2019年杨浦区初三数学二模
2018~2019上海市杨浦区二模数学

2018~2019学年杨浦区九年级二模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1. 如图,已知数轴上的点A 、B 表示实数分别为a 、b ,那么下列等式成立的是( )(A )b a b a -=+; (B )b a b a --=+; (C )a b b a -=+;(D )b a b a +=+.2. 下列关于x 的方程一定有实数解的是( )(A )012=--mx x ;(B )3=ax ; (C )046=-⋅-x x ;(D )111-=-x xx . 3. 如果0<k ,0>b ,那么一次函数b kx y +=的图像经过( )(A )第一、二、三象限; (B )第二、三、四象限;(C )第一、三、四象限;(D )第一、二、四象限.4. 为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( ) (A )80;(B )被抽取的80名初三学生; (C )被抽取的80名的初三学生体重;(D )该校初三学生的体重.5. 如图,已知ADE △是ABC △绕点A 逆时针旋转所得,其中点D 在射线AC 上,设旋转角为α,直线BC与直线DE 交于点F ,那么下列结论不正确的是( ) (A )α=∠BAC ; (B )α=∠DAE ;(B )α=∠CFD ;(D )α=∠FDC .6. 在下列条件中,能够判定一个四边形是平行四边形的是( )(A )一组对边平行,另一组对边相等; (B )一组对边相等,一组对角相等;(C )一组对边平行,一条对角线平分另一条对角线; (D )一组对边相等,一组对角线平分另一条对角线.二、填空题(本大题共12题,每题4分,满分48分) 7. 计算:=+522)(y y .8. 分解因式:=-+-1222b ab a . 9. 方程x x -=-11的解为: .10. 如果正比例函数x k y )2(-=的函数值y 随x 的增大而减小,且它的图像与反比例函数xky =的图像没有公共点,那么k 的取值范围是 . 11. 从5-,310-,6-,1-,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为 .12.某校为了了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分.那么,其中喜欢足球的学生数占被调查总人数的百分比为 %.13.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为.14.如图,ABC△中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设aAB=,bAC=,用a,b表示GE,那么=GE.15.正八边形的中心角是度.16.如图,点M、N分别在AOB∠的边OA、OB上,将AOB∠沿直线MN翻折,设点O落在点P处,如果当4=OM,3=ON时,点O、P的距离为4,那么折痕MN的长为.17.如果当0≠a,0≠b,且ba≠时,将直线baxy+=和直线abxy+=称为一对“对偶直线”,把它们的公共点称为该“对偶直线”的“对偶点”,那么请写出“对偶点”为)4,1(的一对“对偶直线”:.18.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知5=AD,2=AE,4=AF.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是.第14题图第16题图第18题图三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:3630cos4)23()21()3(032+︒--+--.类别 A B C D E F类型足球羽毛球乒乓球篮球排球其他人数10 4 6 220. (本题满分10分)已知关于x 、y 的二元一次方程组⎩⎨⎧+=-=+.3;122ab y b x a by ax 的解为⎩⎨⎧-==.1,1y x ,求a 、b 的值.21. (本题满分10分,第(1)小题4分,第(2)小题6分)已知在梯形ABCD 中,BC AD //,BC DC ⊥,且1=AD ,3=DC ,点P 为边AB 上一动点,以P 为圆心,BP 为半径的圆交边BC 于电脑Q .(1)求AB 的长; (2)当BQ 的长为940时,请通过计算说明圆P 与直线DC 的位置关系.22. (本题满分10分,第(1)小题4分,第(2)小题2分,第(3)小题3分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y (米)与甲出发时间x (分)之间的关系如图中折线CD BC AB OA ---所示.(1)求线段AB 的表达式,并写出自变量x 的取值范围; (2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?23. (本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在AABC △中,BC AB =,︒=∠90ABC ,点D 、E 分别是边AB 、BC 的中点,点F 、G 是边AC 的三等分点,DF 、EG 的延长线相交于点H ,联结HA 、HC .求证:(1)四边形FBGH 是菱形;(2)四边形ABCH 是正方形.24. (本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)已知开口向上的抛物线222+-=ax ax y 与y 轴的交点为A ,顶点为B ,对称轴与x 轴的交点为C ,点A 与点D 关于对称轴对称,直线BD 与x 轴交于点M ,直线AB 与直线OD 交于点N .(1)求点D 的坐标;(2)求点M 的坐标(用含a 的代数式表示);(3)当点N 在第一象限,且ONA OMB ∠=∠时,求a 的值.25. (本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦AO BC =,点D 为BC 的中点. (1)如图1,联结AC 、OD ,设OAC α∠=,请用α表示AOD ∠;(2)如图2,当点B 为»AC 的中点时,求点A 、D 之间的距离; (3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.图1 图2 图3。
2019年初三二模杨浦区(答案)

六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。
粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。
如果无误,请将条形码粘贴在答题卡的对应位置。
万一粘贴不理想,也不要撕下来重贴。
只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。
2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。
如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。
写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。
3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。
若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。
不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。
4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。
如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。
5 不要把文具带出考场考试结束,停止答题,把试卷整理好。
然后将答题卡放在最上面,接着是试卷、草稿纸。
不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。
请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。
6 外语听力有试听环外语考试14:40入场完毕,听力采用CD播放。
14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。
听力部分考试结束时,将会有“听力部分到此结束”的提示。
听力部分结束后,考生可以开始做其他部分试题。
杨浦区2018学年度第二学期初三质量调研语文试卷(满分150分,考试时间100分钟)一、文言文阅读(40分)(一)默写(15分)1.昨夜江边春水生,_________________。
上海市杨浦区2019年5月中考二模数学试卷含答案解析

2019年上海市杨浦区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(2019•杨浦区二模)点A是数轴上的任意一点,则下列说法正确的是()A.点A表示的数一定是整数B.点A表示的数一定是分数C.点A表示的数一定是有理数D.点A表示的数可能是无理数考点:实数与数轴.分析:根据数轴上的点与实数一一对应,可得答案.解答:解:数轴上的点与实数一一对性应,故A错误;数轴上的点与实数一一对应,故B错误;根据互为相反数的两个数的绝对值相等,故C错误;数轴上的点与实数一一对应,所以点A有可能是无理数,故D正确;故选:D.点评:本题考查了数轴,注意数轴上的点与实数一一对应.2.(2019•杨浦区二模)下列关于x的方程一定有实数解的是()+=0 B.=1﹣x C.x2﹣x﹣1=0 D.x2﹣x+1=0A.考点:根的判别式;无理方程;分式方程的解.分析:根据解分式方程、无理方程的步骤和方法以及根的判别式逐一判定即可.解答:解:A、去分母的2﹣1﹣x=0,解得x=1,x﹣1=0,此方程无解,此选项错误;B、两边平方的x﹣2=x2﹣2x+1,x2﹣3x+3=0,△=(﹣3)2﹣4×1×3<0,此方程无解,此选项错误;C、△=(﹣1)2﹣4×1×(﹣1)>0,此方程有两个不相等的实数根,此选项正确;D、△=(﹣1)2﹣4×1×1<0,此方程无解,此选项错误.故选:C.点评:此题考查一元二次方程根的判别式,以及解分式方程和无理方程的步骤.3.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A.0.1 B.0.17 C.0.33 D.0.4考点:频数(率)分布直方图.专题:应用题;图表型.分析:首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总次数(30)即可得到仰卧起坐次数在25~30之间的频率.解答:解:∵从频数率分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,而仰卧起坐总次数为:3+10+12+5=30,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.4.故选D.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4.(2019•杨浦区二模)将抛物线y=x2﹣2平移到抛物线y=x2+2x﹣2的位置,以下描述正确的是()A.向左平移1个单位,向上平移1个单位B.向右平移1个单位,向上平移1个单位C.向左平移1个单位,向下平移1个单位D.向右平移1个单位,向下平移1个单位考点:二次函数图象与几何变换.分析:根据配方法,可化成顶点式,根据两顶点式函数图象的关系,左加右减,上加下减,可得答案.解答:解:y=x2+2x﹣2转化成y=(x+1)2﹣3,将抛物线y=x2﹣2平移到抛物线y=(x+1)2﹣3,图象向左平移了1个单位,向下平移了1个单位,故选:C.点评:本题考查了二次函数图象与几何变换,先化成顶点式,再根据左加右减,上加下减.5.(2019•杨浦区二模)下列图形既是中心对称又是轴对称的是()A.菱形B.梯形C.正三角形D.正五边形考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(2019•杨浦区二模)下列条件一定能推得△ABC与△DEF全等的是()A.在△ABC和△DEF中,∠A=∠B,∠D=∠E,AB=DEB.在△ABC和△DEF中,AB=AC,∠A=∠F,FD=FEC.在△ABC和△DEF中,==1,∠B=∠ED.在△ABC和△DEF中,==1,∠B=∠E考点:全等三角形的判定.分析:根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.解答:解:A、两三角形没有一个相等的条件,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;B、两三角形只有一个相等的条件∠A=∠F,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;C、两三角形只有一个相等的条件∠B=∠E,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项错误;D、能推出AB=DE,BC=EF,∠B=∠E,符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项正确;故选D.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(2019•杨浦区二模)计算:+=5.考点:二次根式的加减法.分析:先将二次根式化为最简,然后合并同类二次根式即可.解答:解:原式=2+3=;故答案为:5.点评:本题考查了二次根式的加减,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.8.(2019•杨浦区二模)方程的根是x=2.考点:无理方程.专题:计算题.分析:先把方程两边平方,使原方程化为整式方程x+2=x2,解此一元二次方程得到x1=2,x2=﹣1,把它们分别代入原方程得到x2=﹣1是原方程的增根,由此得到原方程的根为x=2.解答:解:方程两边平方得,x+2=x2,解方程x2﹣x﹣2=0得x1=2,x2=﹣1,经检验x2=﹣1是原方程的增根,所以原方程的根为x=2.故答案为x=2.点评:本题考查了无理方程:根号内含有未知数的方程叫无理方程;解无理方程的基本思想是把无理方程转化为有理方程来解,常常采用平方法去根号.9.(2019•杨浦区二模)如果反比例函数y=的图象在第二、四象限,那么k的取值范围是k>1.考点:反比例函数的性质.分析:由于反比例函数y=的图象在二、四象限内,则1﹣k<0,解得k的取值范围即可.解答:解:由题意得,反比例函数y=的图象在二、四象限内,则1﹣k<0,解得k>1.故答案为:k>1.点评:本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k>0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.10.(2019•杨浦区二模)函数y=kx+b的大致图象如图所示,则当x<0时,y的取值范围是y<1.考点:一次函数与一元一次不等式.分析:观察图象得到直线与y轴的交点坐标为(0,1),且图象从左往右逐渐上升,根据一次函数性质得到y随x的增大而增大,所以当x<0时,y<1.解答:解:∵一次函数y=kx+b(k≠0)与y轴的交点坐标为(0,1),且图象从左往右逐渐上升,∴y随x的增大而增大,∴当x<0时,y<1.故答案为y<1.点评:本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象从左往右逐渐上升,y随x的增大而增大;当k<0,图象从左往右逐渐下降,y随x的增大而减小;直线与y轴的交点坐标为(0,b).11.(2019•杨浦区二模)黄老师在数学课上给出了6道练习题,要求每位同学独立完成.现将答对的题目数与相应的人数列表如下:答对题目数 2 3 4 5 6相应的人数 1 2 6 8 3则这些同学平均答对 4.5道题.考点:加权平均数.分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解答:解:该组数据的平均数===4.5(道).故答案为4.5.点评:本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5,6这五个数的平均数,对平均数的理解不正确.12.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是.考点:列表法与树状图法.分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:由树状图可知共有4×3=12种可能,和为奇数的有8种,所以概率是.点评:考查概率的概念和求法,用到的知识点为:概率=所求情况数与总情况数之比.13.(2019•杨浦区二模)在Rt△ABC中,∠C=90°,点D为AB边上的中点,如果=,=,那么=﹣(用,表示).考点:*平面向量.分析:根据线段中点的定义表示出,再根据向量的三角形法则解答即可.解答:解:∵点D为AB边上的中点,∴==,由三角形法则得,=﹣=﹣.故答案为:﹣.点评:本题考查了平面向量,向量的问题熟练掌握平行四边形法则和三角形法则是解题的关键.14.(2019•杨浦区二模)如果人在一斜坡坡面上前行100米时,恰好在铅垂方向上上升了10米,那么该斜坡的坡度是1:3.考点:解直角三角形的应用-坡度坡角问题.分析:先求出这个人走的水平距离,再根据坡度的定义即可求解.解答:解:由题意得:人在一斜坡坡面上前行100米时,恰好在铅垂方向上上升了10米,则这个人走的水平距离==30,∴坡度i=10:30=1:3.故答案为:1:3.点评:此题主要考查学生对坡度的理解.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.15.(2019•杨浦区二模)如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,联结DC.如果AD=2,BD=6,那么△ADC的周长为14.考点:线段垂直平分线的性质;等腰三角形的判定与性质.分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得∠BCD的度数,继而求得∠ADC的度数,则可判定△ACD是等腰三角形,继而求得答案.解答:解:∵BC的垂直平分线交AB于点D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周长为:AD+DC+AC=2+6+6=14.故答案为:14.点评:此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度适中,注意掌握转化思想与数形结合思想的应用.16.(2019•杨浦区二模)如图,在Rt△ABC中,∠A=90°,∠B=30°,BC=10,以A为圆心画圆,如果⊙A与直线BC相切,那么⊙A的半径长为.考点:切线的性质.分析:此题可以转化为求斜边BC上的高的问题;在Rt△ABC中,∠B=30°,可知∠C=60°;进而在Rt△ADC中,由AC及∠C的正弦值可求得AD的长,即⊙A的半径.解答:解:过点A作AD⊥BC,∵∠A=90°,∠B=30°,∴∠C=60°∵BC=10,∴AC=BC=5,∴AD=AC•sin60°=,故答案为:.点评:此题考查了切线的性质,将由切线求半径的问题转化为解直角三角形的问题是解题的关键.17.(2019•杨浦区二模)如果将点(﹣b,﹣a)称为点(a,b)的“反称点”,那么点(a,b)也是点(﹣b,﹣a)的“反称点”,此时,称点(a,b)和点(﹣b,﹣a)是互为“反称点”.容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0).请再写出一个这样的点:(3,﹣3).考点:关于原点对称的点的坐标.专题:新定义.分析:首先正确理解题意,然后再找出符合条件的点的坐标即可.解答:解:根据题意可得这样的点是(3,﹣3),故答案为:(3,﹣3);点评:此题主要考查了点的坐标,关键是正确理解题意.18.(2019•杨浦区二模)如图,在菱形ABCD中,AB=a,∠ABC=α.将菱形ABCD绕点B顺时针旋转(旋转角小于90°),点A、C、D分别落在A′、C′、D′处,当A′C′⊥BC时A′D=2acos﹣a (用含有a和α的代数式表示).考点:菱形的性质;旋转的性质.分析:当A′C′⊥BC时,D'在BC的延长线上,据此作出图形,利用三角函数求解.解答:解:∵四边形ABCD是菱形,∴对角线AC⊥BD,又∵A'C'⊥BC,∴D'在BC的延长线上.∵∠ABC=α,∴BD=2a•cos,而A'D=BD﹣BA'=2a•cos﹣a.故答案是:2a•cos﹣a.点评:本题考查了菱形的性质,根据菱形的性质,注意到D'和A'的位置,D'在BC的延长线上是关键.三、解答题:(本大题共7题,满分78分)19.(10分)先化简,再求值:,其中.考点:二次根式的化简求值;分式的化简求值.专题:压轴题.分析:把分式化简,然后把x的值代入化简后的式子求值就可以了.解答:解:原式=×+=,当x=+1时,原式==.点评:分式先化简再求值的问题,难度不大.20.(10分)(2019•杨浦区二模)解不等式组:,且写出使不等式组成立的所有整数.考点:解一元一次不等式组;一元一次不等式组的整数解.专题:计算题.分析:分别求出不等式组两不等式的解集,找出解集的公共部分确定出不等式组的解集,找出解集中的所有整数解即可.解答:解:,由①得:x≤3;由②得:x>﹣2,∴不等式组的解集是﹣2<x≤3,则使不等式组成立的所有整数是﹣1、0、1、2、3.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.(10分)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练,在0<x<15的时段内,速度较快的人是;(2)求甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式;(3)当x=15时,两人相距多少米?在15<x<20的时段内,求两人速度之差.考点:一次函数的应用.专题:压轴题;图表型.分析:根据图象信息可知,甲运动员图象经过(0,5000)(20,0)所以可用待定系数法求解.距离可根据图象求出,时间可求:20﹣15=5.速度=也就迎刃而解了.解答:解:(1)根据图象信息可知他们在进行5000米的长跑训练,(1分)直线倾斜程度越大表明变化大;甲.(2)设所求直线的解析式为:y=kx+b(0≤x≤20),(1分)由图象可知:b=5000,当x=20时,y=0,∴0=20k+5000,解得k=﹣250.(1分)即y=﹣250x+5000(0≤x≤20)(1分)(3)当x=15时,y=﹣250x+5000=﹣250×15+5000=5000﹣3750=1250.(1分)两人相距:(5000﹣1250)﹣(5000﹣2000)=750(米).(1分)两人速度之差:=150(米/分).(1分)点评:找准本题突破点是甲运动员的图象很关键.22.(10分)(2019•杨浦区二模)如图,已知⊙0是△ABC的外接圆,半径长为5,点D、E分别是边AB和边AC是中点,AB=AC,BC=6.求∠OED的正切值.考点:垂径定理;三角形中位线定理;圆周角定理;解直角三角形.分析:连接AO并延长交BC于点H,连接OC,先根据AB=AC得出=,根据垂径定理得出OH及AH的长,由锐角三角函数的定义得出tan∠HAC=tan∠OAE=,再根据D、E分别是边AB和边AC的中点,得出DE∥BC,根据直角三角形的性质得出∠OAE+∠AED=90°,∠AED+∠OED=90°,故可得出∠OAE=∠OED,进而得出结论.解答:解:连接AO并延长交BC于点H,连接OC,∵AB=AC,∴=,∵O为圆心,∴AH⊥BC,BH=HC,∴HC=3,∵半径OC=5,∴OH=4,AH=9,∴在Rt△AHC中,tan∠HAC===,即tan∠OAE=,∵D、E分别是边AB和边AC的中点,∴DE∥BC,∴AH⊥DE,∴∠OAE+∠AED=90°,∵E是边AC的中点,O为圆心,∴OE⊥AC,∴∠AED+∠OED=90°,∴∠OAE=∠OED,∴tan∠OED=tan∠OAE=.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(12分)(2019•杨浦区二模)梯形ABCE中,AD∥BC,DC⊥BC,CE⊥AB于点E,点F在边CD上,且BE•CE=BC•CF.(1)求证:AE•CF=BE•DF;(2)若点E为AB中点,求证:AD•BC=2EC2﹣BC2.考点:相似三角形的判定与性质.专题:证明题.分析:(1)求出∠B=∠DCE,证△BCE∽△CEF,推出∠BCE=∠CEF,推出EF∥BC,根据平行线分线段成比例定理得出即可.(2)求出EF=(AD+BC),根据相似三角形的性质得出CE2=BC•EF,代入求出即可.解答:证明:(1)∵CE⊥AB,∴∠B+∠BCE=90°,∵DC⊥BC,∴∠DCE+∠BCE=90°,∴∠B=∠DCE,∵BE×CE=BC×CF,∴=,∴△BCE∽△CEF,∴∠BCE=∠CEF,∴EF∥BC,∴=,即AE•CF=BE•DF.(2)∵在梯形ABCD中,EF∥BC∥AD,E为AB中点,∴F为DC的中点,∴EF=(AD+BC),∵△BCE∽△CEF,∴,即CE2=BC•EF,∴CE2=(AD+BC)•BC,整理得:AD•BC=2EC2﹣BC2.点评:本题考查了相似三角形的性质和判定,平行线分线段成比例定理,三角形的中位线的应用,主要考查了学生的推理能力,题目比较典型,难度适中.24.(12分)(2019•杨浦区二模)直线y=kx﹣6过点A(1,﹣4),与x轴交于点B,与y轴交于点D,以点A为顶点的抛物线经过点B,且交y轴于点C.(1)求抛物线的表达式;(2)如果点P在x轴上,且△ACD与△PBC相似,求点P的坐标;(3)如果直线l与直线y=kx﹣6关于直线BC对称,求直线l的表达式.考点:二次函数综合题.专题:综合题.分析:(1)将A坐标代入一次函数解析式求出k的值,进而求出B坐标,根据A为抛物线的顶点,设出抛物线顶点形式,将B坐标代入求出a的值,确定出抛物线解析式;(2)由k的值确定出一次函数解析式,求出D的坐标,由抛物线解析式求出C坐标,由A的坐标得到∠DCA=45°,且AC=,CD=3,根据B与C坐标得到∠OCB=45°,可得出∠DCA=∠OCB,由△ACD与△PBC相似,且点P在x轴上,得到点P在B点的左侧,分两种情况考虑:当△BPC∽△ACD时;当△BCP∽△CAD时,分别求出BP的长,即可确定出P的坐标;(3)过点D作DH⊥BC并延长DH到点M,使HM=HD,连接CM、BM,可得直线BM即为直线l,且CM=CD,∠MCH=∠DCH,根据C与D坐标得到CM=CD,根据B与C坐标得到三角形BOC为等腰直角三角形,利用等腰三角形的性质得到∠OCB=45°,进而得到∠MCH=45°,∠MCD=90°,得出MC⊥y轴,确定出M坐标,设直线l的解析式为y=kx+b,将B与M坐标代入求出k与b的值,即可确定出直线l解析式.解答:解:(1)∵y=kx﹣6过点A(1,﹣4),∴﹣4=k﹣6,∴k=2,即y=2x﹣6,令y=0,得到x=3,即B(3,0),∵以点A为顶点的抛物线经过点B,∴设解析式为y=a(x﹣1)2﹣4,将x=3,y=0代入得:0=a(3﹣1)2﹣4,解得:a=1,∴抛物线的表达式为y=x2﹣2x﹣3;(2)∵k=2,∴y=kx﹣6,即y=2x﹣6,∴D(0,﹣6),∵抛物线与y轴交于点C,∴C(0,﹣3),∵A(1,﹣4),∴∠DCA=45°,且AC=,CD=3,∵B(3,0),C(0,﹣3),∴∠OCB=45°,∴∠DCA=∠OCB,∵△ACD与△PBC相似,且点P在x轴上,∴点P在B点的左侧,当△BPC∽△ACD时,=,即=,解得:BP=2;当△BCP∽△CAD时,=,即=,解得:BP=9,∴BP=2或9,∴点P坐标为(1,0)或(﹣6,0);(3)过点D作DH⊥BC并延长DH到点M,使HM=HD,连接CM、BM,∴直线BM即为直线l,且CM=CD,∠MCH=∠DCH,∵C(0,﹣3),D(0,﹣6),∴CM=CD=3,∵B(3,0),C(0,﹣3),∴∠OCB=45°,∴∠DCH=∠OCB=45°,∴∠MCH=45°,∴∠MCD=90°,即MC⊥y轴,∵MC=CD=3,∴M(﹣3,﹣3),设直线l的解析式为y=kx+b,则,解得:,∴直线l的解析式为y=x﹣.点评:此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,相似三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握待定系数法是解本题的关键.25.(14分)(2019•杨浦区二模)已知梯形ABCD中,AD∥BC,AD=1,BC=2,sinB=,过点C 在∠BCD的内部作射线交射线BA于点E,使得∠DCE=∠B.(1)如图1,当ABCD为等腰梯形时,求AB的长;(2)当点E与点A重合时(如图2),求AB的长;(3)当△BCE为直角三角形时,求AB的长.考点:相似形综合题.分析:(1)作AM∥DC交BC于点M,AH⊥BC于点H,AD=1,BC=2,sinB=,得到AM=AB,BH=HM=,结合三角函数的定义可以求得AB的长.(2))由AD∥BC得到∠DAC=∠ACB,又∵∠DCE=∠B,∴△ADC∽△CAB,得到AC2=AD•BC,求得AC的长度,结合勾股定理,即可构造出关于AB的方程,解方程即可求得相应的AB的长度.(3)分两种情况来讨论:如图3﹣1,当BE⊥CE时,∵∠DCE=∠B,∠B+∠BCE=90°,∴∠DCE+∠BCE=90°,作AH⊥BC,则HC=AD=1,∴BH=BC﹣HC=2﹣1=1,由sinB即可求得cosB的值,继而求得AB的长度;如图3﹣2,当BC⊥CE时,延长DA交CE的延长线于点F,由△FDC∽△CEB,可以得到AE的长度,继而求得AB的长度.解答:解:(1)如图1,作AM∥DC交BC于点M,作AH⊥BC于点H,∵AD∥BC,∴AMCD为平行四边形,∴AM=DC,MC=AD=1,∴BM=BC﹣MC=2﹣1=1,∵四边形ABCD为等腰梯形,∴AB=DC,∴AB=AM,∴BH=HM=在直角三角形ABH中,∵sinB==,∴cosB=,∵,∴.(2)如图2,∵AD∥BC,∴∠DAC=∠ACB,又∵∠DCE=∠B,∴△ADC∽△CAB,∴,∴AC2=AD•BC=2,作AF⊥BC于点F,设AB=x,∵sinB=,∴AF=,BF=,∴,在直角三角形AFC中,AF2+CF2=AC2,即:,∴,即当点A与点E重合时,AB=,或者AB=.(3)∵△BCE为直角三角形,∴BE⊥CE或BC⊥CE,情况一,当BE⊥CE时,如图3﹣1,∵∠DCE=∠B,∠B+∠BCE=90°,∴∠DCE+∠BCE=90°,作AH⊥BC,则HC=AD=1,∴BH=BC﹣HC=2﹣1=1,又由sinB=可得,cosB=,解得:.情况二,当BC⊥CE时,如图3﹣2,延长DA交CE的延长线于点F,设AE=a,则,在直角三角形BCE中,∵BC=2,sinB=,∴BE=,EC=,∵AD∥BC,BC⊥CE,∴AD⊥EC,又∵∠DCE=∠B,∴△FDC∽△CEB,∴,∴,∴.∴∴当△BCE为直角三角形时,.点评:本题主要考查了相似三角形的判定与性质的综合应用,解答本题的关键在于学会用分类讨论和类比的思想解决问题.。
2019年上海各区初三二模数学试卷25题专题汇编(学生版)

2019年上海各区初三二模数学试卷25题专题汇编(学生版)题型一、等腰三角形的分类讨论25(2019崇明)、如图,在梯形ABCD 中,AD ∥BC ,AB=DC=8,BC=12,cos C=53,点E 为AB 边上一点,且BE=2,点F 是BC 边上的一个动点(与点B 、点C 不重合),点G 在射线CD 上,且∠EFG=∠B ,设BF 的长为x ,CG 的长为y .(1)当点G 在线段DC 上时,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当以点B 为圆心,BF 长为半径的⊙B 与以点C 为圆心,CG 长为半径的⊙C 相切时,求线段BF 的长;(3)当△CFG 为等腰三角形时,直接写出线段BF 的长.题型二、动点产生的相似综合25(2019黄浦).(本题满分14分)已知四边形ABCD 中,AD ⊙BC ,2ABC C ∠=∠,点E 是射线AD 上一点,点F 是射线DC 上一点,且满足BEF A ∠=∠.(1)如图8,当点E 在线段AD 上时,若AB=AD ,在线段AB 上截取AG=AE ,联结GE .求证:GE=DF ;(2)如图9,当点E 在线段AD 的延长线上时,若AB =3,AD =4,1cos 3A =,设AE x =,DF y =,求y 关于x 的函数关系式及其定义域;(3)记BE 与CD 交于点M ,在(2)的条件下,若⊙EMF 与⊙ABE 相似,求线段AE 的长.D A BCEF 图9ABCE F G D图825(2019金山)、如图,在Rt △ABC 中,∠CC=90°,AC=16cm ,AB=20cm ,动点D 由点C 向点A 以每秒1cm 速度在边AC 上运动,动点E 由点C 向点B 以每秒34cm 速度在边BC 上运动,若点D 、点E 从点C 同时出发,运动t 秒(t > 0),联结DE. (1)求证:△DCE ∽△BCA ; (2)设经过点D 、C 、E 三点的圆为⊙P. ① 当⊙P 与边AB 相切时,求t 的值;② 在点D 、点E 运动过程中,若⊙P 与边AB 交于点F 、G (点F 在点G 左侧),联结CP 并延长CP 交边AB 于点M ,当△PFM 与△CDE 相似时,求t 的值.25(2019长宁)、如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,点P 在边AC 上(点P 与点A 不重合),以点P 为圆心,PA 为半径作⊙P 交边AB 于另一点D ,ED ⊥DP ,交边BC 于点E.(1)求证:BE=DE ;(2)若BE=x ,AD=y ,求y 关于x 的函数关系式并写出定义域;(3)延长ED 交CA 延长线于点F ,联结BP ,若△BDP 与△DAF 相似,求线段AD 的长.题型三、动点产生的面积问题思路点拨:首先考虑底乘以高。
【2019年中考数学】上海市杨浦区2019届中考二模数学试卷及答案

杨浦区2019学年度第二学期初三质量调研 数学试卷 2019.4(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列各数是无理数的是( )(A)︒60cos (B)1.3 (C)半径为1cm 的圆周长 (D )38 2.下列运算正确的是( )(A )m n m 2=⋅ (B )632)(m m = (C )33)(mn mn = (D )326m m m =÷3.若y x 33->,则下列等式一定成立的是( )(A) 0>+y x (B )0>-y x (C )0<+y x (D )0<-y x 4.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图1所示,其中阅读时间是9-10小时的组频数和组频率分别是( ) (A)15和0.125 (B )15和0.25 (C)30和0.125 (D )30和0.255.下列图形是中心对称图形的是( )(A) (B) (C) (D)6.如图2,半径为1的圆1O 与半径为3的圆2O 内切,如果半径为2的圆与圆1O 和圆2O 都相切,那么这样的圆的个数是( ) (A )1 (B) 2 (C) 3 (D)4二、填空题:(本大题共12题,每题4分,满分49分) 0.1500.1250.1000.0750.0500.025小时数(个)频率组距图112108642O 2O 19.当0,0,a b <>时,化简=b a 2 9. 函数211++-=x xy 中,自变量x 取值范围是 10. 如果反比例函数xky =的图像经过点),2(1y A 与),3(2y B ,那么21y y 的值等于11. 三人中至少两人性别相同的概率是12. 25位同学10秒钟跳绳的成绩汇总如下表; 人数 1 2 3 4 5 10 次数15925101920那么跳绳的中位数是13.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟。
上海市杨浦区2019-2020学年中考数学模拟试题(2)含解析

上海市杨浦区2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30°B.60°C.50°D.40°2.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣73.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1084.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.5.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.6.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-17.下列计算正确的是()A.3a2﹣6a2=﹣3B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a68.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.129.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为()A.19°B.29°C.38°D.52°10.如图是一个几何体的三视图,则这个几何体是()A.B.C.D.11.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-12.下列二次根式,最简二次根式是()A8B.12C13D0.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.14.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为.15.肥皂泡的泡壁厚度大约是0.0007mm,0.0007mm用科学记数法表示为_______mm.16.计算:(32+1)(32﹣1)=.17.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=3x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,A B的长是_____.以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则¼2019201818.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.20.(6分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC 的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若5CE=2,求线段AE的长.21.(6分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生; (2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.22.(8分)如图,以△ABC 的一边AB 为直径作⊙O , ⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E . (1) 求证:DE ⊥AC ;(2) 连结OC 交DE 于点F ,若3sin 4ABC ∠=,求OFFC 的值.23.(8分)已知四边形ABCD 是⊙O 的内接四边形,AC 是⊙O 的直径,DE ⊥AB ,垂足为E (1)延长DE 交⊙O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC=PB ;(2)过点B 作BG ⊥AD ,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若3 ,DH=1,∠OHD=80°,求∠BDE 的大小.24.(10分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:某市自来水销售价格表类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一0~18(含18) 1.901.00阶梯二18~25(含25) 2.85阶梯三25以上 5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议25.(10分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)26.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.27.(12分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表x ﹣1 1 1 3y ﹣1 3 5 3下列结论:①ac<1;②当x>1时,y的值随x值的增大而减小.③3是方程ax2+(b﹣1)x+c=1的一个根;④当﹣1<x<3时,ax2+(b﹣1)x+c>1.其中正确的结论是.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.2.C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.考点:科学记数法.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】2500000000的小数点向左移动9位得到2.5,所以2500000000用科学记数表示为:2.5×1.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.5.C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.6.A【解析】【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a =()2=.故选A . 7.B 【解析】 【分析】根据整式的运算法则分别计算可得出结论. 【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确; 选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确; 选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确; 选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确. 故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式. 8.B 【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解. 详解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD 是∠BAC 的角平分线,90C ,∠=︒ ∴DE=CD=2, ∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等. 9.C 【解析】 【分析】由AO ∥BC ,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°. 【详解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故选:C.【点睛】本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.10.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.11.D【解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.12.C【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】A=B2=,不是最简二次根式,故本选项不符合题意;CD10=,不是最简二次根式,故本选项不符合题意.故选C.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.1【解析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径.解:扇形的弧长为:1445180π⨯=4π;这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.7×10-1.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 0.0007=7×10-1. 故答案为:7×10-1. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 16.1. 【解析】 【分析】根据平方差公式计算即可. 【详解】原式=()2-12 =18-1 =1故答案为1. 【点睛】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.17.201923π【解析】【分析】先根据一次函数方程式求出B 1点的坐标,再根据B 1点的坐标求出A 2点的坐标,得出B 2的坐标,以此类推总结规律便可求出点A 2019的坐标,再根据弧长公式计算即可求解,.【详解】直线,点A 1坐标为(2,0),过点A 1作x 轴的垂线交直线于点B 1可知B 1点的坐标为(2,,以原O 为圆心,OB 1长为半径画弧x 轴于点A 2,OA 2=OB 1,OA 2,点A 2的坐标为(4,0),这种方法可求得B 2的坐标为(4,,故点A 3的坐标为(8,0),B 3(8, 以此类推便可求出点A 2019的坐标为(22019,0),则¼20192018A B 的长是2019201960221803ππ⨯⨯=,故答案为:201923π.【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.18.235-【解析】【分析】由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.【详解】设MN与OP交于点E,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,2223OM OE-=在Rt△ONE中,225ON OE-∴35故答案为35【点睛】本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF 即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.证明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD .在△ABC 与△EFD 中,∴△ABC ≌△EFD (AAS ), ∴AB=EF .20.(1)证明见解析;(2)证明见解析;(3)42. 【解析】试题分析:(1)依据AE=EF ,∠DEC=∠AEF=90°,即可证明△AEF 是等腰直角三角形;(2)连接EF ,DF 交BC 于K ,先证明△EKF ≌△EDA ,再证明△AEF 是等腰直角三角形即可得出结论; (3)当AD=AC=AB 时,四边形ABFD 是菱形,先求得EH=DH=CH=2,Rt △ACH 中,AH=32,即可得到AE=AH+EH=42.试题解析:解:(1)如图1.∵四边形ABFD 是平行四边形,∴AB=DF .∵AB=AC ,∴AC=DF .∵DE=EC ,∴AE=EF .∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形;(2)如图2,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED .∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE .∵∠DKC=∠C ,∴DK=DC .∵DF=AB=AC ,∴KF=AD .在△EKF 和△EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,∴△EKF ≌△EDA (SAS ),∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AF=2AE .(3)如图3,当AD=AC=AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD=AC ,ED=EC ,可得AE 垂直平分CD ,而CE=2,∴EH=DH=CH=2,Rt △ACH 中,AH=22252()()+=32,∴AE=AH+EH=42.点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.21.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.22.(1)证明见解析(2)8 7【解析】【分析】(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.【详解】解:(1)连接OD . ∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90° .∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC .∴∠DEC=∠ODE= 90° .∴DE⊥AC .(2)连接AD . ∵OD∥AC,∴OF OD FC EC=.∵AB为⊙O的直径,∴∠ADB= ∠ADC =90° . 又∵D为BC的中点,∴AB=AC.∵sin∠ABC=ADAB=34,设AD= 3x , 则AB=AC=4x, OD= 2x.∵DE⊥AC,∴∠ADC= ∠AED= 90°.∵∠DAC= ∠EAD,∴△ADC∽△AED.∴AD AC AE AD=.∴2AD AE AC=⋅.∴94=AE x. ∴74=EC x.∴87== OF ODFC EC.23.(1)详见解析;(2)∠BDE=20°.【解析】【分析】(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=12∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.【详解】(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC 是平行四边形, ∴BC=DH=1,在Rt △ABC 中,tan ∠ACB=ABBC= ∴∠ACB=60°, ∴BC=12AC=OD , ∴DH=OD ,在等腰△DOH 中,∠DOH=∠OHD=80°, ∴∠ODH=20°, 设DE 交AC 于N , ∵BC ∥DE ,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD )=40°, ∴∠DOC=∠DOH ﹣∠NOH=40°, ∵OA=OD , ∴∠OAD=12∠DOC=20°, ∴∠CBD=∠OAD=20°, ∵BC ∥DE ,∴∠BDE=∠CBD=20°. 【点睛】本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.24.(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%. 【解析】 试题分析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可知小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x 立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x ≤24,即小明家每月的用水量不要超过24立方米. 试题解析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可得:小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)≤75.3,解得:x≤24,∴当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.25.(1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江的宽度约为21米.(2)①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答26.(1)y=﹣x2﹣2x+1;(2)(﹣32,154)【解析】【分析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+32)2+94,根据二次函数的性质可知当x=-32时,PE最大,△PDE的周长也最大.将x=-32代入-x2-2x+1,进而得到P点的坐标.【详解】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),∴9a-3b+c=0 {c=3a+b+c=0,解得a=-1 {b=-2 c=3,∴抛物线的解析式为y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则-3k+b=0 {b=3,解得k=1{b=3,即直线AB的解析式为y=x+1.设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+32)2+94,所以当x=﹣32时,PE最大,△PDE的周长也最大.当x=﹣32时,﹣x2﹣2x+1=﹣(﹣32)2﹣2×(﹣32)+1=154,即点P坐标为(﹣32,154)时,△PDE的周长最大.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.27.①③④.【解析】试题分析:∵x=﹣1时y=﹣1,x=1时,y=3,x=1时,y=5,∴a-b1 {35cca b c+=-=++=,解得a1{33ca=-==,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正确;对称轴为直线332(1)2x=-=⨯-,所以,当x>32时,y的值随x值的增大而减小,故②错误;方程为﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一个根,正确,故③正确;﹣1<x<3时,ax2+(b﹣1)x+c>1正确,故④正确;综上所述,结论正确的是①③④.故答案为①③④.【考点】二次函数的性质.。
2019-2020学年上海市杨浦区中考数学二模试卷(有标准答案)

上海市杨浦区中考数学二模试卷一、选择题1.下列等式成立的是( )A . =±2B . =πC .D .|a+b|=a+b2.下列关于x 的方程一定有实数解的是( )A .2x=mB .x 2=mC . =mD . =m3.下列函数中,图象经过第二象限的是( )A .y=2xB .y=C .y=x ﹣2D .y=x 2﹣24.下列图形中既是轴对称图形又是中心对称图形的是( )A .正五边形B .正六边形C .等腰三角形D .等腰梯形5.某射击选手在一次训练中的成绩如下表所示,该选手训练成绩的中位数是( )成绩(环)6 7 8 9 10 次数1 42 6 3A .2B .3C .8D .9 6.已知圆O 是正n 边形A 1A 2…A n 的外接圆,半径长为18,如果弧A 1A 2的长为π,那么边数n 为( )A .5B .10C .36D .72二、填空题7.计算: = . 8.写出的一个有理化因式: . 9.如果关于x 的方程mx 2﹣mx+1=0有两个相等的实数根,那么实数m 的值是 .10.函数y=+x 的定义域是 .11.如果函数y=x 2﹣m 的图象向左平移2个单位后经过原点,那么m= .12.在分别写有数字﹣1,0,2,3的四张卡片中随机抽取一张,放回后再抽取一张,如果以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标,那么所得点落在第一象限的概率为 .13.在△ABC 中,点M 、N 分别在边AB 、AC 上,且AM :MB=CN :NA=1:2,如果,那么=(用表示). 14.某大型超市有斜坡式的自动扶梯,人站在自动扶梯上,沿着斜坡向上方向前进13米时,在铅锤方向上升了5米,如果自动扶梯所在的斜坡的坡度i=1:m ,那么m= .15.某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频率分布直方图(不完整),则图中m的值是.16.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为.17.在矩形ABCD中,AB=3,AD=4,点O为边AD的中点,如果以点O为圆心,r为半径的圆与对角线BD所在的直线相切,那么r的值是.18.如图,将平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,其中点B、C、D分别落在点E、F、G 处,且点B、E、D、F在一直线上,如果点E恰好是对角线BD的中点,那么的值是.三、解答题19.计算:.20.解不等式组:,并写出它的所有非负整数解.21.已知,在Rt△ABC中,∠ACB=90°,∠A=30°,点M、N分别是边AC、AB的中点,点D是线段BM的中点.(1)求证:;(2)求∠NCD的余切值.22.某山山脚的M处到山顶的N处有一条长为600米的登山路,小李沿此路从M走到N,停留后再原路返回,期间小李离开M处的路程y米与离开M处的时间x分(x>0)之间的函数关系如图中折线OABCD所示.(1)求上山时y关于x的函数解析式,并写出定义域:(2)已知小李下山的时间共26分钟,其中前18分钟内的平均速度与后8分钟内的平均速度之比为2:3,试求点C的纵坐标.23.已知:如图,在直角梯形纸片ABCD中,DC∥AB,AB>CD>AD,∠A=90°,将纸片沿过点D的直线翻折,使点A落在边CD上的点E处,折痕为DF,联结EF并展开纸片.(1)求证:四边形ADEF为正方形;(2)取线段AF的中点G,联结GE,当BG=CD时,求证:四边形GBCE为等腰梯形.24.已知在直角坐标系中,抛物线y=ax2﹣8ax+3(a<0)与y轴交于点A,顶点为D,其对称轴交x轴于点B,点P在抛物线上,且位于抛物线对称轴的右侧.(1)当AB=BD时(如图),求抛物线的表达式;(2)在第(1)小题的条件下,当DP∥AB时,求点P的坐标;(3)点G在对称轴BD上,且∠AGB=∠ABD,求△ABG的面积.25.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.上海市杨浦区中考数学二模试卷参考答案与试题解析一、选择题1.下列等式成立的是()A.=±2 B.=πC.D.|a+b|=a+b【考点】实数的运算;绝对值.【专题】推理填空题;实数.【分析】A:根据求一个数的算术平方根的方法计算即可.B:分别把、π化成小数,判断出它们的大小关系即可.C:根据8=23,可得=,据此判断即可.D:①当a+b是正有理数时,a+b的绝对值是它本身a+b;②当a+b是负有理数时,a+b的绝对值是它的相反数﹣(a+b);③当a+b是零时,a+b的绝对值是零.【解答】解:∵ =2,∴选项A不正确;∵≈3.142857,π≈3.1415927,∴≠π,∴选项B不正确;∵8=23,∴=,∴选项C正确;当a+b是正有理数时,|a+b|=a+b;当a+b是负有理数时,|a+b|=﹣(a+b);当a+b是零时,|a+b|=0;∴选项D不正确.故选:C.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.下列关于x的方程一定有实数解的是()A.2x=m B.x2=m C. =m D. =m【考点】无理方程;一元一次方程的解;根的判别式;分式方程的解.【分析】根据一元一次方程的解、无理方程、一元二次方程和分式方程的解的特点分别对每一项进行判断即可.【解答】解:A.2x=m,一定有实数解;B.x2=m,当m<0时,无解;C. =m,当m=0或﹣时无解;D. =m,当m<0时,无解;故选A.【点评】本题考查了一元一次方程的解、无理方程、一元二次方程和分式方程,关键是灵活运用有关知识点进行判断.3.下列函数中,图象经过第二象限的是()A.y=2x B.y=C.y=x﹣2 D.y=x2﹣2【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】分别根据正比例函数的性质、反比例函数的性质、二次函数的性质、一次函数的性质进行解答.【解答】解:A、∵y=2x的系数2>0,∴函数图象过一三象限,故本选项错误;B、∵y=中,2>0,∴函数图象过一、三象限,故本选项错误;C、在y=x﹣2中,k=1>0,b=﹣2<0,则函数过一三四象限,故本选项错误;D、∵y=x2﹣2开口向上,对称轴是y轴,且函数图象过(0,﹣2)点,则函数图象过一、二、三、四象限,故本选项正确;故选D .【点评】本题考查了正比例函数的性质、反比例函数的性质、二次函数的性质、一次函数的性质,关键是根据系数的符号判断图象的位置.4.下列图形中既是轴对称图形又是中心对称图形的是( )A .正五边形B .正六边形C .等腰三角形D .等腰梯形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求即可.【解答】解:A 、是轴对称图形.不是中心对称图形,故A 错误;B 、是轴对称图形,也是中心对称图形.故B 正确;C 、是轴对称图形,不是中心对称图形.故C 错误;D 、是轴对称图形.不是中心对称图形,故D 错误.故选:B .【点评】本题主要考查的是中心对称图形与轴对称图形,掌握中心对称图形与轴对称图形的特点是解题的关键.5.某射击选手在一次训练中的成绩如下表所示,该选手训练成绩的中位数是( )成绩(环)6 7 8 9 10 次数1 42 6 3A .2B .3C .8D .9 【考点】中位数.【分析】根据中位数的定义先把这组数据从小到大排列,找出最中间的数或中间两数的平均数即可.【解答】解:∵共16次射击,∴中位数是第8和第9的平均数,分别为9环、9环,∴中位数为9环,故选:D .【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.已知圆O 是正n 边形A 1A 2…A n 的外接圆,半径长为18,如果弧A 1A 2的长为π,那么边数n 为( )A .5B .10C .36D .72【考点】正多边形和圆.【分析】设正多边形的中心角的度数是x ,根据弧长公式即可求得x 的值,然后利用360度除以x 即可得到.【解答】解:设正多边形的中心角的度数是x ,根据题意得: =π,解得:x=10.则n==36.故选C.【点评】本题考查了正多边形的计算以及扇形的弧长公式,正确求得中心角的度数是关键.二、填空题7.计算: = ﹣1 .【考点】分式的加减法.【分析】把原式化为﹣,再根据同分母的分式相加减进行计算即可.【解答】解:原式=﹣==﹣1.故答案为:﹣1.【点评】本题考查了分式的加减法则,注意:同分母的分式相加减,分母不变,把分子相加减.8.写出的一个有理化因式: +b .【考点】分母有理化.【分析】根据这种式子的特点:﹣b和+b的互为有理化因式解答即可.【解答】解:的一个有理化因式: +b;故答案为: +b.【点评】本题主要考查分母有理化的方法,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.9.如果关于x的方程mx2﹣mx+1=0有两个相等的实数根,那么实数m的值是 4 .【考点】根的判别式;一元二次方程的定义.【分析】根据方程mx2﹣mx+1=0有两个相等的实数根,则根的判别式△=b2﹣4ac=0,列出m的方程,求出m 的值即可.【解答】解:∵关于x的方程mx2﹣mx+1=0有两个相等的实数根,∴△=(﹣m)2﹣4×m=0,且m≠0,解得m=4.故答案是:4.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.函数y=+x的定义域是x≠2.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,2﹣x≠0,解得x≠2.故答案为:x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.如果函数y=x2﹣m的图象向左平移2个单位后经过原点,那么m= 4 .【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=x2﹣m的顶点坐标为(0,m),再利用点平移的规律得到把点(0,﹣m)平移后的对应点的坐标为(﹣2,﹣m),接着利用顶点式写出平移后的抛物线解析式为y=(x+2)2﹣m,然后把原点坐标代入可求出m的值.【解答】解:函数y=x2﹣m的顶点坐标为(0,m),把点(0,﹣m)向左平移2个单位后所得对应点的坐标为(﹣2,﹣m),所以平移后的抛物线解析式为y=(x+2)2﹣m,把点(0,0)代入=(x+2)2﹣m得4﹣m=0,解得m=4.故答案为4.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.在分别写有数字﹣1,0,2,3的四张卡片中随机抽取一张,放回后再抽取一张,如果以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标,那么所得点落在第一象限的概率为.【考点】列表法与树状图法;点的坐标.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所得点落在第一象限的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,所得点落在第一象限的有4种情况,∴所得点落在第一象限的概率为: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.13.在△ABC中,点M、N分别在边AB、AC上,且AM:MB=CN:NA=1:2,如果,那么= ﹣(用表示).【考点】*平面向量.【分析】首先根据题意画出图形,由AM:MB=CN:NA=1:2,可表示出与,再利用三角形法则求解即可求得答案.【解答】解:∵AM:MB=CN:NA=1:2,∴AM=AB,AN=AC,∵,∴=, =,∴=﹣=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是关键.14.某大型超市有斜坡式的自动扶梯,人站在自动扶梯上,沿着斜坡向上方向前进13米时,在铅锤方向上升了5米,如果自动扶梯所在的斜坡的坡度i=1:m,那么m= .【考点】解直角三角形的应用-坡度坡角问题.【分析】根据在一个斜面上前进13米,铅锤方向上升了5米,可以计算出此时的水平距离,水平高度与水平距离的比值即为坡度,从而可以解答本题.【解答】解:设在自动扶梯上前进13米,在铅锤方向上升了5米,此时水平距离为x米,根据勾股定理,得x2+52=132,解得,x=12(舍去负值),故该斜坡坡度i=5:12=1:m.所以m=.故答案为:m=.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是明确坡度的定义.15.某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频率分布直方图(不完整),则图中m的值是0.05 .【考点】频数(率)分布直方图.【分析】利用1减去其它组的频率即可求得.【解答】解:m=1﹣0.2﹣0.3﹣0.25﹣0.075=0.05.故答案是:0.05.【点评】本题考查了频率分布直方图,了解各组的频率的和是1是关键.16.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为y=,y=(0<k≤4)(答案不唯一).【考点】反比例函数图象上点的坐标特征.【专题】开放型.【分析】先根据正方形的性质得到B点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B 点的反比例函数解析式即可.【解答】解:∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y=(k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一).【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17.在矩形ABCD中,AB=3,AD=4,点O为边AD的中点,如果以点O为圆心,r为半径的圆与对角线BD所在的直线相切,那么r的值是.【考点】直线与圆的位置关系.【分析】根据题意画出图形,当以点O为圆心,r为半径的圆与对角线BD所在的直线相切,再利用△ODE∽△B DA,求出答案.【解答】解:如图所示:当以点O为圆心,r为半径的圆与对角线BD所在的直线相切,则OE⊥BD,且OE=r,∵∠OED=∠A=90°,∠ADE=∠EDO,∴△ODE∽△BDA,∴=,∵AB=3,AD=4,∴BD=5,∴=,解得:EO=.故答案为:.【点评】此题主要考查了直线与圆的位置关系以及相似三角形的判定与性质,正确得出△ODE∽△BDA是解题关键.18.如图,将平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,其中点B、C、D分别落在点E、F、G 处,且点B、E、D、F在一直线上,如果点E恰好是对角线BD的中点,那么的值是.【考点】旋转的性质;平行四边形的性质.【专题】计算题.【分析】先利用旋转的性质得∠1=∠2,BE=BD,AB=AE,再证明∠1=∠3,则可判断△BAE∽△BDA,利用相似比可得=,然后证明AD=BD即可得到的值.【解答】解:∵平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,点E恰好是对角线BD的中点,∴∠1=∠2,BE=BD,AB=AE,∵EF∥AG,∴∠2=∠3,∴∠1=∠3,∵∠ABE=∠DBA,∴△BAE∽△BDA,∴AB:BD=BE:AB,∠AEB=∠DAB,∴AB2=BD2,∴=,∵AE=AB,∴∠AEB=∠ABD,∴∠ABD=∠DAB,∴DB=DA,∴=.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是证明△BAE∽△BDA,三、解答题19.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方、开方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1+9+6×﹣||=10﹣2=10【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(4)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.20.解不等式组:,并写出它的所有非负整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.【解答】解:,解①得x<2,解②得x>﹣.则不等式组的解集是:﹣<x<2.则非负整数解是:0,1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.21.已知,在Rt△ABC中,∠ACB=90°,∠A=30°,点M、N分别是边AC、AB的中点,点D是线段BM的中点.(1)求证:;(2)求∠NCD的余切值.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)根据直角三角形的性质即可得到结论;(2)过M作MN⊥AB于H,由直角三角形的性质得到CN=AN=AB,由等腰三角形的性质得到∠ACN=∠A=30°,解直角三角形即可得到结论.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,点N分别是边AB的中点,点D是线段BM的中点,∴=, =,∴;(2)过M作MN⊥AB于H,∵点N分别是边AB的中点,∴CN=AN=AB,∴∠ACN=∠A=30°,∴∠NCD=∠MCD﹣30°=∠CMB﹣30°=∠MBA,∴设BC=2k,则MA=k,MH=k,HB=4k﹣k=k,∴cos∠NCD===.【点评】本题考查了相似三角形的判定和性质,解直角三角形,直角三角形的性质,正确的作出辅助线是解题的关键.22.某山山脚的M处到山顶的N处有一条长为600米的登山路,小李沿此路从M走到N,停留后再原路返回,期间小李离开M处的路程y米与离开M处的时间x分(x>0)之间的函数关系如图中折线OABCD所示.(1)求上山时y关于x的函数解析式,并写出定义域:(2)已知小李下山的时间共26分钟,其中前18分钟内的平均速度与后8分钟内的平均速度之比为2:3,试求点C的纵坐标.【考点】一次函数的应用.【分析】(1)由OA过原点O,故设上山时y关于x的函数解析式为y=kx,将点A的坐标代入函数解析式得出关于k的一元一次方程,解方程即可得出函数解析;(2)根据比例关系设下山前18分钟内的平均速度为2am/min,后8分钟内的平均速度为3am/min,结合路程=速度×时间,得出关于a的一元一次方程,解方程可求出a的值,再根据路程=速度×时间可得出C点的纵坐标.【解答】解:(1)设上山时y关于x的函数解析式为y=kx,根据已知可得:600=20k,解得:k=30.故上山时y关于x的函数解析式为y=30x(0≤x≤20).(2)设下山前18分钟内的平均速度为2am/min,后8分钟内的平均速度为3a/min,由已知得:18×2a+8×3a=600,解得:a=10.故8×3a=8×3×10=240(米).答:点C的纵坐标为240.【点评】本题考查了一次函数的应用、待定系数法求函数解析式以及一元一次方程的应用,解题的关键是:(1)待定系数法求函数解析式;(2)根据数量关系列出关于a的一元一次方程.本题属于基础题,难度不大,(1)没有难度;(2)巧用比例关系设未知数,解该类型题目时,由数量关系列出方程(或方程组)是关键.23.已知:如图,在直角梯形纸片ABCD中,DC∥AB,AB>CD>AD,∠A=90°,将纸片沿过点D的直线翻折,使点A落在边CD上的点E处,折痕为DF,联结EF并展开纸片.(1)求证:四边形ADEF为正方形;(2)取线段AF的中点G,联结GE,当BG=CD时,求证:四边形GBCE为等腰梯形.【考点】翻折变换(折叠问题);正方形的判定;等腰梯形的判定.【分析】(1)由题意知,AD=DE,易证四边形AFED是矩形,继而证得四边形AFED是正方形;(2)由BG与CD平行且相等,可得四边形BCDG是平行四边形,即证得CB=DG,在正方形AFED中,易证△DAG≌△EFG,则可得DG=EG=BC,即四边形GBCE是等腰梯形.【解答】(1)证明:∵DC∥AB,∠A=90°,∴∠ADE=90°,由折叠的性质可得:∠A=∠DEF=90°,AD=ED,AF=EF,∵四边形ADEF为矩形,∴四边形ADEF为正方形;(2)连接EG,DG,∵BG∥CD,且BG=CD,∴四边形BCDG是平行四边形.∴CB=DG.∵四边形ADEF是正方形,∴EF=DA,∠EFG=∠A=90°.∵G是AF的中点,∴AG=FG.在△DAG和△EFG中,,∴△DAG≌△EFG(SAS),∴DG=EG,∴EG=BC.∴四边形GBCE是等腰梯形.【点评】此题考查了直角梯形的性质,矩形的判定和性质,全等三角形的判定和性质以及等腰三角形的判定.注意证得四边形BCDG是平行四边形与△DAG≌△EFG是关键.24.已知在直角坐标系中,抛物线y=ax2﹣8ax+3(a<0)与y轴交于点A,顶点为D,其对称轴交x轴于点B,点P在抛物线上,且位于抛物线对称轴的右侧.(1)当AB=BD时(如图),求抛物线的表达式;(2)在第(1)小题的条件下,当DP∥AB时,求点P的坐标;(3)点G在对称轴BD上,且∠AGB=∠ABD,求△ABG的面积.【考点】二次函数综合题.【分析】(1)用抛物线的解析式化为顶点式确定顶点坐标,对称轴,利用两点间距离,即可;(2)先确定出直线AB解析式,再由DP∥AB确定出直线DP解析式,利用方程组确定出交点坐标;(3)利用平面坐标系中求三角形面积常用的方法解决,(选用坐标轴或平行于坐标轴的直线上的线段作为底).【解答】解:(1)∵y=ax2﹣8ax+3=a(x﹣4)2+3﹣16a,∴对称轴为x=4,B(4,0),A(0,3),∴AB=5,∵AB=BD,∴BD=5,∵抛物线的顶点为D,其对称轴交x轴于点B,∴3﹣16a=BD=5,∴a=﹣,∴y=x2+x+3,(2)∵B(4,0),A(0,3),∴直线AB解析式为y=﹣x+3,∵DP∥AB,设直线DP解析式为y=﹣x+b,∵D(4,5)在直线DP上,∴b=8,∴直线DP解析式为y=﹣x+8,由,∴x1=10,x2=4(舍),∴P(10,);(3)如图①以B为圆心,BA为半径作圆,交DB延长线于G1,∵BG=AB,∴∠BAG1=∠BG1A,∴∠AGB=∠ABD,∵AB=5,点G在对称轴BD上x=4,∴G1(4,﹣5),∴S△ABG1=×BG1×AH=×5×4=10;②以A为圆心,AG1为半径作圆,交BD延长线于G2,过点A作AH⊥BD于H,∴HG2=HG1=BH+BG1=8,∴BG2=11,∴G2(4,11),S△ABG2=×BG2×AH=×11×4=22;即:S△ABG=10或22,【点评】此题是二次函数综合题,主要考查了抛物线的一般形式化成顶点形式的方法,图象交点坐标的确定,两直线平行的特点,坐标系中确定三角形面积的常用方法,解本题的关键是确定出抛物线的解析式.25.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.【考点】圆的综合题.【分析】(1)如图1中,根据AB是直径,得△ABC是直角三角形,利用勾股定理即可解决问题.(2)如图2中,只要证明△OBC≌△OCD得BC=CD,即可解决问题.(3)如图3中,延长ON交BC的延长线于G,作GH⊥OB于H,先求出BG,根据tan∠HBG=2,利用勾股定理求出线段HB、HG,再利用CG∥DO得,由此即可解决.【解答】解;(1)如图1中,连接AC,∵AB是直径,∴∠ACB=90°,∵tan∠ABC=2,∴可以假设AC=2k,BC=k,∵AB=6,AB2=AC2+BC2,∴36=8k2+k2,∴k2=4,∵k>0,∴k=2,BC=2.(2)如图2中,∵△MBC与△MOC相似,∴∠MBC=∠MCO,∵∠MBC+∠OBC=180°,∠MCO+∠OCD=180°,∴∠OBC=∠OCD,∵OB=OC=OD,∴∠OBC=∠OCB=∠OCD=∠ODC,在△OBC和△OCD中,,∴△OBC≌△OCD,∴BC=CD=2.(3)如图3中,延长ON交BC的延长线于G,作GH⊥OB于H.∵BC∥OD,∴∠DOG=∠OGB=∠GOB,∴BO=BG=3,∵tan∠HBG=,设GH=2a,HB=a,∵BG2=GH2+HB2,∴8a2+a2=9,∴a2=1,∵a>0,∴a=1,HB=1,GH=2,OH=2,OG==2,∵GC∥DO,∴=,∴ON=×=.【点评】本题考查圆的有关知识、全等三角形的判定和性质、相似三角形的性质、勾股定理等知识,灵活应用这些知识解决问题是解题的关键,第三个问题的关键是利用平行线分线段成比例定理,属于中考压轴题.。
上海市杨浦区2019-2020学年中考数学二月模拟试卷含解析

上海市杨浦区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE 为半径作扇形EAB,π取3,则阴影部分的面积为()A.1324﹣4 B.72﹣4 C.6﹣524D.3252.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置()A.随点C的运动而变化B.不变C.在使PA=OA的劣弧上D.无法确定3.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10πC.11πD.12π4.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A .30°B .45°C .50°D .75°5.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为6,∠ADC=60°,则劣弧AC 的长为( )A .2πB .4πC .5πD .6π6.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个7.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π8.如图,已知直线 PQ ⊥MN 于点 O ,点 A ,B 分别在 MN ,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C ,使△ABC 是等腰三角形,则这样的 C 点有( )A .3 个B .4 个C .7 个D .8 个9.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形10.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.5 11.下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a212.下列二次根式中,为最简二次根式的是()A.45B.22a b+C.12D. 3.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x的一元二次方程2kx x+1=0-有两个不相等的实数根,则k的取值范围是▲ .14.分解因式:34a a-= .15.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.16.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.17.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)20.(6分)已知一次函数y =x+1与抛物线y =x 2+bx+c 交A (m ,9),B (0,1)两点,点C 在抛物线上且横坐标为1.(1)写出抛物线的函数表达式;(2)判断△ABC 的形状,并证明你的结论;(3)平面内是否存在点Q 在直线AB 、BC 、AC 距离相等,如果存在,请直接写出所有符合条件的Q 的坐标,如果不存在,说说你的理由.21.(6分)如图,在四边形ABCD 中,AB=AD ,CB=CD ,E 是CD 上一点,BE 交AC 于F ,连接DF . (1)证明:∠BAC=∠DAC .(2)若∠BEC=∠ABE ,试证明四边形ABCD 是菱形.22.(8分)如图,平面直角坐标系中,直线y 2x 2=+与x 轴,y 轴分别交于A ,B 两点,与反比例函数k y (x 0)x=>的图象交于点()M a,4. ()1求反比例函数k y (x 0)x=>的表达式; ()2若点C 在反比例函数k y (x 0)x =>的图象上,点D 在x 轴上,当四边形ABCD 是平行四边形时,求点D 的坐标.23.(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.24.(10分)如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .25.(10分)在ABC ∆中,AB AC =,以AB 为直径的圆交BC 于D ,交AC 于E .过点E 的切线交OD 的延长线于F .求证:BF 是O e 的切线.26.(12分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (1,1),B (4,0),C (4,4).按下列要求作图:①将△ABC 向左平移4个单位,得到△A 1B 1C 1;②将△A 1B 1C 1绕点B 1逆时针旋转90°,得到△A 1B 1C 1.求点C 1在旋转过程中所经过的路径长.27.(12分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】∵O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴»»,AC BC∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−12(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S△ABC=12(AB+AC+BC)⋅EO=12AC⋅BC,∴2−1,∴AE2=AO2+EO2=122−1)22,∴扇形EAB的面积135(422)π-9(22)-△ABE的面积=12AB⋅2−1,∴弓形AB的面积=扇形EAB的面积−△ABE的面积22132-,∴阴影部分的面积=12O的面积−弓形AB的面积=32−(221324-)=1324−4,故选:A.2.B【解析】【分析】因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.【详解】解:连接OP,∵CP是∠OCD的平分线,∴∠DCP=∠OCP,又∵OC=OP,∴∠OCP=∠OPC,∴∠DCP=∠OPC,∴CD∥OP,又∵CD⊥AB,∴OP⊥AB,∴¼¼AP BP,∴PA=PB.∴点P是线段AB垂直平分线和圆的交点,∴当C在⊙O上运动时,点P不动.故选:B.【点睛】本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.3.B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.4.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.5.B【解析】【分析】连接OA 、OC ,然后根据圆周角定理求得∠AOC 的度数,最后根据弧长公式求解.【详解】连接OA 、OC ,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC 的长为:=4π.故选B .【点睛】 本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式180n r l π=. 6.D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D .7.D【解析】【分析】如图,连接OD .根据折叠的性质、圆的性质推知△ODB 是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式180n r l π=来求»AD 的长 【详解】解:如图,连接OD .解:如图,连接OD .根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB-∠DOB=50°,∴»AD的长为5018180π⨯=5π.故选D.【点睛】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.8.D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.9.C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.10.D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】 解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.11.C【解析】【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A .a+3a=4a ,错误;B .a 5和a 不是同类项,不能合并,故此选项错误;C .(a 2)2=a 4,正确;D .a 8÷a 2=a 6,错误.故选C .【点睛】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.12.B【解析】【分析】最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).【详解】A.不是最简二次根式;B. ,最简二次根式;C. 1 2=22,不是最简二次根式;D. 3.6=610,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.k<14且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵2kx x+1=0-有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<14且k≠1.14.a(a+2)(a-2)【解析】【详解】()2344=a a+a-a aa a-=-(2)(2)15.(7+63)【解析】【分析】过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.【详解】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,∵坝顶部宽为2m,坝高为6m,∴DC=EF=2m,EC=DF=6m,∵α=30°,∴BE=tan30EC =︒(m ), ∵背水坡的坡比为1.2:1, ∴ 1.2 1.21DF AF AF ==, 解得:AF=5(m ),则(m ,故答案为(m .【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解. 16.1【解析】【分析】根据判别式的意义得到△=(﹣8)2﹣4m =0,然后解关于m 的方程即可.【详解】△=(﹣8)2﹣4m =0,解得m =1,故答案为:1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 17.285【解析】【分析】认真审题,根据垂线段最短得出PM ⊥AB 时线段PM 最短,分别求出PB 、OB 、OA 、AB 的长度,利用△PBM ∽△ABO ,即可求出本题的答案【详解】解:如图,过点P 作PM ⊥AB ,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PM AB AO=,即:754PM =,所以可得:PM=285.18.28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)23 3π【解析】【分析】(1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,Rt△ODC与Rt△OAC是含30°的直角三角形,从而得到∠DOB=60°,即△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.(1)证明:连接OD ,∵CD 与圆O 相切,∴OD ⊥CD ,∴∠CDO=90°,∵BD ∥OC ,∴∠AOC=∠OBD ,∠COD=∠ODB ,∵OB=OD ,∴∠OBD=∠ODB ,∴∠AOC=∠COD ,在△AOC 和△DOC 中,OA OD AOC COD OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△EOC (SAS ),∴∠CAO=∠CDO=90°,则AC 与圆O 相切;(2)∵AB=OC=4,OB=OD ,∴Rt △ODC 与Rt △OAC 是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD 为等边三角形,图中阴影部分的面积=扇形DOB 的面积﹣△DOB 的面积, =26021223336023ππ⨯-⨯=n . 【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.20.(1)y =x 2﹣7x+1;(2)△ABC 为直角三角形.理由见解析;(3)符合条件的Q 的坐标为(4,1),(24,1),(0,﹣7),(0,13).【分析】(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=,BN=,从而得到∠ABC =90°,所以△ABC为直角三角形;(3)利用勾股定理计算出AC=,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI×=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣12x+13,然后分别求出P、Q、G的坐标即可.【详解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得64+8+91b cc=⎧⎨=⎩,解得-71bc=⎧⎨=⎩,∴抛物线解析式为y=x2﹣7x+1;故答案为y=x2﹣7x+1;(2)△ABC为直角三角形.理由如下:当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=,BN=,∴∠ABC=90°,∴△ABC为直角三角形;(3)∵AB=BN=,∴AC=,∴Rt△ABC的内切圆的半径=2设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,∵I为△ABC的内心,∴AI、BI为角平分线,∴BI⊥y轴,而AI⊥PQ,∴PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI×=4,而BI⊥y轴,∴I(4,1),设直线AI的解析式为y=kx+n,则41 89k nk n+=⎧⎨+=⎩,解得27 kn=⎧⎨=-⎩,∴直线AI的解析式为y=2x﹣7,当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);设直线AP的解析式为y=﹣12x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直线AP的解析式为y=﹣12x+13,当y=1时,﹣12x+13=1,则P(24,1)当x=0时,y=﹣12x+13=13,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.21.证明见解析【解析】试题分析:由AB=AD,CB=CD结合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再证△ABF≌△ADF即可得到∠AFB=∠AFD,结合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC结合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD结合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四边形ABCD是菱形.试题解析:(1)在△ABC和△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∵AB=AD,∠BAC=∠DAC,AF=AF,∴△ABF≌△ADF,∴∠AFB=∠AFD.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠ACD=∠CAD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形.22.(1)y=4x(1)(1,0)【解析】【分析】(1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k 的值即可;(1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.【详解】解:(1)∵点M(a,4)在直线y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),将其代入y=kx得到:k=xy=1×4=4,∴反比例函数y=kx(x>0)的表达式为y=4x;(1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,∴当x=0时,y=1.当y=0时,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴点C的纵坐标也等于1,且点C在反比例函数图象上,将y=1代入y=4x,得1=4x,解得x=1,∴C(1,1).∵四边形ABCD是平行四边形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)两点的坐标知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),点D在点A的右侧,∴点D的坐标是(1,0).【点睛】考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.23.见解析,49. 【解析】【分析】 画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4, 所以两次抽取的卡片上的数字都是偶数的概率=49. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.24.(1)详见解析;(2)详见解析;(3)6.【解析】【分析】(1)分别画出A 、B 、C 三点的对应点即可解决问题;(2)由(1)得111A B C ∆各顶点的坐标,然后利用位似图形的性质,即可求得222A B C ∆各点的坐标,然后在图中作出位似三角形即可.(3)求得222A B C ∆所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,111A B C ∆即为所求作;(2)如图,222A B C ∆即为所求作;(3)222A B C ∆面积=4×4-12×2×4-12×2×2-12×2×4=6.【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.25.证明见解析.【解析】【分析】连接OE ,由OB=OD 和AB=AC 可得ODB C ∠=∠,则OF ∥AC ,可得BOD A ∠=∠,由圆周角定理和等量代换可得∠=∠EOF BOF ,由SAS 证得∆≅∆OBF OEF ,从而得到=90∠∠=︒OBF OEF ,即可证得结论.【详解】证明:如图,连接OE ,∵AB AC =,∴ABC C ∠=∠,∵OB OD =,∴ABC ODB ∠=∠,∴ODB C ∠=∠,∴//OF AC ,∴BOD A ∠=∠∵»»=BEBE ∴2BOE A ∠=∠,则2∠+∠=∠BOD EOD A ,∴2∠+∠=∠BOD EOD BOD ,∴∠=∠EOD BOD ,即∠=∠EOF BOF ,在OBF ∆和OEF ∆中,∵OB OE BOF EOF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴()∆≅∆OBF OEF SAS ,∴OBF OEF ∠=∠∵FE 是O e 的切线,则OE FE ⊥,∴90OEF ∠=︒,∴90OBF ∠=︒,则OB BF ⊥,∴BF 是O e 的切线.【点睛】本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.26.(1)①见解析;②见解析;(1)1π.【解析】【分析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长=9042 180ππ⨯=【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.27.(1);(2);(3)【解析】【分析】(1)OA=6,即BC=6,代入,即可得出点B的坐标(2)将点B的坐标代入直线l中求出k即可得出解析式(3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.【详解】解:∵OA=6,矩形OABC中,BC=OA∴BC=6∵点B在直线上,,解得x=8故点B的坐标为(8,6)故答案为(8,6)(2)把点的坐标代入得,解得:∴(3))∵一次函数,必经过),要使y随x的增大而减小∴y值为∴代入,解得.【点睛】本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 − x 杨浦区 2019 年第二学期初三质量调研
数学试卷
一、选择题
1. 如图,已知数轴上的点 A 、B 表示的示数分别为 a 、b ,那么下列等式成立的是( ) A. a + b = a − b
B. a + b = −a − b
C. a + b = b − a
D. a + b = a + b
2. 下列关于 x 的方程一定有实数解的是( ) A. x 2
− mx −1 = 0 B. ax = 3 C.
x − 6 ⋅ = 0
D.
1
= x −1 x
x −1
3. 如果 k < 0, b > 0 ,那么一次函数 y = kx + b 的图像经过( )
A. 第一、二、三象限
B. 第二、三、四象限
C. 第一、三、四象限
D. 第一、二、四象限
4. 为了解某校初三学生的体重情况,从中随机抽取了 80 名初三学生的体重进行统计分析, 在此问题中,
样本是指( ) A. 80
B. 被抽取的 80 名初三学生
C. 被抽取的 80 名初三学生的体重
D. 该校初三学生的体重
5. 如图,已知 A DE 是 ABC 绕点 A 逆时针旋转所得,其中点 D 在射线 AC 上,设旋转角为α,直线 BC 与直线 DE 交于点 F ,那么下列结论不正确的是( ) A. ∠BAC =α C. ∠CFD =α
B. ∠DAE =α D. ∠FDC =α
6. 在下列条件中,能够判定一个四边形是平行四边形的是( ) A. 一组对边平行,另一组对边相等 B. 一组对边相等,一组对角相等
C. 一组对边平行,一条对角线平分另一条对角线
D. 一组对边相等,一条对角线平分另一条对角线
二、填空题
7.计算:(y3)2÷y5=
8. 分解因式:a2 − 2ab +b2 −1 =
9.方程x −1
= 的解为:
10.如果正比例函数y =(k − 2)x 的函数值y 随x 的增大而减小,且它的图像与反比例函数y =k
的图像x
没有公共点,那么k 的取值范围是
11. 从−5, −10
, −
3
6, −1, 0, 2,π这七个数中随机抽取一个数,恰好为负整数的概率为
12.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最
喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分
那么,其中最喜欢足球的学生数占被调查总人数的百分比为%
13.甲、乙两名学生练习打字,甲打135 个字所用时间与乙打180 个字所用时间相同,已知甲平均每分钟
比乙少打20 个字,如果设甲平均每分钟打字的个数为x ,那么符合题意的方程为:
14.如图, ABC 中,过重心G 的直线平行于BC,且交边AB 于点D,交边AC 于点E,如果设AB =a ,
AC =b ,用a 、b 表示GE ,那么GE =
15.正八边形的中心角是度
16.如图,点M、N 分别在∠AOB 的边OA、OB 上,将∠AOB 沿直线MN 翻折,设点O 落在点P 处,如
果当OM=4,ON=3 时,点O、P 的距离为4,那么折痕MN 的长为
17.如果当a ≠ 0 ,b ≠ 0 ,且a ≠b ,将直线y =ax +b 和直线y =bx +a 称为一对“对偶直线”,把它们的
公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:
18.如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E,交边AD 于点F,已知AD=5,AE=2,AF=4,
如果以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,那么r 的取值范围是
1−x
2 ⎩ ⎩ 三、解答题
⎛ 1 ⎫
−3
6
19. 计算: + ⎪ ⎝ ⎭
− (3 2
) − 4 cos 30︒ +
⎧ax + by = 1 20. 已知关于 x , y 的二元一次方程组⎨a 2 x − b 2 y = ab + 3
⎧x = 1 的解为⎨ y = −1
,求 a 、b 的值
21. 已知在梯形 ABCD 中,AD//BC ,AB=BC ,DC ⊥BC ,且 AD=1,DC=3,点 P 为边 AB 上一动点,以 P
为圆心,BP 为半径的圆交边 BC 于点 Q.
(1) 求 AB 的长;
(2) 当 BQ 的长为 40 9
时,请通过计算说明圆 P 与直线 DC 的位置关系.
(−3)2
3
22.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 米,先到终点的人原地休息,
已知甲先出发4 分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x (分)之间的关系如图中折线OA-AB-BC-CD 所示.
(1)求线段AB 的表达式,并写出自变量x 的取值范围;
(2)求乙的步行速度;
(3)求乙比甲早几分钟到达终点?
23.已知:在 ABC 中,AB=BC,∠ABC=90°,点D、E 分别是边AB、BC 的中点,点F、G 是边AC 的
三等分点,DF、EG 的延长线相交于点H,联结HA、HC.
求证:(1)四边形FBGH是菱形;
(2)四边形ABCH 是正方形.
24.已知开口向下的抛物线y =ax2 − 2ax + 2 与y 轴的交点为A,顶点为B,对称轴与x 轴的交点为C,点
A 与点D 关于对称轴对称,直线BD 与x 轴交于点M,直线A
B 与直线OD 交于点N.
(1)求点D 的坐标;
(2)求点M的坐标(用含a 的代数式表示);
(3)当点N 在第一象限,且∠OMB=∠ONA 时,求a 的值.
25.已知圆O 的半径长为2,点A、B、C 为圆O 上三点,弦BC=AO,点D 为BC 的中点.
(1)如图1,联结AC、OD,设∠OAC =α,请用α表示∠AOD;
AC的中点时,求点A、D之间的距离;
(2)如图2,当点B为
(3)如果AD 的延长线与圆O 交于点E,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.
5
5 7 3 3 +1 ⎨
⎩
一、选择题
1. B
2. A
3. D
4. C
5. D
6. C
参考答案
二、填空题
7. y 8. (a − b +1)(a − b −1)
9. x = 1
10. 0 < k < 2
11. 2 7
12. 24%
13. 135 = 180
14. 1 1
− a + b
15. 45
16. 2 − 17. y = x + 3, y = 3x +1
18.
x x + 20 − < r < 3 3
10 +
三、解答题 19. 原式=10
⎧a = −1
⎧a = 2
20. ⎩b = −2 或⎨ b = 1
21.(1)AB 长为 5
(2)圆 P 与直线 DC 相切
22.(1) y = −20x + 320(4 ≤ x ≤ 16) (2)80 米/分 (3)6 分钟
23.(1)证明略
(2)证明略
24.(1)D (2,2) (2) M ⎛
2 − 2 , 0 ⎫
(3) a =1−
a ⎪
⎝
⎭
25.(1) ∠AOD = 150︒ − 2α(2) AD =
(3)AE=
or 2 2
3 10 5
2
3 3 −1。