无功就地补偿前异步电动机功率因数
最新三相异步电动机就地无功补偿容量的计算及应用

三相异步电动机就地无功补偿容量的计算及应用三相异步电动机就地无功补偿容量的计算及应用学院:物理与机电工程学院专业:电气自动化技术学号:20100486311姓名:李有维指导老师:江国栋【摘要】随着工业化程度的加速发展,电力电子技术、微电子技术及现代控制理论的发展。
三相异步电动机在工农业生产及人们的日常生活中却有极其广泛的应用。
从三相异步电动机的作用和性能为出发点,探究三相异步电动机的机械特性及功率因数与无功补偿容量的计算及应用。
【关键词】三相异步电动机机械特性功率因数无功补偿容量目录1、三相异步电动机的机械特性 02、电动机的功率因数 (1)3、电动机无功补偿的分类 (1)4. 三相异步电动机就地无功补偿容量计算 (2)5、低压异步电动机就地无功补偿 (4)5.1三相低压异步电动机就地和功补偿的好处 (5)5.2对电动机进行无功补偿应注意谐波危害 (7)6、小结 (8)参考文献: (8)三相异步电动机就地无功补偿容量的计算及应用三相异步电动机具有结构简单,运行可靠,价格低,维护方便等一系列优点。
因此三相异步电动机被广泛应用在电力拖动系统中,尤其是随着电子技术的日新月异,使得三相异步电动机的性能得到了大大的提高。
目前三相异步电动机被广泛用在各个工业自动化电气控制领域中,就不得不对它的某些性能进行探索。
1、三相异步电动机的机械特性三相异步电动机的机械特性是指电动机的转速与电磁转矩之间的关系。
由于转速与转差率有一定的对应关系,所以机械特性也常用转矩,转差率之间按一定的对应关系成立。
三相异步电动机的电磁转矩是由转子电流和主滋通相互作用所产生的。
转子电流与气隙磁密度作用产生电磁力,遵守电磁力定律,但是由于转子电流滞后转子电动势,在气隙磁场同一极性下面的各转子有效导体中,电流方向不会相同,所以电磁转矩与转子电路的功率因数有关。
[1]主磁通决定于定子电动势,而定子电动势则决定于定子的电压平衡关系,当定子漏阻抗电压降可以忽略不计时,定子电动势与电网电压相平衡,因为电网电压实际上是恒定的,所以主磁通可以近似认为是恒定的。
浅谈无功补偿技术对低压电网功率因数的影响

浅谈无功补偿技术对低压电网功率因数的影响摘要:电力企业在供电过程中不可避免的会受到一些外部因素的影响,从而导致带电设备出现电能损耗等问题,不仅会造成电力能源的浪费,同时还会对电力系统的供电质量产生一定程度的影响。
针对这种情况,电力企业纷纷借助无功补偿技术来应对,无功补偿技术在低压电网中的广泛应用,可以通过对低压电网中功率因数实施的有效补偿,达到提升电力网络电压稳定性与安全性的目的。
关键词:无功补偿技术;低压电网;功率因数;影响1导言电力企业的供电过程会受到各种因素的影响,设备会出现电能损耗这一现象,这不仅会对电力系统的供电质量造成影响,还会导致电力能源消耗,因此必须对无功补偿技术进行有效应用。
在低压电网中应用无功补偿技术,能够对低压电网中的功率因数进行有效补偿,从而使电力网络的电压更加安全稳定。
从实践应用中来看,无功补偿技术能够使低压电网中的功率因数得到有效提升。
2低压电网功率因数的影响因素在分析研究低压电网功率因数的影响因素这一问题时,通过对相关文献资料的深入分析,结合电力企业低压电网运行的实际情况,笔者将其总结为以下几个方面:第一,设备耗用无功功率对低压电网功率因数产生的影响。
一般情况下,低压电网中之所以会出现功率因数,主要与低压电网在工作运行过程中会产生相应的无功功率有着直接的关系,为了可以进一步避免出现电力资源大量损耗的问题,需要对其实施必要的无功功率补偿,以此来对电力系统的稳定运行提供有力保障。
比如:当有功功率为恒定值的情况时,无功功率的减少会直接导致低压电网中功率因数的提升,而当无功功率为0时,则低压电网的功率会达到1,因此低压电网功率因数和无功功率两者之间存在一定的反比关系。
低压电网中耗用无功功率的设备包括电力变压器和异步电动机两种,其工作运行均会对低压电网功率因数产生影响;第二,供电电压超出规定范围对低压电网功率因数产生的影响。
在低压电网运行过程中,如果供电电压超出了规定范围,则会进一步导致电网中功率因数发生变化。
低压异步电动机就地无功补偿的好处及可行性

功电 流大部分由并联的电容器供给, 从而减 压质量, 也增加了 产品数量及质量;
少输配电 线路上的总电流, 降低线路损耗。 f因为补偿电容器随电动机投切, 5 ) 只要 由于并联电容器在异步电动机的额定 设电动机正常T作时, 线路输送的有功 补偿的电容器容量配置适当, 不存在无功过 电压下, 所产生的无功功率小于异步电动机 功率 P 是恒定的, 无功功率为 Q , 1 视在功率 补偿 有较为理想的补偿效果。 在额定电压下空载时需要的励磁功率 当电 为 s, 1功率因数为 C S 。若对该电动机的 Ot p 压上升时, 电容器所产生的无功功率随电压 三、 三相 低 压异 步 电动机 就地 无功功率进行就地补偿, 使其无功功率为 的平方增加,而异步电动机因铁芯的磁饱 无功 补偿 的可行性 Q, 2视在功率为S。 2这时可以看出, 就地并联 和。 其需要的无功功率增加将大于电容器的
2 . 采用三相低压异步电动机就地无功补 的无功功率, 当负荷从由零到满载时, 其变 产生过补偿。
其 也就是说仅 f简单、 1 ) 价低。因为只是在电动机上并 支路所需的无功功率随负荷增加而增加, 动机空载无功功率要略小一点,
21第5 霉 豳 0年 期 墨 1
妻 AUO'N E&OH OL GY l 。 ;EO 蜊O 科 … TE N S … 。
很快下降到零, 在电网电压复现时. 就不会
f提高了 4 ) 低压线路的功率因数, 减少末 出现过电压。因此, 异步电动机与电容器并 动机与电容器应同时投入或断开。
当 容量的电容器。 就可以使电动机所需的无 端电压波动, 改善了用户的电压, 提高了电 联之间不能加装熔断器保护或开关, 异步电
功率因数及无功补偿介绍

2.2 提高功率因数的方法
电容补偿无功功率原理
电流在电感元件中作功时,电流滞后于电压90°,而电流在电 容元件中作功时,电流超前电压90°,在同一电路中,电感电 流与电容电流方向相反,互差180°,如果在电感元件电路中有 比例地安装电容元件,使两者的电流相互抵消,使电流的矢量 与电压矢量之间的夹角缩小,相应的功率因数就得到提高。由 于无功补偿设备投资及本身也要消耗一定的能耗,所以说这是 一种折中的提高功率因数的方法。
CopyRight © 重慶工務處
1.3 无功功率
无功功率(Q)
在交流电路中,具有电感(电容)的电路里,电感(电容)在 半周期的时间里把电源的能量变成磁场(电场)的能量贮存起 来,在另外半周期的时间里又把贮存的磁场(电场)能量送还 给电源,它们只是与电源进行能量交换,并没有真正消耗能量, 我们把与电源交换能量的振幅值叫做无功功率,以字母 Q 表示, 主要单位乏(var)、千乏(Kvar),它是在电气设备中建立和维持 磁场和电场的电功率,它与电压、电流间的关系: Q=UIsinφ sinφ=Q/S。测量无功功率的仪表称为无功功率表,简称无功表
CopyRight © 重慶工務處
名词解释
静止无功补偿器(SVC) 于20世纪70年代兴起,现在已经发展成为很成熟的FACTS装置, 其被广泛应用于现代电力系统的负荷补偿和输电线路补偿(电 压和无功补偿),在大功率电网中,SVC被用于电压控制或用 于获得其它效益,如提高系统的阻尼和稳定性等;这类装置的 典型代表有:晶闸管控制电抗器(TCR)和晶闸管投切电容器 (TSC)它不再采用大容量的电容器,电感器来产生所需无功 功率,而是通过电力电子器件的高频开关实现对无功补偿,特 别适用于中高压电力系统中的动态无功补偿。静止无功补偿器 是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装 置。它是将可控的电抗器和电力电容器(固定或分组投切)并 联使用。电容器可发出无功功率(容性的),可控电抗器可吸 收无功功率(感性的)。通过对电抗器进行调节,可以使整个 装置平滑地从发出无功功率改变到吸收无功功率(或反向进 行),并且响应快速。
无功补偿在工程设计中的应用

无功补偿在工程设计中的应用[摘要] 随着工业的发展,对节能降耗越来越重视,我们在工程电气设计中采用就地无功补偿,对提高功率因数,节能降耗有很大帮助。
[关键词] 无功补偿电气设计节能1 前言交流电能在输送和使用过程中,用于转换机械能、热能、光能等的那部分能量叫做有功功率,用于电路内电场与磁场交换的那部分能量叫做无功功率。
有功消耗能量,无功不消耗能量。
但无功有个平衡问题,电力系统的无功平衡是指系统中无功电源与无功负荷必须平衡,电力系统中的无功平衡对电力网的输电能力、稳定性水平、电能损耗和用户端的电压质量均有极大影响。
电力系统无功电源为系统中所有发电机无功功率之和、系统中所有并联电容器补偿容量之和、系统中高压输电线充电功率之和及系统中调相机无功功率之和的总和。
电力系统无功负荷为全系统各变电所及大型用户所带无功负荷、各变电所变压器无功功率总损失及全系统输电线路上无功功率损失之和。
功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。
在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。
用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。
适当提高用户的功率因数,不但可以充分的发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。
因此,对于全国广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效的搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。
其社会效益及经济效益都会是非常显著的。
2 节电原理电网的功率因数大小反映了电网无功平衡的状况,当无功电源小于无功负荷时功率因数小于1且是滞后的,当无功电源等于无功负荷时功率因数为1,此时电网处于最高功率状态。
当无功功率电源大于无功负荷时功率因数小于1且是超前的。
异步电动机的无功功率补偿技术

由于线路传送 电流小 了, 系统的线路电压损失相应减
约工业生 产的 5% 0 左右的能量.但跟其他负载相 比,其产 生 的功 率因数低得多。 为防止 由此产生的对电 力变压 器和 电力电缆 的损耗.必须要提高功率 因数。
电网 中的电气设备和电动机 、 变压器等属于既有电感
J ,有利于系统电压的稳定,有利于大电机起动。 J \
释放 能量时, 感性负荷吸收能量, 而感性负荷 释放能量时, 容性 装置 吸收能量 ,能量在相互转换 . 感性 负荷 所吸 收的 无功功 率可由容性装置 输出的无功功 率中得到 补偿 , 该电
Re l Po r a ・ we
S A p a e t Po e p rn ・ w r
功率因数是大部分人 比较 关心的话题 , 但是有时却经
用 ,提 高电能质量,符 合我国节约 能源 的国策 ,同时亦给 企 业带来经济效益。
一
电母线上,补偿供电范围 内的无功功率。
( )组合就地补偿 二 电容器接在高压配电装置或动 力箱的毋线上 , 对附近 的电动 机进行无功补偿。 ( )单独就地补偿 三
将 电容 器装于 箱内, 置在电动机附 近,对电机单独 放
.
也 就是 说电压和 电流在 同一个频率 时二者才是等 同
的。但是实际 上,电气系统 中的 电压和电流 都包含谐波,
收 稿 日期 :2 0 .40 0 70 .9 作者简介 :王树 恩 (9 8) 男,汉族 ,呼伦 贝尔学院外 事办 ,助理工程师 。研 究方向:工业 电气自动化 。 16一
No. 3
V0 7 b ih d i u e 2 0
异步 电动机 的无功功率补偿技术
王 树 恩
( 呼伦 贝 尔 学 院 内蒙 古 海拉尔区 0 10 ) 2 0 8
异步电动机功率因数检测与控制

1 引言目前,采油方法有自喷采油法和机械采油法两种。
自喷采油法特点是利用地层本身的能量来举升原油,是最经济的采油方法。
但是对于不能自喷的油井,就必须人为地用机械设备给油井内液体补充能量,才能将原油从井内举升到地面,这种开采方法称为机械采油法。
机械采油分泵举采油和气举采油两种。
从国外石油工业发达的国家来看,用抽油泵法开采的井数在生产井总数中占绝对多数。
在我国,用抽油泵法开采的井数在生产井总数中占90%以上。
在石油开采过程中,国内外应用最广泛的抽油设备是游梁式抽油机——抽油泵装置,或称作有杆抽油设备。
游梁式抽油机具有结构简单、制造容易、可靠性高、工作持久、适应工况条件好等优点,但其使用过程中存在着功率因数低、效率不高、消耗大量电能等弱点,因此对该种抽油机实现节电控制就显得尤为重要。
本课题的可控硅调压式抽油机节能控制器就是针对抽油机的这些弱点研制的。
本文研究的的目的和重要意义:我国的油田不像中东的油田那样有很强的自喷能力,多为低渗透、低产油田,大部分油田要靠注水压油入井,再用抽油机把油从地层中提升上来。
“以水换油”或“以电换油”是我国油田的现实,因而,电费在我国的石油开采成本中占了相当大的比例,据统计在油田生产成本中约有三分之一为电能消耗,而游梁式抽油机消耗的电能约占总电能消耗的80%,目前,我国抽油机的保有量在10万台以上,电动机装机总容量在3500mW,每年耗电量逾百亿kW²h。
抽油机系统在运行过程中大都处于“大马拉小车”状态,造成“大马拉小车”现象的原因主要有两个:一是设计时抽油机(抽油机实耗功率一般小于装机功率1/3)和电机选型过大,使抽油机处于轻载运行;二是抽油机负载特性造成的。
抽油机的载荷是交变的载荷,这就使抽油机在一个冲程里有相当一部分时间处于轻载运行。
轻载运行使得电机功率利用率变低,造成电机无谓耗损电能。
如果抽油机系统能克服其“大马拉小车”问题,把抽油机电机的运行效率仅提高1%,年节电35mW,可见节能潜力巨大。
高压无功就地补偿装置容量计算公式

系统电压U L /kV
10电容器额定线电压Uc/kV 11电抗率K
0.06电动机额定功率P N /Kw 280电动机负载率β1电动机效率η
0.928Kf----补偿系数,推荐为0.90.9补偿前电机功率因数COS φ10.79补偿后目标功率因数COS φ20.9电动机额定电流I n /A 22.05069775电动机空载电流I O /A
9.2612930570.9倍电动机空载电流I O1/A 8.335163751功率因数--计算容量Qo 1/kvar 88.03179048空载电流--计算容量Qo 2/kvar 144.3692711功率因数--安装容量Qc 1/kvar 100.1273585空载电流--安装容量Qc 2/kvar 164.2056089
成套装置实际选择安装容量Qc 120
成套装置实际输出无功容量Qo 105.5037806成套装置额定工作电流I N (A) 6.298366573电机原无功功率Q 1
234.16346补偿后实际功率因数cos φ'0.919861729补偿后实际功率因数cos φ'
0.919861729
参数值
计算值
实际值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
筑
龙
网
W
W W
.Z
H U
L O
N G
.C
O
M
无功就地补偿前异步电动机功率因数的计算公式
异步电动机的无功功率就地补偿,对减少企业电能损失、提高电压质量有重要意义。
为了确定补偿容量,有多种计算方法。
计算时往往要求预先知道补偿前的电动机功率因数。
现介绍一种简易实用计算补偿前的功率因数的方法。
此法只需要用普通的钳型电流表测量异步电动机的实际工作电流(即运行电流,配电盘上电流表指示值),然后算出负载率,即可算出补偿前(即运行中)的功率因数cosφ1计算公式如下:
式中 β——电流负载率;
I m ——电动机运行电流,A;
I e ——电动机的额定电流,A(电动机铭牌上可查得);
cosφe ——电动机额定负载下的功率因数(在电动机手册或电动
机铭牌上可查得);
cosφ1——电动机补偿前的功率因数(自然功率因数)。
【例l】 一台380VY 200M 一6型22kW 的电动机,在其正常运行时测得电流为39A,其铭牌上标注的功率因数为0.85,额定电流为44.2A。
试求算该台电动机补偿前的功率因数为多少?
解 将已知数值代人式(3—47)得:
筑
龙
网
W
W W
.Z
H U
L O
N G
.C
O
M
将已知数值代入式(3—48)得:
【例2】一台380V J02—91—8型40kW 的电动机,其额定电流为80A、功率因数为0.84,在其带负载正常运行时,测得运行电流为61A,试求算该台电动机补偿前的功率因数多大?
解 将已知数值代人式(3—47)得:
将已知数值代入式(3—48)得:
某企业通过对26台电动机的测定,按式(3—48)算出的补偿前的
功率因数与用仪表测算出的数值相比较误差较小:对Y 系列的电动机
10台测量的结果误差最大为5.66%、最小为0.165%;对JO 2系列
的电动机16台测量的结果误差最大为2.2%、最小为0.45%。
因
此,符合工程上的要求,具有实用价值。