初一数学一元一次方程应用题

合集下载

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。

问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。

变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。

请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。

2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。

变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。

变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。

如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。

(完整word版)初一数学一元一次方程应用题各类型经典题

(完整word版)初一数学一元一次方程应用题各类型经典题

初一数学一元一次方程应用题各类型经典题一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇)(2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速= 2水速;顺速+ 逆速= 2船速(4)顺水的路程= 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。

问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。

初一一元一次方程应用题及答案

初一一元一次方程应用题及答案

初一一元一次方程应用题及答案——初一的数学已经远远超出小学的水平,更多的需要同学们发散思维和积极动脑思考,关于一元一次方程应用题及答案,供同学们练习和对照参考!1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成。

问:甲乙两队原计划各修多少千米?解:设甲乙原来的速度每天各修a千米,b千米根据题意(a+b)×50=200(1)10×(a+0.6)+40a+30b+10×(b+0.4)=200(2)化简a+b=4(3)a+0.6+4a+3b+b+0.4=205a+4b=19(4)(4)-(3)×4a=19-4×4=3千米b=4-3=1千米甲每天修3千米,乙每天修1千米甲原计划修3×50=150千米乙原计划修1×50=50千米2、小华买了4支自动铅笔和2支钢笔,共付14元;小兰买了同样的1支自动铅笔和2支钢笔,共付11元。

求自动笔的单价,和钢笔的单价。

解:设自动铅笔X元一支钢笔Y元一支4X+2Y=14X+2Y=11解得X=1Y=5则自动铅笔单价1元钢笔单价5元3、据统计2009年某地区建筑商出售商品房后的利润率为25%。

(1)2009年该地区一套总售价为60万元的商品房,成本是多少?(2)2010年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2009年减少了20平方米,建筑商的利润率达到三分之一,求2010年该地区建筑商出售的商品房每平方米的利润。

解:(1)成本=60/(1+25%)=48万元(2)设2010年60万元购买b平方米2010年的商品房成本=60/(1+1/3)=45万60/b-2a=60/(b+20)(1)45/b-a=48/(b+20)(2)(2)×2-(1)30/b=36/(b+20)5b+100=6bb=100平方米2010年每平方米的房价=600000/100=6000元利润=6000-6000/(1+1/3)=1500元4、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆,由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .由于a是车的数量,应为正整数,所以x的最小值为14.答:至少需要14台B型车.5、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

一元一次方程应用题20道题

一元一次方程应用题20道题

20道一元一次方程的应用题:1. 小明买了3本书和2支笔,总共花费了35元。

如果每本书比每支笔贵5元,求每本书和每支笔的价格。

2. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,问多少小时后到达乙地?3. 某商店进行打折活动,一件衣服原价200元,打8折后售价是多少元?4. 小华每天早上跑步,速度为每小时8公里,他跑了30分钟后,求他跑了多少公里?5. 一辆自行车行驶1000米,速度为每小时15公里,求行驶这段路程需要多少分钟?6. 小李的年龄比小王大3岁,今年他们的年龄之和为35岁,求小李和小王的年龄。

7. 一辆汽车加满油可以行驶600公里,现剩余油量可以行驶200公里,求汽车已经行驶了多少公里?8. 某商品进价50元,售价为80元,求该商品的利润率。

9. 一家工厂生产一批产品,原计划每天生产100个,实际每天生产120个,提前5天完成任务。

求原计划需要多少天完成?10. 一辆火车从A地出发,以每小时80公里的速度行驶,3小时后到达B地,求A、B两地之间的距离。

11. 小红有10个苹果,小明有15个苹果,他们把苹果合在一起平均分给5个人,求每个人分到多少个苹果?12. 一辆公交车每站停靠时间为2分钟,行驶全程共需60分钟,如果不计停靠时间,求公交车的平均速度。

13. 某学生语文、数学两门课的平均成绩为85分,已知数学成绩比语文成绩高10分,求该学生的语文和数学成绩。

14. 一家电器店购进一批电视机,每台进价3000元,售价为4000元,求每台电视机的利润。

15. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,距离目的地还有100公里,求汽车离出发地的距离。

16. 某商品原价100元,连续两次打折后售价为80元,求平均每次打折的折扣率。

17. 小刚每天跑步锻炼,第一天跑了3公里,之后每天比前一天多跑0.5公里,求第五天小刚跑了多少公里?18. 一辆自行车行驶在平直的公路上,速度为每小时15公里,行驶了20分钟后,求自行车行驶的距离。

数学七年级一元一次方程应用题练习

数学七年级一元一次方程应用题练习

姓名学号得分
一元一次方程应用题练习一
1.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人
分4本,则缺25本。

这个班有多少学生?
2、某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物,什么情况下买卡购物合算?(提示:分别讨论三种情况)
一元一次方程应用题练习二
1.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆
流行驶,用了2.5小时。

已知水流的速度是3千米/小时,求船在静水中的平均速度。

2.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母
2000个,一个螺钉要配两个螺母。

为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
3.整理一批图书,由一个人做要40小时完成。

现在计划由一部分人先做4
小时,再增加2个人和他们一起做8小时,完成这项工作。

假设这些人的工作效率相同,具体先安排多少人工作?。

初一数学7年级一元一次方程应用题及答案(人教版)

初一数学7年级一元一次方程应用题及答案(人教版)

精心整理一元一次方程经典应用题知能点1:市场经济、打折销售问题×100% (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B.80%×(1+45%)x-x=50C.x-80%×(1+45%)x=50D.80%×(1-45%)x-x=504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。

(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的应用
一、和、差、倍、分问题:
1.某校初三年级甲、乙两班学生人数相等,甲班男女人数之比为4:5,乙班男生人数占全班人数的60%,若把甲乙两班合成一个新团队,则新团队男生人数比女生人数多4人,求新团队总人数.
2.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时,他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色的安全帽和红色的一样多,而每位女同学看到白色的安全帽是红色的安全帽的2倍.求这群学生的总人数.
3.目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度广州市教育统计手册).
(1)求目前广州市在校的小学生人数和初中生人数;
(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?
4.某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%, 这样全市人口将增加1%,求这个城市现有的城镇人口数和农村人口数.
二、劳力调配问题:
某公司有两个工程队,甲工程队人数比乙工程队人数的1
2多28人,因有紧急任务,需从乙队抽调21
到甲队,这时甲队人数刚好是乙队人数的2
3,问该公司两个工程队共有多少人?
三、配套问题:
1.箭鹿服装厂要生产某种型号学生服一批,已知每3 米长的某种布料可以做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600 米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?
2.某车间有技术工人85人,平均每人每天可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
四、等积变形问题:
在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?
五、行程问题:
1.某人从家里骑自行车到学校。

若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
2.王亮的父母每天坚持走步锻炼.今天王亮的妈妈以每小时3千米的速度走了10分钟后,王亮的爸爸刚好看完球赛,马上沿着妈妈所走的路线以每小时4千米的速度追赶,求爸爸追上妈妈时所走的路程.
3.甲、乙两站相距360千米,上午九点一刻, 一辆慢车和一辆快车分别从两站相向开往对方车站,经过3小时相遇,已知快车速度是慢车的1.5倍. 问两车在什么时刻相距90千米.
4.甲、乙两人环湖竞走比赛,环湖一周400米,乙每分钟走80米, 甲的速度是乙的速度的1
4
,现甲、
乙两人相距100米,问多少分钟后甲、乙两人首次相遇.
5..屏幕上有两只青蛙,甲跳5次的时间里,乙刚好跳4次.但甲跳5次的距离,乙只要跳3次就能完成.在同一点出发,甲先跳20次后,再同时向上跳跃, 乙跳多少次能追上甲?
六、行船问题:顺水航速=静水船速+水流速度逆水航速=静水船速-水流速度
1.一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
2.一船逆流而上,突然有一铁桶(能浮于水面)落入河中,10 分钟后才能发现,这时船立即调头追铁桶,问几时才能追上?(船调头的时间忽略不计)
七、工程问题:
1. 为庆祝学校运动会开幕,初一(2)班学生接受了制作小旗的任务,原计划一半同学参加制作,每天制作40面。

完成了三分之一以后,全班同学一起参加,结果比原计划提前一天半完成任务。

假设每人制作的效率相同,问共制作小旗多少面?
2.理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?
3. 有一水池,装有甲、乙两个注水管,下面装有丙管放水,池空时,单开甲管5分钟可注满,单
开乙管10分钟可注满,水池装满水后,单开丙管15分钟可将水放完,如果在池空是将甲、乙、丙管齐开,2分钟后关闭乙管还要多少分钟可注满水池?
八、储蓄问题:
从1999年11月1日起,全国储蓄存款征收利息税,税率当时是20%,某人在1999年12月存入人民币若干元,年利率是2.25%,一年后将缴纳利息税72元,求他存入的本金
九、销售问题:
1.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
2.某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?
3.在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具车打8折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利2元卖了,他还能获利20%。

一个玩具车的进
4.某种纯平彩电先按进价提高40%标出销售价,然后广告宣传将以80%•的优惠价出售,结果每台彩电赚了300元,那么经营这种彩电的利润率为多少?
5.某商品按标价的九折出售,为促销,在此基础上再让利100元,仍能获利7.5%,若该商品的进价为2000元,则该商品的标价是多少元?
(1)一变:某商品按标价的九折出售,为促销,在此基础上再让利100元,仍能获利7.5%,若该商品的标价为2500元,那么该商品的进价是多少元?
(2)二变:某商品在打折的基础上再让利100元出售,仍获利7.5%,•若该商品的标价为2500元,进价为2000元,问该商品打了几折?
(3)三变:某商品的进价是2000元,标价为2500元,商店要求以利润不低于5%且不高于20%的售价打折出售,该商品可在什么范围内打折出售?
十、数字问题
1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位),所得的新数比原数的2倍少49,求原数。

2.有一个三位数,它最高数位上的数是2,若将2移到末尾, 得到的新三位数是原三位数的2倍还多74,求原三位数.
十一、年龄问题:
1.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄?
2.王老师对小强说:“我像你这么大时,你那时才2岁, 到你长到我这般年龄时,噢!我那时已经44岁了.”你知道王老师和小强现在的年龄各是多少岁吗?
3.当弟弟长到哥哥现在的年龄时,哥哥是39岁,当哥哥是弟弟现在的年龄时,弟弟是27岁,问哥哥、弟弟现在各多少岁?
十二、比赛积分问题:
1.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了几道题。

2.某年级8个班进行足球友谊赛,比赛采用单循环赛制(参加比赛的队每两队之间只进行一场比赛),胜一场得3分,平一场得1分,负一场得0分.某班积17分, 并以不败战绩获得冠军,那么该班共胜几场比赛?
十三、优化设计问题:
1.项王故里的门票价格规定如下表:
船山试验中学七年级甲、乙两班共103人(甲班比乙班人数多)去游项王故里,若两班都以班为单位购票,共付款486元.
(1)两班联合起来,作为一个团体购票,可节约___________元;
(2)分别求两班的人数.
2某校科技夏令营的学生在3位老师的带领下,准备赴北京大学参观,体验大学生活.现有两家旅行社前来洽谈,报价均为每人2000元,且各有优惠.希望旅行社表示:带队老师免费,学生按8折收费;青春旅行社表示师生一律按7折收费,经核算发现,参加两家旅行社的实际费用正好相等(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了部分学生,学校应选择哪家旅行社?为什么?
十四.余缺问题.某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.
(1)该单位参加旅游的职工有多少人?
(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)
十五.分段收费问题.1.近几年我国部分地区不时出现的严重干旱,使我们认识到节水的重要性.为了加强公民的节水意识,合理利用水资源,某市对自来水收费采用阶梯价格的调控手段以达到节水的目的.该市自来水收费价格见价目表.
价目表
每月用水量单价
不超出6m3的部分2元/m3
超出6m3但不超出10m3的部分4元/m3
超出10m3的部分8元/m3
注:水费按月结算.(1)若某户居民2月份用水10.5m3,应收水费多少元?(2)若该户居民3、4月份共用水16m3(4月份用水量超过3月份),共交水费44元,则该户居民3、4月份各用水多少m3?(结果精确到0.1m3)
2.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?
十六.动点问题。

小英和小倩站在正方形的对角A,C两点处,小英以2米/秒的速度走向点D处,途中位置记为P,小倩以3米/秒的速度走向点B处,途中位置记为Q,假设两人同时出发,已知正方形的边长为8米,E在AB上,AE=6米,记三角形AEP的面积为S1平方米,三角形BEQ的面积为S2平方米,如图所示.(1)她们出发后几秒时S1=S2;(2)当S1+S2=15时,小倩距离点B处还有多远?。

相关文档
最新文档