五年级下册数学要背概念及公式
小学五年级数学概念及公式(人教版)

第一单元小数乘法1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.如:1.5×0.8就是求1.5的十分之八是多少.1.5×1.8就是求1.5的1.8倍是多少.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.p 3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小.4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.6、(P11)小数四则运算顺序跟整数是一样的.7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.注意:如果被除数的位数不够,在被除数的末尾用0补足.11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.第三单元观察物体15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.第四单元简易方程16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.加号、减号除号以及数与数之间的乘号不能省略.17、a×a可以写作a•a或a ,a 读作a的平方. 2a表示a+a18、方程:含有未知数的等式称为方程.使方程左右两边相等的未知数的值,叫做方程的解.求方程的解的过程叫做解方程.19、解方程原理:天平平衡.等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.20、10个数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商21、所有的方程都是等式,但等式不一定都是等式.22、方程的检验过程:方程左边=……23、方程的解是一个数;解方程式一个计算过程.=方程右边所以,X=…是方程的解.第五单元多边形的面积23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2面积=长×宽字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a面积=边长×边长字母公式:S=a平行四边形的面积=底×高字母公式:S=ah三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母公式:S=ah÷2梯形的面积=(上底+下底)×高÷2 字母公式:S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】24、平行四边形面积公式推导:剪拼、平移25、三角形面积公式推导:旋转平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高.因为平行四边形面积=底×高,所以三角形面积=底×高÷226、梯形面积公式推导:旋转27、三角形、梯形的第二种推导方法老师已讲,自己看书两个完全一样的梯形可以拼成一个平行四边形, 知道就行.平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷228、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍.29、长方形框架拉成平行四边形,周长不变,面积变小.30、组合图形:转化成已学的简单图形,通过加、减进行计算.第六单元统计与可能性31、平均数=总数量÷总份数32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适. 第七单元数学广角33、数不仅可以用来表示数量和顺序,还可以用来编码.34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)0 5 4 0 0 1前3位表示邮区前4位表示县(市)最后2位表示投递局35、身份证码:18位1 3 0 52 1 1 9 7 8 03 0 1 0 0 1 9河北省邢台市邢台县出生日期顺序码校验码倒数第二位的数字用来表示性别,单数表示男,双数表示女.。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
五年级数学下册知识点归纳总结

五年级数学下册知识点归纳总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!五年级数学下册知识点归纳总结五年级数学下册知识点归纳总结【6篇】学习需要具备跨文化、多样性和包容性的能力,需要尊重和理解不同的文化、信仰和价值观。
【小学数学】人教版小学五年级数学概念、公式汇总(附应用题)

第一单元:小数乘法1、小数乘整数的意义与整数乘法的意义相同;就是求几个相同加数的和的简便运算。
如:1.2×5表示5个1.2是多少。
2、一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。
如:1.2×0.5表示求1.2的十分之五是多少。
3、小数乘法的计算方法:计算小数乘法;先按整数乘法算出积;再看因数中一共有几位小数;就从积的右边起数出几位;点上小数点。
乘得的积的小数位数不够;要在前面用0补足;再点上小数点。
4、一个数(0除外)乘1;积等于原来的数。
一个数(0除外)乘大于1的数;积比原来的数大。
一个数(0除外)乘小于1的数;积比原来的数小。
5、整数乘法的交换律、结合律和分配率;对于小数乘法也适用。
第二单元:小数除法1、小数除法的意义与整数除法的意义相同;是已知两个因数的积与其中一个因数;求另一个因数的运算。
如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6;求另一个因数是多少。
2、小数除以整数;按整数除法的方法去除;商的小数点要和被除数的小数点对齐。
如果除到末尾仍有余数;要添0再继续除。
3、被除数比除数大的;商大于1。
被除数比除数小的;商小于1。
4、计算除数是小数的除法;先移动除数的小数点;使它变成整数;除数的小数点向右移动几位;被除数的小数点也向右移动几位;数位不够的要添0补足。
再按照除数是整数的小数除法进行计算。
5、一个数(0除外)除以1;商等于原来的数。
一个数(0除外)除以大于1的数;商比原来的数小。
一个数(0除外)除以小于1的数;商比原来的数大。
6、A除以B=A÷B;A除B=B÷A;A去除B=B÷A;A被B除=A÷B。
7、一个数的小数部分;从某一位起;一个数字或者几个数字依次不断重复出现;这样的小数叫做循环小数。
8、小数部分的位数是有限的小数;叫做有限小数。
小数部分是无限的小数叫做无限小数。
小学五年级数学公式及概念汇总

在小学五年级数学学习中,会涉及到很多公式和概念。
这些公式和概念的掌握,对学生的数学学习至关重要。
下面是小学五年级数学公式及概念的汇总。
1.加法和减法公式:-加法交换律:a+b=b+a-加法结合律:(a+b)+c=a+(b+c)-加法零元素:a+0=a-减法定义:a-b=c,表示b加c等于a-减法与加法的关系:a-b=a+(-b)2.乘法和除法公式:-乘法交换律:a×b=b×a-乘法结合律:(a×b)×c=a×(b×c)-乘法分配律:a×(b+c)=a×b+a×c-除法定义:a÷b=c,表示b乘c等于a-除法与乘法的关系:a÷b=a×(1÷b)3.分数公式:-分数定义:分数由分子和分母组成,表示分子除以分母的结果-分数的约分:将分子和分母同时除以相同的数,使得分子和分母互质-分数的比较:分数a/b和c/d比较大小时,可以转换为a×d和b×c的大小比较-分数的加减乘除:分数的加减乘除按照公式进行计算4.小数公式:-小数定义:小数是非整数的数字,包括整数部分和小数部分-小数的大小比较:小数大小比较时,可将小数转换为相同位数的分数进行比较-小数的加减乘除:小数的加减乘除按照公式进行计算5.长度单位换算:-厘米、米、千米的换算:1米=100厘米,1千米=1000米-厘米和米的换算:1米=100厘米-千米和米的换算:1千米=1000米6.时长单位换算:-秒、分钟、小时的换算:1小时=60分钟,1分钟=60秒-分钟和小时的换算:1小时=60分钟-秒和分钟的换算:1分钟=60秒7.推理和解决问题概念:-推理:根据已知条件和规律,得出结论-解决问题:通过分析问题,运用合适的方法和策略,得到解决方案-解决问题的步骤:明确问题、分析问题、寻找策略、解决问题、检验答案以上是小学五年级数学公式及概念的汇总。
五年级数学下册概念

68、圆的面积公式:S 圆=π r 。圆的面积是半径平方的 π 倍。 69、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即 S 长方形 C =S 圆) ; 长方形的宽是圆的半径 (即 b=r) ; 长方形的长是圆周长的一半 (即 a= =π r) 。 2 即:S 长方形= a × b ↓ ↓ S圆 = πr × r 2 = πr S 圆 = π r2 注意:切拼后的长方形的周长比圆的周长多了两条半径。C 长方形=2π r+2r=C 圆+d 70、半圆的面积是圆面积的一半。S 半圆=π r2÷2 71、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径的倍数 2 72、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。 73、求圆环的面积一般是用外圆的面积减去内圆的面积,还可利用乘法分配律进行简便计算。 74、常用的平方数:112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400
2
3 =0.1875 16
1 1 1 1 =0.05 =0.04 =0.02 =0.01 20 25 50 100 第五单元:找规律 34、平移的次数+每次框出的个数=方格的总个数 35、平移的次数+1=得到不同和的个数 36、一共有多少种贴法=沿着长的贴法×沿着宽的贴法 37、中间的数×框出的个数=框出的每个数的和 第六单元:分数的基本性质 38、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0 除外) ,分数的大小不变。 39、约分:把一个分数化成同它相等,但分子、分母都比较小的分数。约分时,通常要约成 最简分数。 (分子和分母只有公因数 1,这样的分数叫最简分数) 约分方法:直接除以分子、分母的最大公因数。 例如: 40、通分:把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母 分数,叫做通分。通分过程中,相同的分母叫做这几个分数的公分母。通分时,一般用原来 几个分母的最小公倍数作公分母。 41、比较异分母分数的方法:1.先通分转化成同分母的分数再比较。2.化成小数后再比较。 42、球的反弹高度实验的结论: (1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说 明同一种球的弹性是一样的。 (2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的, 这说明不同的球的弹性是不一样的。 第七单元:统计 43、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组 相关数据进行比较。 44、作复式折线统计图时要注意:①描点;②标数;③实线和虚线的区分(画线用直尺) ;④ 统计时间。 45、上海位于北半球,悉尼位于南半球,所以上海的夏季和冬季与悉尼正好相反。 46、 无论什么形状的图形, 如果能既无空隙, 又不重叠地铺在平面上, 这种铺法叫做密铺。 密 铺的条件:几个图形的内角拼接在一起时,其内角和等于 360 度。 第八单元:分数的加减 47、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要 约成最简分数;计算后要验算。 48、分母的最大公因数是 1,分子都是 1 的分数相加,得数的分母是两个分母的积,分子是 两个分母的和。分母的最大公因数是 1,分子都是 1 的分数相减,得数的分母是两个分 母的积,分子是两个分母的差。 1 49、分母分子相差越大,分数就越接近 0;分子接近分母的一半,分数就接近 ;分子分母越 2 接近,分数就越接近 1。 50、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往 右,依次运算;有小括号,先算小括号里的算式。 51、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。 第十单元:圆 52、画圆时,针尖固定的一点是圆心,通常用字母 O 表示;连接圆心和圆上任意一点的线段 是半径,通常用字母 r 表示;通过圆心并且两端都在圆上的线段是直径,通常用字母 d 表示。 圆是曲线图形。
【小学数学】人教版小学五年级数学上下册概念及公式

五年级上册数学公式小结第一单元:小数的乘法一个因数乘另一个因数;两个因数的小数位数之和有几位;积就有几位。
例如:3.45×6.29=21.7005但是如果乘得的积小数末尾是零;零就可以省略不写。
例如:3.65×6.72=24.528第二单元:小数的除法一个数(零除外)除以小于一的数;商比被除数大。
一个数(零除外)除以大于一的数;商比被除数小。
例如:30÷0.5=6030÷5= 6两数相除;除数是小数;被除数也是小数;除数将小数点向右移成整数;移了几位;被除数也就向右移动几位;相互抵消。
例如:2.36÷0.02=236÷2小数部分的位数是无限小数;叫做无限小数。
例如:0.232323……就是一个无限小数。
第四单元:简易方程1. 功效×时间=工作总量工作总量÷功效= 时间工作总量÷时间= 功效例如:王师傅一小时加工8个零件;他工作一天加工多少个零件?解:设王师傅工作一天加工x 个零件功效×时间=工作总量X=24×8X=192答:王师傅工作一天加工192个零件。
2.路程=时间×速度用字母表示为:s=vt例如:小明和小红家相距560米;学校在两家的中央; 小明和小红在校门口分手;七分钟后他们同时到家;小明平均每分钟走45米;问小红平均每分钟走多少米?解:设小红平均每分钟走x米.路程=时间×速度560=(x+45)×7560÷7=x+45X=35答:小红平均每分钟走35米。
等式不变的规律:方程两边同时加上或减去相同的数;左右两边仍然相等。
方程两边同时乘或除以相同的数(零除外);左右两边仍然相等。
第五单元多边形的面积1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米100公顷=1平方千米1平方千米=1000000平方米1平方米=100平方分米1公顷=10000平方米平行四边形的面积=底×高用字母表示为:s=ah 正方形的面积=边长×边长用字母表示为:s=a 的平方长方形的面积=长×宽用字母表示为:s=ab 三角形的面积=(底×高)÷2用字母表示为:s=(a×h) ÷2梯形的面积=(上底+下底)×高÷2用字母表示为:s=(a+b)h÷2一个长方形木条拉成平行四边形;周长不变;面积改变。
人教版小学五年级数学下册概念及公式

五年级数学下册概念公式一、旋转、平移时针旋转1小时就是30度二、因数与倍数1、如果a×b=c(a、b、c都就是不为0的整数),那么a、b就就是c得因数,c就就是a、b的倍数。
2、一个数的因数个数就是有限的,其中最小的因数就是1,最大的因数就是它本身。
一个数的倍数就是无限的,其中最小的倍数就是它本身,没有最大倍数。
3、奇数与偶数:自然数中,就是2的倍数的数叫做偶数(0也就是偶数),不就是2的倍数的数叫做奇数。
偶数:个位就是0,2,4,6,8的数。
奇数:个位不就是0,2,4,6,8的数。
4、倍数特征:2的倍数的特征:各位就是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之与就是3(或9)的倍数。
5的倍数的特征:各位就是0,5。
5、质数与合数:质数:一个数,如果只有1与它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1与它本身还有别的约数,这样的数叫做合数。
1不就是质数,也不就是合数。
1既不就是质数也不就是合数。
6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加就是偶数, 奇数个奇数相加就是奇数。
偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数就是某个数的因数,那么这个质数就就是这个数的质因数。
8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
9、100以内的质数表:2、 3、 5、 7、 11、 13、17、1923、29、31、 37、 41、 43、47、5359、61、67、71、 73、 79、83、89、97三、长方体的认识、表面积、体积与容积1、长方体有6个面,一般都就是长方形(特殊情况有两个相对的面就是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、观察物体(三)1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、知道一个方向的平面图,可以摆出多种立体图形。
3、知道三个方向的平面图,只能摆出一种立体图形。
二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)a÷b=c(a、b、c都是整数),那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
(4)2、3、5的倍数特征a、个位上是0,2,4,6,8的数都是2的倍数。
b、一个数各位..上的数的和是3的倍数,这个数就是3的倍数。
C、个位上是0或5的数,是5的倍数。
d、能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
e、如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.关系:奇数±偶数=奇数奇数±奇数=偶数偶数±偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。
“1”既不是质数,也不是合数。
0:最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97关系:奇数×奇数=奇数质数×质数=合数6、最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:A;最小的偶数是:0;A的最小倍数是:A;最小的质数是:2;最小的自然数是:0;最小的合数是:4;7、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法...分解质因数(一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2×3×5)8、互质数:公因数只有1的两个非零自然数,叫做互质数。
两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和8两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;三长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4 长=棱长总和÷4-宽-高 a=L÷4-b-h宽=棱长总和÷4-长-高 b=L÷4-a-h高=棱长总和÷4-长-宽 h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷124、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2 S=2(ab+ah+bh)-ab S=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示: S= 6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。
(表面积相应增加)注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh长=体积÷宽÷高 a=V÷b÷h宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽 h=V÷a÷b正方体的体积=棱长×棱长×棱长V=a×a×a = a3读作“a的立方”表示3个a相乘,(即a·a·a)长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升(1 L = 1 dm3 1 ml = 1 cm3)长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。
(所以,对于同一个物体,体积大于容积。
)注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:V物体 =V现在-V原来也可以 V物体 =S×(h现在- h原来)V物体 =S×h升高×进率7、【体积单位换算】高级单位低级单位÷进率低级单位 高级单位 进率:1立方米=1000立方分米=立方厘米 (立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米注意:长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
【单位换算】 高级单位 低级单位低级单位 高级单位长度单位:1千米 =1000 米 1 分米=10 厘米 1厘米=10毫米 1分米=100毫米1米=10分米=100厘米=1000毫米 (相邻单位进率10)面积单位:1平方千米=100公顷 1平方米=100平方分米1平方分米=100平方厘米 1公顷=10000平方米 (平方相邻单位进率100)质量单位:1吨=1000千克 1千克=1000克人 民 币:1元=10角 1角=10分 1元=100分四 分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(把一群羊平均分成若干份,一群羊就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如45 的分数单位是154、分数与除法A ÷B=A B(B ≠0,除数不能为0,分母也不能够为0) 例如: 4÷5=45 5、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。
真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≥13、带分数:带分数由整数和真分数组成的分数。
带分数>1.4、真分数<1≤假分数 真分数<1<带分数6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:(2)整数化为假分数,用整数乘以分母得分子 。
×进率÷进率(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变(4)1等于任何分子和分母相同的分数。
7、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
9、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
10、求最大公因数和最小公倍数方法用12和16来举例(1)、求法一:(列举求同法)(2)、求法二:(分解质因数法)(3)、求法三:(短除法)11、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
12、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。