 五棱柱 五边形 六棱柱 六边形
分类标准:底面多边形的边数
5.棱柱的性质
观察下列几何体,回答
①两个底面多边形间的关系? ②上下底面对应边间的关系? ③侧面是什么平面图形? ④侧棱之间的关系?
全等 平行
平行四边形
平行
棱柱的性质: 两个底面是全等的多边形, 对应边互相平行,
课堂练习
1.判断:有一个面是多边形,其余各面都是三角形的几何 体是棱锥. ( × )
2.如图,四棱柱的六个面都是平行四边形,这个四棱柱可以 由哪个平面图形按怎样的方向平移得到? 3.将下列几何体按结构特征分类填空 ①集装箱 ②魔方 ③金字塔 ④三棱镜 ⑤一个四棱锥形的建筑物被台风刮走了一个顶, 剩下的上底面与地面平行 (1)棱柱结构特征的有: (2)棱锥结构特征的有: (3)棱台结构特征的有: ① ③ ⑤ ② ④
回顾小结 •

(1)棱柱、棱锥、棱台的定义和性质
(2)运动变化、类比联想的观点

(3)将空间问题转化成平面问题的转
化思想
课外作业
请同学们课后找一找生活中具有棱柱、 棱锥和棱台几何结构特征的实物.
相关文档
最新文档