离散数学课件1.1
离散数学第一章命题逻辑PPT课件

P
Q
0
0
0
1
1
0
1
1
P→Q 1 1 0 1
如: P:雪是黑的。
Q:太阳从东方升起 。
P → Q:如果雪是黑的,则太阳从东方升起 。
命题P→Q是假, 当且仅当P是真而Q是假。
11/20/2020
chapter1
14
1.2 联结词
条件与汉语中“如果…,就…”相类似,但有所区别: (1)自然语言中,“如果P则Q”,往往P和Q有一定的因果 关系,而条件复合命题P→Q中 P和Q 可以完全不相关。 (2)自然语言中,“如果P则Q”,当P为0、Q为1时,整个 句子真值难以确定;而条件复合命题P→Q中,当P为0时, 复合命题的真值为1。 P则Q的逻辑含义:P是Q的充分条件,的表示 命题变元——常用P、Q、R、S等大写字母或加下标的大 写字母P1, Q2, R10, ……表示来表示一个命题,称为命题 变元。 如: P:巴黎在法国。
Q:煤是白色的。
11/20/2020
chapter1
4
1.1 命题及其表示法
3、命题相关概念 简单命题(原子命题)——不能再分解的命题。 复合命题——由若干个简单命题复合而成的命题。 真值表——把组成复合命题的各命题变元的真值的所有 组合及其相对应的复合命题的真值列成表,称为真值表。
11/20/2020
chapter1
6
1.1 命题及其表示法
【例3 】求公式 (P→R)∨(Q→R)的真值表。 解:∵公式含有3个命题变元P、Q、R,
∴真值表有23=8行。其真值表如下表 所示:
11/20/2020
chapter1
7
1.2 联结词
命题和原子命题常可通过一些联结词构成新命题, 这
1.1-集合的基本概念(离散数学)

幂集的性质
1.
为有穷集, 若A为有穷集,|A|=n,则 为有穷集 , |2A | = Cn0 + Cn1 + … + Cnn =2n 。 x∈ρ 当且仅当 A。 ∈ρ(A)当且仅当 ∈ρ 当且仅当x 。 是两个集合, 当且仅当 设 A、 B是两个集合 , AB当且仅当 、 是两个集合 ρ(B); ρ(A)ρ ; ρ
多样性
集合中的元素可以是任意的对象, 集合中的元素可以是任意的对象,相 互独立, 互独立,不要求一定要具备明显的共 同特征。 同特征。 例如: 例如: A={a,{a},{{a},b},{{a}}, 1} A={1,a,*,-3,{a,b},{x|x是汽车 地球 是汽车},地球 是汽车 地球}
罗素悖论(Russell’ paradox) 罗素悖论(Russell’s paradox)
集合的表示法
列举法;将集合中的元素一一列举, 列举法;将集合中的元素一一列举, 或列出足够多的元素以反映集合中元 素的特征,例如: 素的特征,例如:V={a,e,i,o,u} 或 B={1,4,9,16,25,36……}。 。 描述法 ;通过描述集合中元素的共同 特征来表示集合,例如: 特征来表示集合,例如: V= {x|x是元 是元 音字母} 是自然数} 音字母 ,B= {x|x=a2 , a是自然数 是自然数
空集、 空集、全集
约定,存在一个没有任何元素的集合, 约定,存在一个没有任何元素的集合, 称为空集(empty set) ,记为φ,有时也用{} ) 记为φ 有时也用{} 来表示。 来表示。 约定, 约定,所讨论的对象的全体称为全集 (universal set),记作 或U,我们所讨论 ,记作E或 , 的集合都是全集的子集 全集是相对的。 的集合都是全集的子集 。全集是相对的。 全集
离散数学教程PPT课件

例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
【精品】离散数学(集合、关系、函数、集合的基数)PPT课件

第1章 集合
1.3 集合的运算
1.3.2 集合的交运算
定理1.3
设A,B,C是三个集合,则下列分配律成立: A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C)
定理1.4 设A,B为两个集合,则下列关系式成立: A∪(A∩B)=A A∩(A∪B)=A
这个定理称为吸收律,读者可以用文氏图验证。
A=B,C=D
第1章 集合
1.2 集合之间的关系
定理1.1 集合A和集合B相等的充分必要条件是A⊆B且B⊇A。 定义1.3 如果集合A是集合B的子集,但A和B不相等,也就 是说在B中至少有一个元素不属于A,则称A是B的真子集,记作
A⊂B 或 B⊃A 例如:集合A={1,2},B={1,2,3},那么A是B的真子集
A∩B={1,3,5}
第1章 集合
1.3 集合的运算
1.3.2 集合的交运算 集合的交运算的文氏图表示,见图3.2,其中阴影部分就是A∩B。
U
A
B
第1章 集合
1.3 集合的运算
1.3.2 集合的交运算 由集合交运算的定义可知,交运算有以下性质: (1)幂等律:A∩A=A (2)同一律:A∩U=A (3)零律:A∩= (4)结合律:(A∩B)∩C=A∩(B∩C) (5)交换律:A∩的运算
1.3.2 集合的交运算 定义1.7 任意两个集合A、B的交记作A∩B,它也是一个集合, 由所有既属于A又属于B的元素构成,即
A∩B ={x | x属于A且x属于B} 例如,A={a,b,c},B={b,c,d,e},则
A∩B={b,c} 又如,A={1,2,3,4,5},B={1,3,5,7,9},则
定义1.4 若集合U包含我们所讨论的每一个集合,则称U是所讨论 问题的完全集,简称全集。
离散数学第一章

离散数学第一章1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。
1.1.2 命题的表示命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。
A1:我是一名大学生.[10]:我是一名大学生。
R:我是一名大学生。
1.2命题联结词1.2.1 否定联结词﹁PP P0 11 01.2.2 合取联结词∧P∧P Q Q0 0 00 1 01 0 01 1 11.2.3 析取联结词∨P∨P Q Q0 0 00 1 11 0 11 1 11.2.4 条件联结词→P Q Q0 0 10 1 11 0 01 1 11.2.5 双条件联结词?P?P Q Q0 0 10 1 01 0 01 1 11.2.6 与非联结词↑P↑P Q Q0 0 10 1 11 0 11 1 0性质:(1)P↑P?﹁(P∧P)?﹁P;(2)(P↑Q)↑(P↑Q)?﹁(P↑Q)? P∧Q;(3)(P↑P)↑(Q↑Q)?﹁P↑﹁Q? P∨Q。
1.2.7 或非联结词↓P↓P Q Q0 0 10 1 01 0 0性质:(1)P↓P?﹁(P∨Q)?﹁P;(2)(P↓Q)↓(P↓Q)?﹁(P↓Q)?P∨Q;(3)(P↓P)↓(Q↓Q)?﹁P↓﹁Q?﹁(﹁P∨﹁Q)?P∧Q。
1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、P?Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。
例如,下面的符号串都是公式:((((﹁P)∧Q)→R)∨S)((P→﹁Q)?(﹁R∧S))(﹁P∨Q)∧R以下符号串都不是公式:((P∨Q)?(∧Q))(∧Q)1.3.2 命题的翻译可以把自然语言中的有些语句,转变成数理逻辑中的符号形式,称为命题的翻译。
离散数学1.1-1.4

第1章命题逻辑数理逻辑是用数学方法来研究推理的形式结构和推理规律的数学学科。
这里所指的数学方法就是引进一套符号体系的方法。
所以数理逻辑又称符号逻辑,它是从量的侧面来研究思维规律的。
计算机及计算机科学与数理逻辑有着十分密切的关系。
人们说数字电子计算机是数理逻辑与电子学结合的产物,这话不假。
现代数理逻辑可分为逻辑演算、证明论、公理集合论、递归论和模型论。
本课程介绍的是数理逻辑最基本的内容,也是与计算机科学关系最为密切的:命题逻辑和谓词逻辑(一阶逻辑)1.1 命题符号化及联结词1.1.1 命题及其表示法命题:能判断真假的陈述句。
真值:一个命题总具有一个“值”,即“真”(用T或1表示)或“假”(用F或0表示),称为真值。
一切没有判断内容的句子,无所谓是非的句子,如感叹句、疑问句、祈使句等都不是命题。
例1:(1)2是素数(2)雪是黑色的(3)2+3=5(4)明年十月一日是晴天。
(5)这朵花多好看呀!(6)明天下午有会吗?(7)请关上门!(8)x+y>5(9)地球外的星球上也有人。
(10)我学英语,或者我学日语。
判断的关键:1.是否是陈述句;2.真值是否是唯一的。
简单命题(原子命题):不能分解为更简单的陈述句。
复合命题:由联结词、标点符号把几个原子命题联结起来的命题。
表示法:一个符号表示的是命题常项还是命题变项由上下文决定。
1.1.2 联结词(也称真值联结词或逻辑联结词或逻辑运算符)p,q为两个命题否定非p(p的否定) ⌝p p为假 1合取p并且q(p和q)p∧q∧p与q同时为真 2 既…又…,不仅…而析取P或q p∨q∨p与q至少一个为真 3 相容或蕴涵如果p则q p→q→⌝(P为真且q为假) 4 只要p就q,p仅当等价P当且仅当q p↔q↔p,q真值相同 5将复合命题符号化的步骤是1)分析出简单命题,符号化2)用联结词联结简单命题例2:将下列各命题符号化(1)3不是偶数(2)李平即聪明又用功(3)李平虽然聪明,但不用功(4)李平不但聪明,而且用功(5)李平不是不聪明,而是不用功(6)李文与李武是兄弟(7)王燕学过法语或英语(8)派小王和小李中的一人去开会(9)只要不下雨,我就骑自行车上班(除非下雨,否则我就骑自行车上班)(10)只有不下雨,我才骑自行车上班(如果下雨,我是不骑自行车上班)(11)若2+2=4,则太阳从东方升起(12)若2+2≠4,则太阳从东方升起(13)若2+2=4,则太阳从西方升起(14)若2+2≠4,则太阳从西方升起(15)燕子飞回南方,春天来了。
离散数学讲解第一章

2018/12/20 21
集合族: 由集合构成的集合.
{{6}, {1,5} , {2,4}, {1,2,3}} 幂集都是集族.
2018/12/20
22
指标集(index set): 设A是集合族, 若 A = { Ai | iK }, 则K称为A的指标集.
全集是相对的, 视情况而定, 因此不唯一.
2018/12/20
24
1.4集合之间的运算
1. 并集: 设有集合A、B,属于A或属于B的所有元素 组成的集合,称为A与B的并集,记作AB AB = { u | uA 或 uB}
AB
2018/12/20
25
2. 交集:设有集合A、B,属于A同时又属于B的所有 元素组成的集合,称为A与B的交集,记作A B AB = { u | u A 且 u B }
2018/12/20 15
对任意集合A, A 证明: 反证法(设结论不成立,推出矛盾)
假设空集不是集合A的子集,即 A 根据定义1-2,存在x , x A, 这与空集的定义矛盾 假设不成立,应有A,原结论成立。
2018/12/20
16
定理: 空集是唯一的.
证明: 设1与2都是空集, 则 12 且 21 1=2 .
2018/12/20
5
2. 集合的表示
列举法:
列出集合中的全体元素,元素之间用逗号分 开,然后用花括号括起来,例如: A={a,b,c,d,…,x,y,z} B={0,1,2,3,4,5,6,7,8,9} C={2,4,6,…}
2018/12/20
6
描述法
给定一个条件P(x) ,当且仅当a使条件P(a)成立 时,a∈A。
离散数学课件ppt课件

例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Disjunction (OR)
• p: I am going to town. • q: It is raining. • p q: I am going to town or it is raining. • Inclusive or - only one proposition needs to be true for the disjunction to be true.
College of Computer Science and Technology Zhejiang University
Truth table for conjunction
• p q pq
• • • •
T T F F
T F T F
T F F F
College of Computer Science and Technology Zhejiang University
pq qp
– If I am going to town, it is raining.
College of Computer Science and Technology Zhejiang University
Contrapositive of an Implication
• Implication: pq • Contrapositive: q p • Implication:
College of Computer Science and Technology Zhejiang University
Converse of an Implication
• Implication: • Converse: • Implication: • Converse:
– If it is raining, then I am going to town.
p q r means (p q) r, not p (q r) p q r means (p q) r
College of Computer Science and Technology Zhejiang University
Translating English sentence to logical expressions
College of Computer Science and Technology Zhejiang University
Truth table for disjunction
• • • • • • p q pq __________ T T T T F T F T T F F F
College of Computer Science and Technology Zhejiang University
Logic
Section 1.1
College of Computer Science and Technology Zhejiang University
Logic
• Logic is the study of reasoning. It is concerned with whether reasoning is correct. • Logical methods are used in mathematics to prove theorems and in computer science to prove that programs do what they are alleged to do. • The goal of logic is to teach the students how to understand and how to construct correct mathematical arguments. (many applications)
College of Computer Science and Technology Zhejiang University
Biconditional
• “if and only if”, “iff” • pq • I am going to town if and only if it is raining. • Both p and q must have the same truth value for the assertion to be true.
College of Computer Science and Technology Zhejiang University
Logical operators (connectives)
1. Negation (NOT) • p: I am going to town. • ~p: I am not going to town. • Truth table: p ~p T F F T
College of Computer Science and Technology Zhejiang University
2. Conjunction (AND)
• p: I am going to town. • q: It is raining. • p q: I am going to town and it is going to rain. • Both p and q must be true for the conjunction to be true.
Implication - If .. then
• p: I am going to town. • q: It is raining. • p q: If I am going to town, then it is raining. • The implication is false only when p is true and q is false!
Exclusive OR
• p: I am going to town. • q: It is raining. • p q: Either I am going to town or it is raining. • Only one of p and q are true. (not both)
Inverse of an Implication
• Implication: p q • Inverse: p q • Implication:
– If I am going to town, it is raining.
• Inverse:
– If I am not going to town, then it is not raining.
College of Computer Science and Technology Zhejiang University
Propositions
• Statement that is true or false. • We determine the truth value of a proposition. • The moon is made of green cheese. • Go to town. • What time is it? • x + 1 = 2.
q: You will pass the final exam
College of Computer Science and Technology Zhejiang University
Implication - Equivalent Forms
• • • • • • • • If p, then q p implies q If p, q q if p q whenever p p is a sufficient condition for q q is a necessary condition for p p only if q
College of Computer Science and Technology Zhejiang University
Truth table for Exclusive
• • • • • • p q pq __________ T T F T F T F T T F F F
College of Computer Science and Technology Zhejiang UniverT F T F
College of Computer Science and Technology Zhejiang University
Precedence of Logical Operators
• Parentheses gets the highest precedence • Then • Example:
– If I am going to town, it is raining.
• Contrapositive:
– If it is not raining, then I am not going to town.
College of Computer Science and Technology Zhejiang University
College of Computer Science and Technology Zhejiang University
Truth Table Example
• (p q) r
p
T T T T F F F F
q
T T F F T T F F
r
T F T F T F T F
pq
T T T T T T F F
• Natural language is often ambiguous.
College of Computer Science and Technology Zhejiang University