24.2直线和圆的位置关系(2)配套练习
直线与圆的位置关系知识点及例题

直线与圆的位置关系知识点及例题Prepared on 22 November 2020直线与圆的位置关系一、知识点梳理1、直线与圆的位置关系:图形名称相离相切相交判定d>r d=r d<r交点个数无1个2个例1、下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③ B.①② C.②③ D.③例2、过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;•过圆内一点的圆的切线______.例3、以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.例4、下列直线是圆的切线的是()A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆直径外端点的直线例5.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切2、切线的判定:(1)根据切线的定义判定:即与圆有一个公共点的直线是圆的切线.(2)根据圆心到直线的距离来判定:即与圆心的距离等于半径的直线是圆的切线. (3)根据切线的判定定理来判定:即经过半径的外端并且垂直于这条半径的直线是圆的切线.判定切线时常用的辅助线作法:(1)若直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证明直线和半径垂直.(2)当直线与圆并没有明确有公共点时,辅助线的作法是“过圆心向直线作垂线”再证明圆心到直线的距离等于圆的半径.例6、判断下列命题是否正确(1)经过半径的外端的直线是圆的切线(2)垂直于半径的直线是圆的切线;(3)过直径的外端并且垂直于这条直径的直线是圆的切线;(4)和圆有一个公共点的直线是圆的切线;(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.例7.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,•那么⊙P与OB的位置关系是()A.相离 B.相切 C.相交 D.相交或相切例8、如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,•如果⊙M与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m•的取值范围是_______.例9、如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC•的延长线于点E,连结BC.(1)求证:BE为⊙O的切线;(2)如果CD=6,tan∠BCD=12,求⊙O的直径.例10、如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠D=30°.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.例11、如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.3、切线的性质:1、经过切点的半径垂直于圆的切线,经过切点垂直于切线的直线必经过圆心对于切线的性质可分解为:过圆心、过切点、垂直于切线这三个条件中任意两个作为条件,就可以推出第三个作为结论4、切线长定理:切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.例12、如图1,PA、PB是⊙O的两条切线、A、B为切点。
24.2点、直线、圆与圆的位置关系 知识点+例题+练习(精品)

1.点和圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系.(2)两圆的公切线性质:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足O O2O1为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 604. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.O D C B A第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长.【中考连接】一、选择题1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.32.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335B. 635 C. 10 D. 5 4. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 26 5.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.B P A OC 第3题图 第6题图 第7题图 第8题图7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________. 8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=图象上,则阴影部分面积等于 . 14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______. 15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由.19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=.(1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的第10题图 第11题图 第12题图 第13题图 第18题图长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S △△时,求动点M 所经过的弧长.。
2022年人教版九年级数学上册第二十四章 圆教案 直线和圆的位置关系 (第2课时)

24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(第2课时)一、教学目标【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题。
【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度与价值观】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.二、课型新授课三、课时第2课时,共3课时。
四、教学重难点【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课教师问:转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?(出示课件2)学生问:都是沿着圆的切线的方向飞出的.(二)探索新知探究一切线的判定方法教师问:如图,在⊙O中经过半径OA的外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?(出示课件4)学生答:这时圆心O到直线l的距离就是⊙O的半径.由d=r得到直线l是⊙O的切线.教师问:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?(出示课件5)教师作图,学生观察并思考:(1)圆心O到直线AB的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?出示课件6:教师归纳:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.应用格式:∵OA为⊙O的半径,BC⊥OA于A,∴BC为⊙O的切线.教师问:下列各直线是不是圆的切线?如果不是,请说明为什么?(出示课件7)学生观察交流后口答:(1)不是,因为没有垂直.(2),(3)不是,因为没有经过半径的外端点A.教师强调:在切线的判定定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线.教师归纳:判断一条直线是一个圆的切线有三个方法:(出示课件8)1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.出示课件9:例1 如图,∠ABC=45°,直线AB是☉O上的直径,且AB=AC. 求证:AC是☉O的切线.教师分析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.师生共同解答:证明:∵AB=AC,∠ABC=45°,∴∠ACB=∠ABC=45°.∴∠BAC=180°-∠ABC-∠ACB=90°.∵AB是☉O的直径,∴AC是☉O的切线.巩固练习:(出示课件10)如图所示,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D.BD是⊙O的切线吗?为什么?学生独立思考后板演:解:BD是⊙O 的切线.连接OD,∵OD=OA,∠A=30°,∴∠DOB=60°.∵∠B=30°,∴∠ODB=90°.∴BD是⊙O 的切线.出示课件11:例2 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.学生思考交流后师生共同解答.证明:连接OC(如图).∵OA=OB,CA=CB,∴OC是等腰三角形OAB底边AB上的中线.∴AB⊥OC.∵OC是⊙O的半径,∴AB是⊙O的切线.巩固练习:(出示课件12-13)如图,△ABC 中,AB =AC ,O 是BC的中点,⊙O 与AB 相切于E. 求证:AC 是⊙O 的切线.教师分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O 向AC所作的垂线段OF是⊙O的半径就可以了,而OE是⊙O的半径,因此只需要证明OF=OE.证明:连接OE,OA,过O作OF⊥AC.∵⊙O与AB相切于E,∴OE⊥AB.又∵△ABC中,AB=AC,O是BC的中点.∴AO平分∠BAC,又OE⊥AB,OF⊥AC.∴OE=OF.∵OE是⊙O半径,OF=OE,OF⊥AC.∴AC是⊙O的切线.出示课件14:学生对比思考.1.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB求证:直线AB是⊙O的切线.学生答:连接OC.2.如图,OA=OB=5,AB=8,⊙O的直径为6.求证:直线AB是⊙O的切线.学生答:作垂直.教师归纳:(出示课件15)证切线时辅助线的添加方法:(1)有交点,连半径,证垂直;(2)无交点,作垂直,证半径.有切线时常用辅助线添加方法:见切点,连半径,得垂直.切线的其他重要结论:(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.探究二切线的性质定理教师问:如图,如果直线l是⊙O 的切线,点A为切点,那么OA与l垂直吗?(出示课件16)学生思考后教师总结:切线性质:圆的切线垂直于经过切点的半径.应用格式:∵直线l是⊙O的切线,A是切点.∴直线l⊥OA.出示课件17-18,教师引导学生进行证明.证法1:反证法.证明:假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M.则OM<OA,即圆心到直线CD的距离小于⊙O的半径,因此,CD与⊙O相交.这与已知条件“直线与⊙O相切”相矛盾.所以AB与CD垂直.证法2:构造法.作出小⊙O的同心圆大⊙O,CD切小⊙O于点A,且A点为CD的中点.连接OA,根据垂径定理,则CD⊥OA,即圆的切线垂直于经过切点的半径.教师总结:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.(出示课件19)出示课件20:例1 如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,∠P=30°,连接AO、AB、AC.(1)求证:△ACB≌△APO;(2)若AP求⊙O的半径.教师分析:(1)根据已知条件我们易得∠CAB=∠PAO=90°,由∠P=30°可得出∠AOP=60°,则∠C=30°=∠P,即AC=AP;这样就凑齐了角边角,可证得△ACB≌△APO;(2)由已知条件可得△AOP为直角三角形,因此可以通过解直角三角形求出半径OA的长.师生共同解答:(出示课件21-22)(1)证明:∵PA为⊙O的切线,A为切点,∴∠OAP=90°.又∵∠P=30°,∴∠AOB=60°,又∵OA=OB,∴△AOB为等边三角形.∴AB=AO,∠ABO=60°.又∵BC为⊙O的直径,∴∠BAC=90°.在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,∴△ACB≌△APO(ASA).(2)解:在Rt△AOP中,∠P=30°,∴AO=1,∴CB=OP=2,∴OB=1,即⊙O的半径为1.巩固练习:(出示课件23)如图所示,点A是⊙O外一点,OA交⊙O于点B,AC是⊙O的切线,切点是C,且∠A=30°,BC=1.求⊙O的半径.学生独立思考后自主解决.解:连接OC.∵AC是⊙O的切线,∴∠OCA=90°.又∵∠A=30°,∴∠COB=60°,∴△OBC是等边三角形.∴OB=BC=1,即⊙O的半径为1.(三)课堂练习(出示课件24-33)1.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF、CM.判断CM与⊙O的位置关系,并说明理由.2.判断下列命题是否正确.(1)经过半径外端的直线是圆的切线.()(2)垂直于半径的直线是圆的切线.()(3)过直径的外端并且垂直于这条直径的直线是圆的切线.()(4)和圆只有一个公共点的直线是圆的切线.()(5)过直径一端点且垂直于直径的直线是圆的切线.()3.如下图所示,A是☉O上一点,且AO=5, PO=13, AP=12,则PA与☉O的位置关系是.4.如图,在☉O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°5.如图,⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?6.如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P,PE⊥AC于E. 求证:PE是⊙O的切线.7.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.8.已知:△ABC内接于☉O,过点A作直线EF.(1)如图1,AB为直径,要使EF为☉O的切线,还需添加的条件是(只需写出两种情况):①_________;②_____________.(2)如图2,AB是非直径的弦,∠CAE=∠B,求证:EF是☉O的切线.参考答案:1.解:CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线.2.⑴×⑵×⑶√⑷√⑸√3.相切4.C5.解:连接OB,则∠OBP=90°.设⊙O的半径为r,则OA=OB=r,OP=OA+PA=2+r.在Rt△OBP中,OB2+PB2=PO2,即r2+42=(2+r)2. 解得r=3,即⊙O的半径为3.6.证明:连接OP.∵AB=AC,∴∠B=∠C.∵OB=OP,∴∠B=∠OPB.∴∠OBP=∠C.∴OP∥AC.∵PE⊥AC,∴PE⊥OP.∴PE为⊙O的切线.7.证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC.又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.8.解:⑴①BA⊥EF;②∠CAE=∠B.证明:连接AO并延长交☉O于D,连接CD,则AD为☉O的直径.∴∠D+∠DAC=90 °,∵∠D与∠B同对,∴∠D=∠B,又∵∠CAE=∠B,∴∠D=∠CAE,∴∠DAC+∠EAC=90°,∴EF是☉O的切线.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流. (五)课前预习预习下节课(24.2.2第3课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.。
(含答案)九年级数学人教版上册课时练第24章《24.2.2 直线和圆的位置关系》(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第24章圆24.2.2直线和圆的位置关系一、单选题1.已知⊙O 的半径为6,点O 到直线l 的距离为6,则直线l 与⊙O ()A .相离B .相交C .相切D .无法确定2.若O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是()A .相交B .相切C .相离D .无法确定3.如图,AB 是⊙O 的弦,PO ⊥OA 交AB 于点P ,过点B 的切线交OP 的延长线于点C ,若⊙O OP =1,则BC 的长为()A .2BC .52D 4.如图,点B ,D ,E 为⊙O 上的三个点,OC ⊥OB ,过点D 作⊙O 的切线,交OE 的延长线于点C ,连接BE ,DE .若∠OCD =30°,则∠BED 的度数为()A .10°B .15°C .20°D .25°5.如图,O 内切于Rt ABC △,点P 、点Q 分别在直角边BC 、斜边AB 上,PQ AB ^,且PQ 与O 相切,若2AC PQ =,则sin B Ð的值为()A .12B .35C .34D .456.如图,等腰ABC 内接于,O AB BC =,直线MN 是O 的切线,点C 是切点,OB 是半径,若36ACN Ð=°,则OBA Ð的度数为()A .14°B .18°C .36°D .54°7.如图,AB 是O 的切线,A 为切点,OB 交O 于点C ,若O 的半径长为1,AB =,则线段BC 的长是()A .1BC .2D 8.如图,在⊙O 中,AB 切⊙O 于点A ,连接OB 交⊙O 于点C ,过点A 作AD ∥OB 交⊙O 于点D ,连接CD .若∠OCD =20°,则∠B 为()A .30°B .40°C .45°D .50°二、填空题9.设⊙O 的半径为4cm ,直线L 上一点A 到圆心的距离为4cm ,则直线L 与⊙O 的位置关系是______.10.如图,直线AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,且AB ∥CD ,若OB =6cm ,OC =8cm ,则BE +CG 的长等于_____________11.如图,已知⊙O 的半径为1,点P 是⊙O 外一点,且OP =2.若PT 是⊙O 的切线,T 为切点,连接OT ,则PT =___.12.如图,BA 为O 的切线,切点为点A ,BO 交O 于点C ,点D 在O 上,连接CD ,36ABO Ð=°,则ADC Ð=______.13.如图,ABC 中,90BAC Ð=°,M 是BC 的中点,ABM 的内切圆与AB ,BM 分别相切于点D ,E ,连接DE .若∥DE AM ,则C Ð的大小为______.14.如图,AB 是⊙O 的直径,BC 是⊙O 的切线,点D 是AC 与⊙O 的交点,若36BAC Ð=°,则DBC Ð等于_________15.如图,AD ,AE ,BC 分别切⊙O 于点D ,E ,F ,若△ABC 的周长为48,则AD 的长是_______.16.如图,在⊙O 中,AB 切⊙O 于点A ,连接OB 交⊙O 于点C ,过点A 作AD ∥OB 交⊙O 于点D ,连接CD .若∠B =50°,则∠OCD 的度数等于___________.三、解答题17.如图,以ABC 的边BC 的长为直径作O ,交AC 于点D ,若A DBC Ð=Ð,求证:AB是O 的切线.18.如图,AB 、BC 、CD 分别与⊙O 切于E 、F 、G ,且AB ∥CD ,连接OB 、OC ,延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于N .(1)求证:MN 是⊙O 的切线;(2)当6cm OB =,8cm OC =时,求⊙O 的半径.19.如图,在⊙O 中,AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C .BD PD ^,垂足为D ,连接BC .(1)求证:BC 平分∠PBD ;(2)若4cm PA =,PC =,求⊙O 的半径.20.如图,AB为⊙O的直径,点C是AB右侧半圆上的一个动点,点D是AB左侧半圆的中点,DE是⊙O的切线,切点为D,连接CD交AB于点P,点Q为射线DE上一动点,连接AD,AC,BQ,PQ.(1)当PQ∥AD时,求证:△DPQ≌△PDA.(2)若⊙O的半径为2,请填空:①当四边形BPDQ为正方形时,DQ=;②当∠BAC=时,四边形ADQP为菱形.参考答案1.C2.A3.A4.B5.B6.B7.A8.D9.相切或相交10.10cm1112.27°13.30°14.36°15.2416.20°18.4.8cm19.2cm20.(2)①2;②22.5°。
24.2.2 直线和圆的位置关系2(旧版)--

直线与圆的位置关系
r d d r r d
相交
相切
圆 2 1 交 到 直 交 的 距 离 交 线 心
相离 相交 相切 相离
d<r d=r d>r
交 点 个 数
相交 相切 相离
思路? 思路?
解法1: 利用直线与圆的交点个数. 解法2: 利用圆心到直线距离d和 半径r间的关系.
小结:
1、直线与圆的三种位置关系, 两种判定方法; 2、直线与圆相切的应用
7.7 直线和圆的位置关系
请问: 请问:你知道直线 和圆的位置关系有 几种? 几种?
直线和圆的位置关系(动画)
O
A P
B
直线和圆的位置关系(动画)
A
B
P
直线与圆的位置关系
r d d r r d
直 线 和 圆 的 位 置
相交 相交 相切 相离
2 1 交 交 交
相切
直线 直线 交 (0 交 )
相离
练习及作业
练习:讨论并解答P90第1,2 题。 作业:P100第2、3题。
结束
例题讲解
例:在RT△ABC中,∠C=90°,AC=3cm, △ 中 = = , BC=4cm,以C为圆心,r为半径的圆与 为圆心, 为半径的圆与AB = , 为圆心 为半径的圆与 有怎样的位置关系?为什么? 有怎样的位置关系?为什么? (1)r=2cm;(2)r=2.4cm;(3) r=3cm. = ; = ; = 分析:要知道这些圆与 有怎样的位置关系 有怎样的位置关系, 分析:要知道这些圆与AB有怎样的位置关系, 首先要求出圆心C到 的距离是多少 的距离是多少。 首先要求出圆心 到AB的距离是多少。 注:圆心是一个点,圆心C到AB的距离就是 圆心是一个点,圆心 到 的距离就是 点到直线的距离。要过C作 的垂线。 点到直线的距离。要过 作AB的垂线。
点和圆、直线和圆的位置关系(同步练习题)( 含答案)

24.2点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系1.如图,⊙O的半径为r.(1)点A在⊙O外,则OA__>___r;点B在⊙O上,则OB__=___r;点C在⊙O内,则OC__<___r.(2)若OA>r,则点A在⊙O__外___;若OB=r,则点B在⊙O__上___;若OC<r,则点C在⊙O__内___.2.在同一平面内,经过一个点能作__无数___个圆;经过两个点可作__无数___个圆;经过__不在同一直线上___的三个点只能作一个圆.3.三角形的外心是三角形外接圆的圆心,此点是__三边垂直平分线的交点___.4.反证法首先假设命题的__结论___不成立,经过推理得出矛盾,由此判定假设__错误___,从而得到原命题成立.知识点1:点与圆的位置关系1.已知点A在直径为8 cm的⊙O内,则OA的长可能是( D)A.8cmB.6 cmC.4 cmD.2 cm2.已知圆的半径为6 cm,点P在圆外,则线段OP的长度的取值范围是__OP>6_cm___.3.已知⊙O的半径为7cm,点A为线段OP的中点,当OP满足下列条件时,分别指出点A与⊙O的位置关系:(1)OP=8cm;(2)OP=14cm;(3)OP=16cm.解:(1)在圆内(2)在圆上(3)在圆外知识点2:三角形的外接圆4.如图,点O是△ABC的外心,∠BAC=55°,则∠BOC=__110°___.5.直角三角形外接圆的圆心在__斜边的中点___上.若直角三角形两直角边长为6和8,则该直角三角形外接圆的面积为__25π___.6.一个三角形的外心在其内部,则这个三角形是( C)A.任意三角形B.直角三角形C.锐角三角形D.钝角三角形7.如图,一只猫观察到一老鼠洞的三个洞口A,B,C,这三个洞口不在同一条直线上,请问这只猫应该在什么地方才能最省力地同时顾及三个洞口?作出这个位置.解:图略.连接AB,BC,分别作线段AB,BC的垂直平分线,且相交于点O,点O 即为所求知识点3:反证法8.用反证法证明:“垂直于同一条直线的两条直线平行”第一步先假设( D)A.相交B.两条直线不垂直C.两条直线不垂直于同一条直线D.垂直于同一条直线的两条直线相交9.用反证法证明:“△ABC中至少有两个锐角”,第一步假设为__△ABC中至多有一个锐角___.10.用反证法证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.已知:如图,直线l1,l2被l3所截,∠1+∠2=180°,求证:l1__∥___l2.证明:假设l1__不平行___l2,即l1与l2相交于一点P,则∠1+∠2+∠P__=___180°(__三角形内角和定理___),所以∠1+∠2__<___180°,这与__已知___矛盾,故__假设___不成立,所以__l1∥l2___.11.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中,不正确的是(A)A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外12.如图,△ABC的外接圆圆心的坐标是__(-2,-1)___.13.在平面直角坐标系中,⊙A的半径是4,圆心A的坐标是(2,0),则点P(-2,1)与⊙A 的位置关系是__点P在⊙A外___.14.若O为△ABC的外心,且∠BOC=60°,则∠BAC=__30°或150°___.15.如图,△ABC中,AC=3,BC=4,∠C=90°,以点C为圆心作⊙C,半径为r.(1)当r在什么范围时,点A,B在⊙C外?(2)当r在什么范围时,点A在⊙C内,点B在⊙C外?解:(1)0<r<3 (2)3<r<416.如图,⊙O′过坐标原点,点O′的坐标为(1,1),试判断点P(-1,1),Q(1,0),R(2,2)与⊙O′的位置关系.解:点P在⊙O′外,点Q在⊙O′内,点R在⊙O′上17.小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来;(尺规作图,不写作法,保留作图痕迹)(2)若在△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.解:(1)用尺规作出两边的垂直平分线,交于O点,以O为圆心,OA长为半径作出⊙O,⊙O即为所求作的花坛的位置(图略)(2)25π平方米18.如图①,在△ABC中,BA=BC,D是平面内不与点A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图②,当点D是△ABC的外接圆圆心时,请判断四边形BECD的形状,并证明你的结论.解:(1)由SAS可证(2)四边形BECD是菱形.证明:∵△ABD≌△CBE,∴CE=AD.∵点D是△ABC的外接圆圆心,∴DA=DB=DC.又∵BD=BE,∴BD=BE=EC=CD,∴四边形BECD是菱形ﻬ24.2.2直线和圆的位置关系第1课时直线和圆的位置关系1.直线和圆有__相交___、__相切___、__相离___三种位置关系.2.直线a与⊙O__有唯一___公共点,则直线a与⊙O相切;直线b与⊙O__有两个___公共点,则直线b与⊙O相交;直线c与⊙O__没有___公共点,则直线c与⊙O相离.3.设⊙O的半径为r,直线到圆心的距离为d,则:(1)直线l1与⊙O__相离___,则d__>___r; (2)直线l 2与⊙O__相切___,则d__=___r; (3)直线l3与⊙O__相交___,则d__<___r.知识点1:直线与圆的位置关系的判定 1.(2014·白银)已知⊙O的半径是6 cm,点O 到同一平面内直线l的距离为5 cm ,则直线l与⊙O 的位置关系是( A )A .相交B .相切C .相离 D.无法判断2.已知一条直线与圆有公共点,则这条直线与圆的位置关系是( D ) A.相离 B.相切 C .相交 D.相切或相交3.在平面直角坐标系xO y中,以点(-3,4)为圆心,4为半径的圆( C ) A .与x 轴相交,与y 轴相切 B .与x 轴相离,与y轴相交 C.与x 轴相切,与y轴相交 D .与x 轴相切,与y 轴相离4.在Rt △ABC 中,∠C =90°,AB =4 c m,BC =2 cm ,以C 为圆心,r 为半径的圆与AB 有何种位置关系?请你写出判断过程.(1)r =1.5 cm ;(2)r =错误! cm ;(3)r=2 cm .解:过点C 作CD ⊥AB,垂足为D,可求CD =\r (3).(1)r =1.5 cm 时,相离;(2)r =错误! c m时,相切;(3)r=2 cm时,相交知识点2:直线与圆的位置关系的性质5.直线l 与半径为r 的⊙O 相交,且点O 到直线l 的距离为5,则半径r 的取值范围是( A )A.r>5 B .r=5 C .0<r<5 D .0<r ≤56.如图,⊙O 的半径OC=5 cm ,直线l ⊥OC,垂足为H ,且l 交⊙O 于A,B 两点,AB=8 cm ,则l 沿O C所在的直线向下平移,当l 与⊙O相切时,平移的距离为( B )A.1 cm B .2 cm C.3 cm D .4 cm7.已知⊙O 的圆心O 到直线l的距离为d ,⊙O 的半径为r,若d ,r是方程x 2-4x +m=0的两个根,且直线l 与⊙O 相切,则m 的值为__4___.8.在Rt△ABC 中,∠A=90°,∠C =60°,BO =x,⊙O 的半径为2,求当x 在什么范围内取值时,A B所在的直线与⊙O 相交、相切、相离?解:过点O 作OD ⊥AB 于D,可得OD =12OB =错误!x.当AB 所在的直线与⊙O 相切时,OD=r=2,∴B O=4,∴0<x<4时,相交;x=4时,相切;x >4时,相离9.已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是( C)A.相交B.相切C.相离D.无法确定10.已知⊙O的半径为3,直线l上有一点P满足PO=3,则直线l与⊙O的位置关系是(D)A.相切B.相离C.相离或相切D.相切或相交11.已知⊙O的半径为r,圆心O到直线l的距离为d.若直线l与⊙O相切,则以d,r 为根的一元二次方程可能为( B)A.x2-3x=0B.x2-6x+9=0C.x2-5x+4=0D.x2+4x+4=012.如图,在矩形ABCD中,AB=6,BC=3,⊙O是以AB为直径的圆,则直线DC与⊙O的位置关系是__相切___.13.已知⊙O的半径是5,圆心O到直线AB的距离为2,则⊙O上有且只有__3___个点到直线AB的距离为3.14.如图,⊙P的圆心P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P′,根据作图直接写出⊙P′与直线MN的位置关系;(2)若点N在(1)中的⊙P′上,求PN的长.解:(1)图略,⊙P′与直线MN相交(2)连接PP′并延长交MN于点Q,连接PN,P′N.由题意可知:在Rt△P′QN中,P′Q=2,P′N=3,由勾股定理可求出QN=\r(5);在R t△PQN中,PQ=3+5=8,QN=错误!,由勾股定理可求出PN=错误!=错误!15.如图,半径为2的⊙P的圆心在直线y=2x-1上运动.(1)当⊙P和x轴相切时,写出点P的坐标,并判断此时y轴与⊙P的位置关系;(2)当⊙P和y轴相切时,写出点P的坐标,并判断此时x轴与⊙P的位置关系;(3)⊙P是否能同时与x轴和y轴相切?若能,写出点P的坐标;若不能,说明理由.解:∵⊙P的圆心在直线y=2x-1上,∴圆心坐标可设为(x,2x-1).(1)当⊙P和x轴相切时,2x-1=2或2x-1=-2,解得x=1.5或x=-0.5,∴P1(1.5,2),P2(-0.5,-2).∵1.5<2,|-0.5|<2,∴y轴与⊙P相交(2)当⊙P和y轴相切时,x=2或-2,得2x-1=3或2x-1=-5,∴P1(2,3),P2(-2,-5).∵|-5|>2,且|3|>2,∴x轴与⊙P相离(3)不能.∵当x=2时,y=3,当x=-2时,y=-5,|-5|≠2,3≠2,∴⊙P不能同时与x轴和y轴相切16.已知∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D,E 两点,设AD=x.(1)如图①,当x取何值时,⊙O与AM相切?(2)如图②,当x取何值时,⊙O与AM相交于B,C两点,且∠BOC=90°?解:(1)过O点作OF⊥AM于F,当OF=r=2时,⊙O与AM相切,此时OA=4,故x=AD=2(2)过O点作OG⊥AM于G,∵OB=OC=2,∠BOC=90°,∴BC=2\r(2),∴BG=CG =\r(2),∴OG=错误!.∵∠A=30°,∴OA=2错误!,∴x=AD=2错误!-2第2课时切线的判定与性质1.经过半径的__外端___,并且__垂直___于这条半径的直线是圆的切线.2.圆的切线必__垂直___于过__切点___的半径.知识点1:切线的判定1.下列说法中,正确的是( D)A.AB垂直于⊙O的半径,则AB是⊙O的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径,那么这条直线是圆的切线2.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为__∠ABC=90°___.3.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°.求证:CD 是⊙O的切线.解:连接OC.∵AC=CD,∠D=30°,∴∠A=∠D=30°.∵OA=OC,∴∠OCA=∠A=30°,∴∠COD=60°,∴∠OCD=90°,∴OC⊥CD,∴CD是⊙O的切线4.(2014·孝感)如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.解:(1)如图(2)AB与⊙O相切.证明:作OD⊥AB于点D,∵BO平分∠ABC,∠ACB=90°,OD⊥AB,∴OD=OC,∴AB与⊙O相切知识点2:切线的性质5.(2014·邵阳)如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是(A)A.30°B.45°C.60°D.40°,第5题图),第6题图),第7题图)6.如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=__4___.7.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切于点A.若∠MAB=30°,则∠B=__60°___.8.如图,等腰△OAB中,OA=OB,以点O为圆心作圆与底边AB相切于点C.求证:AC=BC.解:∵AB切⊙O于点C,∴OC⊥AB.∵OA=OB,∴AC=BC9.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且CO=CD,则∠PCA=(D)A.30°B.45°C.60°D.67.5°,第9题图),第10题图),第11题图)10.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是(A)A.30°B.45°C.60°D.90°11.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是错误!的中点,则下列结论不成立的是(D)A.OC∥AE B.EC=BCC.∠DAE=∠ABE D.AC⊥OE12.(2014·自贡)如图,一个边长为4 cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为__3___cm.,第12题图) ,第13题图) 13.如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆于点C,已知PC=3,PB=1,则该半圆的半径为__4___.14.(2014·毕节)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.解:(1)∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD(2)当点M是BC的中点时,直线DM与⊙O相切.理由:如图,连接DO.∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切15.如图,已知AB是⊙O的直径,点P是AB延长线上的一个动点,过点P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,求∠CDP的度数.解:∵PC是⊙O的切线,∴OC⊥OP,即∠OCP=90°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB-∠OCB=∠OCP-∠OCB,即∠ACO=∠BCP.又OA=OC,∴∠A=∠ACO,∴∠BCP=∠BAC.∵PD是∠APC的平分线,∴∠CPD=∠APD.∵∠ABC=∠CPD+∠APD+∠BCP,∠BAC+∠ABC=90°,∴∠BAC+∠CPD+∠APD+∠BCP=90°,∴∠CDP=∠APD+∠BAC=45°16.(2014·德州)如图,⊙O的直径AB为10 cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC,AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.解:(1)连接BD.∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ABC中,AC=错误!=\r(102-62)=8(cm).∵CD平分∠ACB,∴错误!=错误!,∴AD=BD.在Rt△ABD中,A D2+BD2=AB2,∴AD=\f(\r(2),2)AB=错误!×10=5错误!(cm)(2)直线PC与⊙O相切.理由:连接OC.∵OC=OA,∴∠CAO=∠OCA.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠CAE+∠ACE,∴∠PCB+∠ECB=∠CAE+∠ACE.∵CD平分∠ACB,∴∠ACE=∠ECB,∴∠PCB=∠CAE,∴∠PCB=∠ACO.∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,∴OC⊥PC,∴直线PC与⊙O相切ﻬ第3课时切线长定理1.经过__圆外___一点作圆的切线,这点与切点之间__线段___的长,叫做这点到圆的切线长.2.圆的切线长定理:从圆外一点可以引圆的__两___条切线,它们的切线长__相等___,这一点和圆心的连线__平分___两条切线的夹角.3.与三角形各边都__相切___的圆叫做三角形的内切圆,圆心叫做三角形的__内___心,它是三角形__三条角平分线___的交点.知识点1:切线长定理1.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是(B)A.4 B.8C.4\r(3)D.8错误!,第1题图) ,第2题图) 2.如图,半圆O与等腰直角三角形两腰CA,CB分别切于D,E两点,直径FG在AB上,若BG=\r(2)-1,则△ABC的周长为(A)A.4+2\r(2)B.6C.2+2 2 D.43.(2014·天水)如图,PA,PB分别切⊙O于点A,B,点C在⊙O上,且∠ACB=50°,则∠P=__80°___.4.如图,PA,PB是⊙O的两条切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.解:(1)∠APB=60°(2)AP=3错误!知识点2:三角形的内切圆5.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=(A)A.130°B.120°C.100°D.90°6.已知△ABC的周长为24,若△ABC的内切圆半径为2,则△ABC的面积为__24___.7.在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆的半径为__2___.8.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=18 cm,BC=28 cm,CA=26 cm,求AF,BD,CE的长.解:根据切线长定理得AE=AF,BF=BD,CE=CD.设AE=AF=x cm,则CE=CD=(26-x) cm,BF=BD=(18-x) cm.∵BC=28 cm,∴(18-x)+(26-x)=28,解得x=8,∴AF=8 cm,BD=10 cm,CE=18 cmﻬ9.正三角形的内切圆半径为1,那么三角形的边长为( B)A.2 B.2\r(3)C.错误!D.310.如图,AB,AC与⊙O相切于点B,C,∠A=50°,点P是圆上异于B,C的一动点,则∠BPC的度数是(C)A.65°B.115°C.65°或115°D.130°或50°,第10题图) ,第11题图)11.(2014·泰安)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为(A)A.4 B.3C.2 D.112.如图,已知PA,PB分别切⊙O于点A,B,点C在⊙O上,∠BCA=65°,则∠P=__50°___.,第12题图) ,第13题图)13.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在错误!上,若PA长为2,则△PEF的周长是__4___.14.如图,点I为△ABC的内心,点O为△ABC的外心,若∠BOC=140°,求∠BIC的度数.解:∵点O为△ABC 的外心,∠BOC =140°,∴∠A=70°.又∵点I 为△AB C的内心,∴∠BIC=180°-错误!(180°-∠A)=90°+错误!∠A=125°15.如图,PA,PB 是⊙O 的切线,A,B 为切点,AC 是⊙O 的直径,AC,PB 的延长线相交于点D .(1)若∠1=20°,求∠AP B的度数;(2)当∠1为多少度时,OP=O D?并说明理由.解:(1)∵PA是⊙O 的切线,∴∠BAP=90°-∠1=70°.又∵PA ,PB 是⊙O 的切线,∴PA=PB,∴∠B AP=∠ABP=70°,∴∠AP B=180°-70°×2=40° (2)当∠1=30°时,OP =OD.理由:当∠1=30°时,由(1)知∠BA P=∠ABP=60°,∴∠AP B=180°-60°×2=60°.∵P A,PB是⊙O的切线,∴∠OPB =\f(1,2)∠APB =30°.又∵∠D =∠A BP -∠1=60°-30°=30°,∴∠OPB=∠D,∴OP=OD16.如图,A B是⊙O 的直径,AM 和BN 是它的两条切线,DE切⊙O于点E ,交AM 于点D ,交BN 于点C ,F 是CD 的中点,连接OF.(1)求证:OD ∥BE ;(2)猜想:OF 与CD 有何数量关系?并说明理由.解:(1)连接OE ,∵AM ,DE 是⊙O 的切线,OA ,O E是⊙O 的半径,∴∠AD O=∠ED O,∠DA O=∠DEO =90°,∴∠AOD=∠EOD =错误!∠AOE.∵∠ABE =∠OEB,∠AB E+∠O EB=∠AOE,∴∠A BE=12∠A OE ,∴∠AOD =∠ABE ,∴OD ∥BE(2)O F=\f(1,2)C D,理由:连接OC,∵BC,C E是⊙O 的切线,∴∠O CB =∠O CE.同理:∠ADO=∠EDO.∵AM ∥BN ,∴∠A DO+∠E DO+∠OCB+∠OCE=180°,∴∠EDO+∠OCE=90°,∴∠DOC=90°.在Rt△DOC中,∵F是DC的中点,∴OF=错误!CD ﻬ专题训练(七) 切线证明的方法一、有交点,连半径,证垂直(一)利用角度转换证垂直1.如图,AB是⊙O的弦,OD⊥OB,交AB于E,且AD=ED.求证:AD是⊙O的切线.解:连接OA.∵OA=OB,∴∠B=∠OAB.又∵AD=DE,∴∠DAE=∠DEA,而∠DEA=∠BEO,∠B+∠BEO=90°,∴∠DAE+∠OAB=90°,∴OA⊥AD,∴AD是⊙O的切线2.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.求证:PA是⊙O的切线.解:连接OA.∵∠B=60°,∴∠AOC=120°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠ACP=\f(1,2)∠AOP=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠PAO=90°,∴O A⊥AP,∴PA是⊙O的切线(二)利用全等证垂直3.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC,弦AD∥OC.求证:CD是⊙O的切线.解:连接OD.由SAS证△CBO≌△CDO,得∠CDO=∠CBO=90°,∴CD⊥OD,∴CD是⊙O的切线(三)利用勾股定理逆定理证垂直4.如图,AB为⊙O的直径,点P为AB延长线上一点,点C为⊙O上一点,PC=8,PB=4,AB=12.求证:PC是⊙O的切线.解:连接OC.根据题意,可得OC=6,PO=10,PC=8,∴OC2+PC2=PO2,∴△POC为直角三角形且∠PCO=90°,∴OC⊥CP,∴PC是⊙O的切线二、无交点,作垂直,证半径5.如图,在△ABC中,AB=AC,D为BC的中点,以D为圆心的圆与AB相切于点E.求证:AC与⊙D相切.解:连接DE,过D作DF⊥AC于F,易证△BDE≌△CDF,∴DF=DE,∴AC与⊙O相切6.如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.解:连接OE,过O作OF⊥CD于F.∵AB与小⊙O切于点E,∴OE⊥AB,∵AB=CD,∴OE=OF,∴CD与小⊙O相切7.如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.解:(1)过O作OE⊥CD于点E.∵AM切⊙O于点A,∴OA⊥AD,又∵DO平分∠ADC,∴OE=OA,∴CD是⊙O的切线(2)过D点作DF⊥BC于点F,易证四边形ABFD是矩形,∴AD=BF,AB=DF,又∵AD=4,BC=9,∴FC=9-4=5.又∵AM,BN,CD分别切⊙O于点A,B,E,∴DA=DE,CB=CE,∴DC=AD+BC=4+9=13.在Rt△DFC中,DC2=DF2+FC2,∴DF=12,∴AB=12,∴⊙O的半径R是6三、与切线证明方法有关的综合问题8.(2014·江西)如图①,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;(3)如图②,延长PO交⊙O于点D,连接DB,当CP=DB 时,求证:CP是⊙O的切线.解:(1)△OPC的边长OC是定值,∴当OP⊥OC时,OC边上的高为最大值,此时△OPC 的面积最大.∵AB=4,BC=2,∴OP=OB=2,OC=OB+BC=4,∴S△OPC=错误!·OC·OP=错误!×4×2=4,即△OPC的最大面积为4(2)当PC与⊙O相切,即OP⊥PC时,∠OCP的度数最大,可求∠OCP=30°(3)连接AP,BP.∵∠AOP=∠DOB,∴AP=DB.∵CP=DB,∴AP=PC,∴∠A=∠C.∵∠A=∠D,∴∠C=∠D.∵OC=PD=4,PC=DB,∴△OPC≌△PBD,∴∠OPC=∠PBD.∵PD是⊙O的直径,∴∠PBD=90°,∴∠OPC=90°,∴OP⊥PC.又∵OP是⊙O的半径,∴CP是⊙O的切线。
24.2直线和圆的位置关系习题精选(含答案详解)

直线和圆的位置关系习题精选一.选择题(共13小题)1.(2014•广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次1题图2题图4题图5题图2.(2014•益阳)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5 C.3D.53.(2014•常州)在平面直角坐标系xOy中,直线l经过点A(﹣3,0),点B(0,),点P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左平移,平移后得到⊙P′(点P的对应点为点P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有()A.1个B.2个C.3个D.4个4.(2014•余姚市模拟)如图,在平面直角坐标系中,已知⊙O的半径为1,动直线AB与x轴交于点P(x,0),直线AB与x轴正方向夹角为45°,若直线AB与⊙O有公共点,则x的取值范围是()A.﹣1≤x≤1 B.C.D.5.(2013•盘锦)如图,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相交B.相切C.相离D.无法确定6.(2013•宝应县二模)在平面直角坐标系中,以点(3,﹣5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是()A.r>4 B.0<r<6 C.4≤r<6 D.4<r<67.(2013•下城区二模)在△ABC中,∠C=90°,AC=6,BC=8,以C 为圆心r为半径画⊙C,使⊙C与线段AB有且只有两个公共点,则r的取值范围是()A.6≤r≤8 B.6≤r<8 C.≤6 D.≤88.(2013•廊坊一模)如图,在半径为5cm的⊙O中,直线l交⊙O于A、B两点,且弦AB=8cm,要使直线l与⊙O 相切,则需要将直线l向下平移()A.1cm B.2cm C.3cm D.4cm8题图10题图11题图12题图9.(2013•徐汇区二模)在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是()A.相离B.相切C.相交D.无法确定10.(2013•保康县二模)如图:已知点P(3,4),以点P为圆心,r为半径的圆P与坐标轴有四个交点,则r的取值范围是()A.r>4 B.r>4且r≠5 C.r>3 D.r>3且r≠511.(2012•广西)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.30°B.45°C.60°D.90°12.(2012•北海)如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周13.(2011•温岭市模拟)如图,在△ABC中,AB=13,AC=5,BC=12,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.B.C.5D.无法确定13题图14题图15题图17提图二.填空题(共7小题)14.(2014•定州市一模)如图,线段OA垂直射线OB于点O,OA=4,⊙A的半径是2,将OB绕点O沿顺时针方向旋转,当OB与⊙A相切时,OB旋转的角度为_________.15.(2014•吉林二模)如图,∠APB=30°,点O是射线PB上的一点,OP=5cm,若以点O为圆心,半径为1.5cm 的⊙O沿BP方向移动,当⊙O与PA相切时,圆心O移动的距离为_________cm.16.(2014•松江区三模)已知在△ABC中,AB=AC=13,BC=10,点D、E分别是AB、AC的中点,那么以点D为圆心,DE为半径的圆与直线BC的位置关系是_________.17.(2012•兰州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB 的取值范围是_________.18.(2012•兰州)如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是_________.18题图20题图19.(2010•武昌区模拟)已知点A(3,1),⊙A与坐标轴共有三个公共点,则半径为_________.20.(2005•乌兰察布)如图:半径为2的圆心P在直线y=2x﹣1上运动,当⊙P与x轴相切时圆心P的坐标为_________.三.解答题(共2小题)21.(2014•攀枝花)如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC 于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;22.(2014•天水)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.直线和圆的位置关系习题精选参考答案与试题解析一.选择题(共13小题)1.(2014•广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次考点:直线与圆的位置关系.专题:分类讨论.分析:根据题意作出图形,直接写出答案即可.解答:解:如图,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选:B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.2.(2014•益阳)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5 C.3D.5考点:直线与圆的位置关系;坐标与图形性质.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.解答:解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.3.(2014•常州)在平面直角坐标系xOy中,直线l经过点A(﹣3,0),点B(0,),点P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左平移,平移后得到⊙P′(点P的对应点为点P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有()A.1个B.2个C.3个D.4个考点:直线与圆的位置关系;一次函数的性质.专题:几何图形问题.分析:在解答本题时要先求出⊙P的半径,继而求得相切时P′点的坐标,根据A(﹣3,0),可以确定对应的横坐标为整数时对应的数值.解答:解:如图所示,∵点P的坐标为(1,0),⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时,设切点为D,由点A(﹣3,0),点B(0,),∴OA=3,OB=,由勾股定理得:AB=2,∠DAM=30°,设平移后圆与直线AB第一次相切时圆心为M(即对应的P′),∴MD⊥AB,MD=1,又因为∠DAM=30°,∴AM=2,M点的坐标为(﹣1,0),即对应的P′点的坐标为(﹣1,0),同理可得圆与直线第二次相切时圆心N的坐标为(﹣5,0),所以当⊙P′与直线l相交时,横坐标为整数的点P′的横坐标可以是﹣2,﹣3,﹣4共三个.故选:C.点评:本题考查了圆的切线的性质的综合应用,解答本题的关键在于找到圆与直线相切时对应的圆心的坐标,然后结合A点的坐标求出对应的圆心的横坐标的整数解.4.(2014•余姚市模拟)如图,在平面直角坐标系中,已知⊙O的半径为1,动直线AB与x轴交于点P(x,0),直线AB与x轴正方向夹角为45°,若直线AB与⊙O有公共点,则x的取值范围是()A.﹣1≤x≤1 B.C.D.考点:直线与圆的位置关系;坐标与图形性质.专题:探究型.分析:设直线AB的解析式为y=x+b,当直线与圆相切时切点为C,连接OC,则OC=1,由于直线AB与x轴正方向夹角为45°,所以△AOC是等腰直角三角形,故OC=PC=1再根据勾股定理求出OA的长即可.解答:解:∵直线AB与x轴正方向夹角为45°,∴设直线AB的解析式为y=x+b,切点为C,连接OC,∵⊙O的半径为1,∴△AOC是等腰直角三角形,∴OC=PC=1,∴OA==,∴P(,0),同理可得,当直线与x轴负半轴相交时,P(﹣,0),∴﹣≤x≤.故选D.点评:本题考查的是直线与圆的位置关系,熟知直线和圆的三种位置关系是解答此题的关键.5.(2013•盘锦)如图,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相交B.相切C.相离D.无法确定考点:直线与圆的位置关系.专题:压轴题.分析:首先根据三角形面积求出AM的长,进而得出直线BC与DE的距离,进而得出直线与圆的位置关系.解答:解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM==4.8,∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=5,∴AN=MN=AM,∴MN=2.4,∵以DE为直径的圆半径为2.5,∴r=2.5>2.4,∴以DE为直径的圆与BC的位置关系是:相交.故选:A.点评:本题考查了直线和圆的位置关系,利用中位线定理比较出BC到圆心的距离与半径的关系是解题的关键.6.(2013•宝应县二模)在平面直角坐标系中,以点(3,﹣5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是()A.r>4 B.0<r<6 C.4≤r<6 D.4<r<6考点:直线与圆的位置关系.专题:压轴题.分析:根据题意可知,本题其实是利用圆与直线y=1和直线y=﹣1之间的位置关系来求得半径r的取值范围,根据相离时半径小于圆心到直线的距离,相交时半径大于圆心到直线的距离即可求得r的范围.解答:解:根据题意可知到x轴所在直线的距离等于1的点的集合分别是直线y=1和直线y=﹣1,若以点(3,﹣5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,那么该圆与直线y=﹣1必须是相交的关系,与直线y=1必须是相离的关系,所以r的取值范围是|﹣5|﹣|﹣1|<r<|﹣5|+1,即4<r<6.故选D.点评:解决本题要认真分析题意,理清其中的数量关系.看似求半径与x轴之间的关系,其实是利用圆与直线y=1和直线y=﹣1之间的位置关系来求得半径r的取值范围.7.(2013•下城区二模)在△ABC中,∠C=90°,AC=6,BC=8,以C 为圆心r为半径画⊙C,使⊙C与线段AB有且只有两个公共点,则r的取值范围是()A.6≤r≤8 B.6≤r<8 C.≤6 D.≤8考点:直线与圆的位置关系;三角形的面积;勾股定理.分析:根据勾股定理以及直角三角形的面积计算出其斜边上的高,再根据位置关系与数量之间的联系进行求解.解答:解:如图,∵BC>AC,∴以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.根据勾股定理求得AB=10.圆与AB相切时,即r=CD=6×8÷5=;∵⊙C与线段AB有且只有两个公共点,∴<r≤6.故选C.点评:本题利用的知识点:勾股定理和垂线段最短的定理;直角三角形的面积公式求解;直线与圆的位置关系与数量之间的联系.8.(2013•廊坊一模)如图,在半径为5cm的⊙O中,直线l交⊙O于A、B两点,且弦AB=8cm,要使直线l与⊙O 相切,则需要将直线l向下平移()A.1cm B.2cm C.3cm D.4cm考点:直线与圆的位置关系.分析:作出OC⊥AB,利用垂径定理求出BC=4,再利用勾股定理求出OC=3,即可求出要使直线l与⊙O相切,则需要将直线l向下平移的长度.解答:解:作OC⊥AB,∵半径为5cm的⊙O中,直线l交⊙O于A、B两点,且弦AB=8cm∴BO=5,BC=4,∴OC=3cm,∴要使直线l与⊙O相切,则需要将直线l向下平移2cm.故选:B.点评:此题主要考查了切线的性质定理与垂径定理,根据图形求出OC的长度是解决问题的关键.9.(2013•徐汇区二模)在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是()A.相离B.相切C.相交D.无法确定考点:直线与圆的位置关系.分析:过B作BD⊥AC交CA的延长线于D,求出BD,和⊙B的半径比较,即可得出答案.解答:解:过B作BD⊥AC交CA的延长线于D,∵∠BAC=150°,∴∠DAB=30°,∴BD=AB=×2=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.点评:本题考查了直线与圆的位置关系的应用,主要考查学生的推理能力.10.(2013•保康县二模)如图:已知点P(3,4),以点P为圆心,r为半径的圆P与坐标轴有四个交点,则r的取值范围是()A.r>4 B.r>4且r≠5 C.r>3 D.r>3且r≠5考点:直线与圆的位置关系;坐标与图形性质.专题:计算题.分析:作PA⊥x轴,连结OP,根据勾股定理计算出OP=5,然后根据直线与圆的位置关系即可得到满足条件的r 的取值范围为r>4且r≠5.解答:解:作PA⊥x轴,连结OP,如图,∵点P的坐标为(3,4),∴OA=3,PA=4,∴OP==5,∴当以点P为圆心,r为半径的圆P与坐标轴有四个交点时,r的取值范围为r>4且r≠5.故选B.点评:本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d:①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.也考查了坐标与图形性质.11.(2012•广西)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.30°B.45°C.60°D.90°考点:直线与圆的位置关系;切线的性质.专题:压轴题.分析:根据题意找出当OP⊥AP时,∠OAP取得最大值.所以在Rt△AOP中,利用直角三角形中锐角三角函数的定义可以求得此时∠OAP的值.解答:解:根据题意知,当∠OAP的取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.点评:本题考查了直线与圆的位置关系、切线的性质.此题属于操作题,在点P的运动过程中,∠OAP取最大值时,AP正好是⊙O的切线.12.(2012•北海)如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周考点:直线与圆的位置关系;等边三角形的性质.专题:压轴题.分析:该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数.解答:解:圆在三边运动自转周数:=3,圆绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周;可见,⊙O自转了3+1=4周.故选C.点评:本题考查了圆的旋转与三角形的关系,要充分利用等边三角形的性质及圆的周长公式解答.13.(2011•温岭市模拟)如图,在△ABC中,AB=13,AC=5,BC=12,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.B.C.5D.无法确定考点:直线与圆的位置关系.分析:首先由题意可知△ABC是直角三角形,再根据题意分析出符合条件的圆的直径的最小值即为该直角三角形的斜边上的高,即可求解.解答:解:∵在△ABC中,AB=13,AC=5,BC=12,∴AB2=AC2+BC2.∴∠ACB=90°,∴PQ一定是直径.要使过点C且与边AB相切的动圆的直径最小,则PQ即为斜边上的高,则PQ==.故选B.点评:本题解题的关键是:要使直径最小,那么C与AB上切点的连线过圆心,即为斜边上的高.二.填空题(共7小题)14.(2014•定州市一模)如图,线段OA垂直射线OB于点O,OA=4,⊙A的半径是2,将OB绕点O沿顺时针方向旋转,当OB与⊙A相切时,OB旋转的角度为60°或120°.考点:直线与圆的位置关系.专题:分类讨论.分析:分类讨论:当OB与⊙A相切于C点时,连结AC,根据切线的定义得到AC⊥OC,然后根据含30度的直角三角形三边的关系得到∠AOC=30°,则∠BOC=∠BOA﹣AOC=60°;当OB与⊙A相切于D点时,同样可得到∠AOD=30°,则∠BOC=∠BOA+AOC=120°.解答:解:当OB与⊙A相切于C点时,如图,连结AC,则AC⊥OC,∵OA=4,AC=2,∴∠AOC=30°,∴∠BOC=∠BOA﹣AOC=60°;当OB与⊙A相切于D点时,如图,同样可得到∠AOD=30°,∴∠BOC=∠BOA+AOC=120°,∴当OB与⊙A相切时,OB旋转的角度为60°或120°.故答案为60°或120°.点评:本题考查了直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d <r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.15.(2014•吉林二模)如图,∠APB=30°,点O是射线PB上的一点,OP=5cm,若以点O为圆心,半径为1.5cm 的⊙O沿BP方向移动,当⊙O与PA相切时,圆心O移动的距离为2或8cm.考点:直线与圆的位置关系.分析:首先根据题意画出图形,然后由切线的性质,可得∠O′CP=90°,又由∠APB=30°,O′C=1cm,即可求得O′P 的长,继而求得答案.解答:解:①如图1,当⊙O平移到⊙O′位置时,⊙O与PA相切时,且切点为C,连接O′C,则O′C⊥PA,即∠O′CP=90°,∵∠APB=30°,O′C=1.5cm,∴O′P=2O′C=3cm,∵OP=5cm,∴OO′=OP﹣O′P=2(cm);②如图2:同理可得:O′P=3cm,∴O′O=8cm.故答案为:2或8.点评:此题考查了切线的性质与含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2014•松江区三模)已知在△ABC中,AB=AC=13,BC=10,点D、E分别是AB、AC的中点,那么以点D 为圆心,DE为半径的圆与直线BC的位置关系是相离.考点:直线与圆的位置关系.分析:过点A作AF⊥BC于点F,根据勾股定理求出AF的长,再由点D、E分别是AB、AC的中点得出DE是△ABC的中位线,故可得出DE即GF的长,由此可得出结论.解答:解:过点A作AF⊥BC于点F,∵AB=AC=13,BC=10,∴BF=BC=5,∴AF===12.∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=5,GF=AF=6,∵5<6,∴⊙D与直线BC的位置关系是相离.故答案为:相离.点评:考查了等腰三角形的性质和勾股定理,三角形的面积,解题的关键是得到点D到直线AC的距离.17.(2012•兰州)如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB 的取值范围是8<AB≤10.考点:直线与圆的位置关系;勾股定理;垂径定理.专题:计算题.分析:解决此题首先要弄清楚AB在什么时候最大,什么时候最小.当AB与小圆相切时有一个公共点,此时可知AB最小;当AB经过同心圆的圆心时,弦AB最大且与小圆相交有两个公共点,此时AB最大,由此可以确定所以AB的取值范围.解答:解:如图,当AB与小圆相切时有一个公共点D,连接OA,OD,可得OD⊥AB,∴D为AB的中点,即AD=BD,在Rt△ADO中,OD=3,OA=5,∴AD=4,∴AB=2AD=8;当AB经过同心圆的圆心时,弦AB最大且与小圆相交有两个公共点,此时AB=10,所以AB的取值范围是8<AB≤10.故答案为:8<AB≤10点评:此题考查了直线与圆的位置关系,涉及的知识有:垂径定理,勾股定理,以及切线的性质,其中解题的关键是抓住两个关键点:1、当弦AB与小圆相切时最短;2、当AB过圆心O时最长.18.(2012•兰州)如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是﹣≤x≤且x≠0.考点:直线与圆的位置关系;坐标与图形性质.专题:压轴题;数形结合.分析:由题意得x有两个极值点,过点P与⊙O相切时,x取得极值,作出切线,利用切线的性质求解即可.解答:解:将OA平移至P'D的位置,使P'D与圆相切,连接OD,由题意得,OD=1,∠DOP'=45°,∠ODP'=90°,故可得OP'=,即x的极大值为,同理当点P在y轴左边时也有一个极值点,此时x取得极小值,x=﹣,综上可得x的范围为:﹣≤x≤.又∵DP'与OA平行,∴x≠0,故答案为:﹣≤x≤且x≠0.点评:此题主要考查了直线与圆的位置关系,分别得出两圆与圆相切时求出OP的长是解决问题的关键,难度一般,注意两个极值点的寻找.19.(2010•武昌区模拟)已知点A(3,1),⊙A与坐标轴共有三个公共点,则半径为,3.考点:直线与圆的位置关系;坐标与图形性质.专题:推理填空题.分析:由已知A(3,1),可以知道圆心A到X轴的距离为1,到Y轴的距离为3,到原点的距离为=,由此可以确定),⊙A与坐标轴共有三个公共点时圆的半径是和3.解答:解:当半径小于3时,⊙A与坐标轴共有2个公共点,当半径等于3时,⊙A与y轴相切且与x轴有2个交点,共有3个公共点,当半径等于A到原点的距离=时,共有3个公共点,当半径大于时,⊙A与坐标轴共有4个公共点.故答案为:,3.点评:此题考查的知识点是直线与圆的位置关系及坐标与图形性质,关键是能够正确分析出圆与坐标轴有3个公共点时的位置关系.20.(2005•乌兰察布)如图:半径为2的圆心P在直线y=2x﹣1上运动,当⊙P与x轴相切时圆心P的坐标为(1.5,2)或(﹣0.5,﹣2).考点:直线与圆的位置关系;坐标与图形性质.专题:压轴题;动点型.分析:根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是2或﹣2.当y=2时,则x=1.5;当y=﹣2时,则x=﹣0.5.解答:解:∵P的圆心在直线y=2x﹣1上∴设P(x,2x﹣1)(1)当圆与x正半轴相切时,则2x﹣1=2,x=1.5,∴P(1.5,2);(2)当圆与x负半轴相切时,则2x﹣1=﹣2,x=﹣0.5∴P(﹣0.5,﹣2),∴由(1)(2)可知P的坐标为:(1.5,2)或(﹣0.5,﹣2).点评:此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.三.解答题(共2小题)21.(2014•攀枝花)如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC 于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若AB=13,sinB=,求CE的长.考点:切线的判定;圆周角定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)连接AD,利用直径所对的圆周角是直角和等腰三角形的三线合一可以得到AB=AC;(2)连接OD,利用平行线的判定定理可以得到∠ODE=∠DEC=90°,从而判断DE是圆的切线;(3)根据AB=13,sinB=,可求得AD和BD,再由∠B=∠C,即可得出DE,根据勾股定理得出CE.解答:(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°∴AD⊥BC,又D是BC的中点,∴AB=AC;(2)证明:连接OD,∵O、D分别是AB、BC的中点,∴OD∥AC,∴∠ODE=∠DEC=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)解:∵AB=13,sinB=,∴=,∴AD=12,∴由勾股定理得BD=5,∴CD=5,∵∠B=∠C,∴=,∴DE=,∴根据勾股定理得CE=.点评:本题目考查了切线的判定以及等腰三角形的判定及性质、圆周角定理及切线的性质,涉及的知识点比较多且碎,解题时候应该注意.22.(2014•天水)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.考点:切线的判定与性质.专题:几何图形问题.分析:(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDA+∠ADO=90°,根据切线的判定推出即可;(2)根据勾股定理求出DC,根据切线长定理求出DE=EB,根据勾股定理得出方程,求出方程的解即可.解答:解:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=6,即BE=6.点评:本题考查了切线的性质和判定,勾股定理,切线长定理,圆周角定理,等腰三角形的性质和判定的应用,题目比较典型,综合性比较强,难度适中.。
24.2.2直线和圆的位置关系

d
要点归合纳作探究 (用圆心O到直线的距离d与圆的半径r的关系来区分)
o
o
dr
r d
o r
d
∟
直线和圆相交 直线和圆相切 直线和圆相离 数形结合: 位置关系
d< r d= r d> r 数量关系
公共点 个数
练一练:
1.已知圆的半径为6cm,设直线和圆心的距离为d : (1)若d=4cm ,则直线与圆 相交 , 直线与圆有_2___个公共点. (2)若d=6cm ,则直线与圆_相__切___, 直线与圆有__1__个公共点. (3)若d=8cm ,则直线与圆_相__离___, 直线与圆有__0__个公共点.
A.(-1,-2)
B.(1,2)
C.(-1.5,-2) D.(1.5,-2)
解析:过点A作AQ⊥MN于Q,连接AN,设半径为r,由垂 径定理有MQ=NQ,所以AQ=2,AN=r,NQ=4-r,利用 勾股定理可以求出NQ=1.5,所以N点坐标为(-1,-2).故 选A.
拓展提升:已知☉O的半径r=7cm,直线l1 // l2,且l1 与☉O相切,圆心O到l2的距离为9cm.求l1与l2的距离.
0个:相离;1个:相切;2个:相交
d>r:相离 d=r:相切 d<r:相交
特别提醒:在图中没有d要先做出该垂线段
课后作业
见《学练优》本课时练习
B
当r=2.4cm或3cm≤r<4cm时,⊙C与线
段AB有一个公共点.
5
4
D 当2.4cm<r≤3cm 时,⊙C与线段AB有
C 3 A 两公共点.
例2 如图,Rt△ABC的斜边AB=10cm,∠A=30°.
(1) 以点C为圆心,当半径为多少时,AB与☉C相切?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.2直线和圆的位置关系(2)配套练习
一、选择题:
1.⊙O 的半径为6,⊙O 的一条弦AB 为63,以3为半径的同心圆与直线AB 的位置关系是( )
A .相离
B .相交
C .相切
D .不能确定 2.下列说法正确的是( )
A .与圆有公共点的直线是圆的切线.
B .和圆心距离等于圆的半径的直线是圆的切线;
C .垂直于圆的半径的直线是圆的切线;
D .过圆的半径的外端的直线是圆的切线
3、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 4.⊙O 内最长弦长为m ,直线l 与⊙O 相切,设点O 到l 的距离为d ,则d 与m 的关系是( )
A .d =m
B .d =2m
C .d >2
m
D .d <2
m
二、填空题
5、如图,若把太阳看成一个圆,则太阳与地平线l 的位置关系是
6、如图,已知∠AOB=30°,M 为OB 边上任意一点,以M 为圆心,•2cm•为半径作⊙M,当OM=______cm 时,⊙M 与OA 相切.
7、如图所示,∠ABC=90°,O 为射线BC 上一点,以点O 为圆心,1/2BO 长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 时与⊙O 相切 8、如图6,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当 ∠CAB 的度数等于______时,AC 才能成为⊙O 的切线.
三、解答题
9. 如图,直角梯形ABCD 中,∠A=∠B=90°,AD ∥BC
,E
为AB 上一点,DE 平分
∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?
10、如图所示,直线AB经过⊙O上的一点C,并且OA=OB,CA=CB,证明:AB 是⊙O的切线。
11、如图所示,AB是⊙O的直径,C为⊙O上的一点,AD⊥CD,AC平分∠BAD,请问CD与⊙O相切吗?试说明理由。
拓展迁移
12如图,AB是⊙O直径,⊙O过AC的中点D,DE⊥BC,垂足为E.
(1)由这些条件,你能得出哪些结论?(要求:不准标其他字母,找结论过程中所连的辅助线不能出现在结论中,不写推理过程,写出4个结论即可)
(2)若∠ABC为直角,其他条件不变,除上述结论外你还能推出哪些新的正确结论?并画出图形.(要求:写出6个结论即可,其他要求同(1))
答案:
一、选择题:
C B A B
二、填空题
相切 4 30° 60°
三、解答题
9. 用角平分线定理证明EF=EA=EB即可
拓展迁移
①DE与⊙O相切,AB=BC,DE2+CE2=CD2,∠C+∠CDE=90°
②BC是⊙O的切线,有DE=1/2AB等.
12.①DE与⊙O相切,AB=BC,DE2+CE2=CD2,∠C+∠CDE=90°
②BC是⊙O的切线,有DE=1/2AB等.。