N-脒基脲二硝酰胺放热分解反应的动力学行为
HTPE与FOX-7和FOX-12混合体系的热分解

HTPE与FOX-7和FOX-12混合体系的热分解王国强;陆洪林;党永战;王晗;康冰【摘要】利用差示扫描量热(DSC)法和热重-微商热重(TG-DTG)法得到端羟基聚醚(HTPE)/1,1-二氨基-2,2-二硝基乙烯(FOX-7)混合体系和HTPE/N-脒基脲二硝酰胺(FOX-12)混合体系在不同升温速率(2.5,5.0,10.0,20.0℃·min-1)下的热分解曲线,用Kissinger公式和Ozawa公式计算了HTPE、HTPE/FOX-7和HTPE/FOX-12体系热分解的表观活化能.结果表明,HTPE的热分解过程为一个失重过程,其表观活化能Ek为127.45 kJ·mol-1.Kissinger公式和Ozawa公式计算的HTPE/FOX-7混合体系表观活化能分别为288.16 kJ·mol-1和270.85 kJ·mol-1,HTPE/FOX-12混合体系的表观活化能分别为179.50 kJ·mol-1和170.35 kJ·mol-1.对于同一体系,两种公式计算的结果基本一致.与单组份(FOX-7或FOX-12)相比,HTPE/FOX-7和HTPE/FOX-12体系的表观活化能分别降低了17.1 ~34.5 kJ·mol-1和78.8 ~87.9 kJ·mol-1.HTPE均降低了2种钝感含能组份(FOX-7和FOX-12)的(主)分解峰温度,FOX-7高温分解放热峰峰温降低了14.4℃,FOX-12的分解放热峰峰温降低了17.4℃.HTPE/FOX-7混合体系分解放热量增加了196.2 J·g-1,而HTPE/FOX-12混合体系分解放热量减少了275.2 J·g-1.【期刊名称】《含能材料》【年(卷),期】2016(024)004【总页数】7页(P336-342)【关键词】端羟基聚醚(HTPE);1,1-二氨基-2,2-二硝基乙烯(FOX-7);N-脒基脲二硝酰胺(FOX-12);混合体系;热分解;表观活化能【作者】王国强;陆洪林;党永战;王晗;康冰【作者单位】西安近代化学研究所,陕西西安 710065;西安近代化学研究所,陕西西安 710065;西安近代化学研究所,陕西西安 710065;西安近代化学研究所,陕西西安 710065;西安近代化学研究所,陕西西安 710065【正文语种】中文【中图分类】TJ55;TQ013.21 引言新型粘合剂端羟基聚醚(HTPE)是低易损性推进剂的关键组份之一。
含FOX-12硝胺发射药的燃烧特性

含FOX-12硝胺发射药的燃烧特性
魏伦;姚月娟;刘少武;郑双;张远波;高林荣
【期刊名称】《含能材料》
【年(卷),期】2012(020)003
【摘要】采用DSC-TG、密闭爆发器、中止燃烧试验装置,研究了含N-脒基脲二硝酰胺盐(FOX-12)的硝胺发射药的热分解和燃烧特性.结果表明:该硝胺发射药中的NC-NG体系和FOX-12一起开始分解,加入FOX-12使硝胺发射药的燃速压力指数降低,其值小于1,随着FOX-12含量的增加,硝胺发射药的压力指数在低压段(10~20MPa)降低幅度大于中高压段(40 ~240 MPa)的幅度.
【总页数】4页(P337-340)
【作者】魏伦;姚月娟;刘少武;郑双;张远波;高林荣
【作者单位】西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065;西安近代化学研究所,陕西西安710065
【正文语种】中文
【中图分类】TJ55;O64
【相关文献】
1.含RDX的叠氮硝胺发射药热分解与燃烧性能 [J], 杨建兴;贾永杰;刘毅;李乃勤;白微;张步允
2.含RDX高能硝胺发射药的热分解动力学补偿效应 [J], 张冬梅;郑朝民;衡淑云;刘子如;潘清;陆洪林
3.NGu对含RDX硝胺发射药燃烧性能的影响 [J], 张邹邹;蒋树君;张玉成;杨雁
4.反相高效液相色谱法测定含RDX的叠氮硝胺发射药中4种组分含量 [J], 杨彩宁;赵娟;陈曼;贾林;王歌扬;张瑜;何可维
5.含羟乙基丁硝胺硝酸酯发射药的研究 [J], 陆安舫
因版权原因,仅展示原文概要,查看原文内容请购买。
Pinner脒合成的反应机理及应用进展

Pinner脒合成的反应机理及应用进展王阳阳(西北农林科技大学理学院陕西杨凌712100)摘要:脒类化合物在农药、医药以及其他领域上都具有很广泛的用途。
合成脒类化合物的方法主要为:Pinner脒合成法。
本文重点介绍了Pinner脒合成方法的机理和副反应机理,并对其在有机合成中的应用进行了探讨。
关键词:Pinner脒合成;机理;改进;应用The reaction mechanism and application of Pinner amidinesynthesisWang Yangyang(College of science, Northwest A&F University, Yangling, 712100, China)Abstract:The amidine compounds have a very wide range of functions in the pesticide, medicine and other fields. The primary method of synthesis of amidine compounds is Pinner amidine synthesis. This article focuses on the reaction mechanism of Pinner amidine synthesis and the side reactions mechanism Its application in organic synthesis is also discussed.Key words: Pinner amidine synthesis; mechanism; improvement; application1.前言脒类化合物在农药和医药上具有很广泛的用途。
早年发现某些脒盐可以治疗血吸虫病,但毒性较大,一些长链烷氧基取代的苯甲脒盐具有表面活性剂的作用,被称为杀虫脒[1]。
二硝基脲的合成、表征及热力学的理论研究

二 硝 基 脲 的 合 成 、 征 及 热 力 学 的 理 论研 究 表
11 6
滤饼 在 ( 5± )o 真 空 干 燥 , 二 硝 基 脲 。 2 1 C 得 结 构 鉴 定 :’ N H MR( c tn — 5 0 MH 6 a eo ed , 0 z) :
1 . O( , H) 3 S2 ; 3 C NMR ( c t n — ^ 5 0 a eo e d , 0 MHz)占 :
2 n 之 后 在 0~ (继 续 搅 拌 反 应 3 n 反 应 液 Omi, 5o = 0 mi,
研 究 。emal y nj 0 @ 1 3 c m - i a gm2 4 .o : 6
析 出白色 固体 , 速过 滤 , 快 三氟 乙 酸洗 涤 ( 0 mLX3 , 1 )
N02 O2 N
,
浓度 发烟硫 酸 / 0 % 硝 酸体 系 中 , 究 了尿 素 的硝 化 10 研 反应 过程 , 化 了反应 条件 , 离得 到硝化 中间体 硝基 优 分
脲 ( n nt ue ,MNU) 并 通 过 量 子 化 学 方 法 , mo o io a r r , 阐
3. 反 应 温 度 的 影 响 2
1 6 4;I ( B .c 4. R K r m ) 5 1 0 ,4 7 1 1 1 2 :1 7,6 2 1 4 ,3 2, 1 0。 7
在 氮 气 氛 中 , 温 速 率 1 C ・mi~ , S 结 果 升 o 0 n DC 显示二 硝基 脲在 1 4 1c剧烈 分解 。 0 . ( =
在 尿 素 用 量 6 0 g, 0 发 烟 硫 酸 用 量 1 , . 2 % mL 反 0
应 5 n 考察 了 1 0 硝 酸 用 量 对 DNU 收率 的影 0 mi , % 0 响, 结果 如 图 1所示 。从 图 1可 以看 出 , 1 0 硝酸 当 % 0 与尿 素摩 尔 比为 2时 , DNU 收 率 为 6 . % 。增 大发 13 烟硝 酸用量 , U 收 率大 幅度 上 升 , DN 当摩 尔 比增 加 到 3 0时 , . 收率 为 7 . % , 摩尔 比超 过 3 0时 , 62 其 . 收率 反
钝感高能材料N-脒基脲二硝酰胺盐的研究进展

钝感高能材料N-脒基脲二硝酰胺盐的研究进展
雷永鹏;阳世清;徐松林;张彤
【期刊名称】《含能材料》
【年(卷),期】2007(015)003
【摘要】概述了新型钝感高能材料N-脒基脲二硝酰胺盐(GUDN,亦称 FOX-12)的理化性能和爆轰性能,并讨论了其相关应用.GUDN能量较高(接近RDX)、感度低(接近TATB)、热稳定性好、相容性好,适用于推进剂、气体发生剂和钝感炸药.【总页数】5页(P289-293)
【作者】雷永鹏;阳世清;徐松林;张彤
【作者单位】国防科技大学航天与材料工程学院,湖南,长沙,410073;国防科技大学航天与材料工程学院,湖南,长沙,410073;国防科技大学航天与材料工程学院,湖南,长沙,410073;国防科技大学航天与材料工程学院,湖南,长沙,410073
【正文语种】中文
【中图分类】TJ55;TQ560
【相关文献】
1.N-脒基脲二硝酰胺盐(FOX-12)的合成与表征 [J], 杨通辉;何金选;张海林
2.N-脒基脲二硝酰胺盐的合成与性能 [J], 刘愆;王伯周;张志忠;朱春华;廉鹏
3.N-脒基脲二硝酰胺盐晶体形貌的分子动力学研究 [J], 刘宁;周诚;舒远杰;王伯周;王文亮
4.N-脒基脲二硝酰胺放热分解反应的动力学行为 [J], 高红旭;张海;赵凤起;胡荣祖;马海霞;徐抗震;仪建华;徐司雨;高茵
5.3,5-双(二硝甲基)-1,2,4-三唑的双脒基脲盐的合成与性能 [J], 霍欢; 翟连杰; 郭涛; 毕福强; 王子俊; 王伯周
因版权原因,仅展示原文概要,查看原文内容请购买。
几种钝感低特征信号推进剂的能量特性

特性 , 研究 结果表 明 , M T T E N用 于双 基 系推 进剂 中 , 可
明显 降低 此类 推进 剂 的机械 感 度
。此 外 , 氮 聚 叠
合物 机械 敏感度 低 、 热稳 定 性好 以及 与 固体推 进 剂 用
结构虽 与 N G相似 , 而撞击 感 度却 比 N 然 G低 很 多 , 迁
移性 、 挥发性 、 热稳 定性 和工艺性 能均较 好 。国 内外 已 将T T ME N用于 双 基 系 推进 剂 , 实 现 推进 剂 的 钝 感黑 索 今 (-D 、 ,- ,- F X7 、 I X)2 6 R 二 氨基 -,- 硝基 吡 嗪-- 化 物 ( L 15 、 35二 1氧 L M-0 ) 硝基 胍 ( Q) 14 5 8四 硝 基 -, 5 8四 氮 杂 萘 烷 ( r N 和 , , ,- 1 4, ,- - r
剂研究 和发 展 中急待 解决 的 问题 ¨ 。近几 十 年来 , 上
述 问题 主要 通过加入钝感增塑剂 、 能添加剂或 含 能黏 含
合剂替代原 推进剂中较敏感 的对应物质来解决 】 。
双基 系推进 剂 中硝化甘 油 ( G) N 的机 械感度 较高 ,
加 工处理 过程 中很 危险 , 实 现此 类 推进 剂 的钝 感 特 为
2 几 种 高 能 化 合 物 的 理 化 性 能及 能量 特 性
为 了 计 算 需 要 ,三 羟 甲 基 乙 烷 三 硝 硝 酯
( M T 、 ,- T E N) 1 5二叠 氮基 -- 3 硝基 -- 杂戊 烷 ( I N ) 3氮 DA P
性, 资料 报道 , 用机械感 度较 低 的三羟 甲基 乙烷 三硝 酸 酯( M T 取 代原 双基 系推 进 剂 中机 械 感 度 较 高 的 T E N) N G降低感 度 】 M T 。T E N是 一种 含 能 增 塑剂 , 化 学 其
二硝基脲法合成HMX的过程监测及动力学分析

第41卷第3期2 018年6月火炸药学报Chinese Journal of Explosives &Propellants303DOI:10. 14077/j. issn. 1007-7812. 2018. 03. 016二硝基脲法合成H M X的过程监测及动力学分析张乐1,王志1,许建新2,王建龙1,曹端林1(1.中北大学化学工程与技术学院,山西太原030051 &.甘肃银光化学工业集团有限公司,甘肃白银730900)摘要:采用反应量热仪(P C1)对二硝基脲法合成H M X各步放热过程进行测定,并分析其放热参数以及严重度;利用绝热加速量热仪(ARC)测定了中间产物的分解温度及放热速率,并进行了动力学分析。
结果表明,加人尿素后反应体系立即放热,硝化反应在2s内发生,部分反应到达成熟期才完成;其余各步反应进行很快,也都在2s内发生,主要热量用于中和硫酸放热&导到的绝热温升越高,发生失控反应的严重度越高;加水的过程要在0'下进行,加硝酸铵的过程要在10'下进行,加尿素的合成反应温度较原工艺可以适当提高2',加DPT反应过程最为安全,合成反应的最高温度(M TSR)为40. 8';经A R C测定得中间产物的相关动力学参数:活化能(仏)为254 k:/m〇l,指前因子(A)为1. 26 X 1030s \反应级数(n)为0.88。
关键词!二硝基脲法;H M X;在线监测;绝热温升;动力学中图分类号:T:55;TQ564 文献标志码:A 文章编号!007-7812(2018)03-0303-05Process Monitoring and Kinetics Analysis of Synthesizing HMX by Dinitrocarbamide MethodZHANG Le1,WANG Zhi1,XU Jian-xin2,WANG Jian-long1 ,CAO Duan-lin1(1. School of Chemical Engineering and Technology,North University of China,Taiyuan 030051,China;2.Gansu Yinguang Chemical Industry Group Co.L td.,Baiyin Gansu 730900, China)Abstract :The exothermic process for synthesizing HMX with dinitrocarbamide method was measured by a action calorimetry and the exothermic parameters and risk degree were analyzed.The decomposition temperature andexothermic rate of intermediate products were measured by ARC,and the kinetic analysis was carried out.The results show that after adding urea,the reaction system is exothermic immediately.Nitrification reaction is carried outin 2s,part of the reaction arrives at the mature period to complete only.The rest of various step reactions were carried out quickly in 2s,and the main heat is used to neutralize the exothermicity of sulfuric acid.batic temperature rise,the higher the severity of the runaway reaction.The process of adding water should be ried out at 0'and the process of ammonium nitrate should be carried out at 10'. The synthetic reaction temperature of adding urea can be appropriately increased by 2'and the reaction process of adding DPT is the most safe.The maximum temperature of the synthetic reaction(M TSR) is 40. 8'.The activation energy(Ea),pre-exponential factor(A) and the reaction order(n) of the intermediate products obtained by ARC measurement are 254 kJ/mol,1.26 X1030s1and 0.88,respectively.Keywords:dinitrocarbamide method;HMX;online monitoring;adiabatic temperature rise;kinetics引言化学反应的热危险性源自多方面因素,其中最主要的是热失控。
含FOX-12硝胺发射药的燃烧特性

3. 含 F 1 OX-2的 发 射 药 热 分 解 性 能 1
图 2 图 3是 含 F 一2试 样 的; E~C T D G 曲 、 OX 1 D 舌 l和 G— T S}
2 实 验 部 分
2 1 原 材 料 .
F 一2 粒 度 d 5=3 . 7 m;高 能 硝 胺 发 射 OX 1 , o 174
收 稿 日期 :2 1 — 90 修 回 日期 : 0 1 1 — 2 0 10 — 1; 2 1 —11
示 , 验完 毕后 将样 品收 集 。 试
性 。结 果 表 明 : 硝胺 发射 药 中 的 N — 体 系 和 F 一2一 起 开 始 分 解 , 入 F 一2使 硝胺 发 射 药 的燃 速 压 力 指 数 降 低 , 值 小 该 C NG OX1 加 OX 1 其 于 1 随 着 F 一2含 量 的增 加 , 胺 发 射 药 的 压 力 指数 在 低 压 段 ( 0— 0 MP ) , OX1 硝 1 2 a 降低 幅 度 大 于 中高 压 段 ( O~ 4 a 的 幅度 。 4 2 0MP )
开 了研 究 , 如 瑞 典 已将 F 一2应 用 于 A C R 8 例 OX 1 R HE 0 型火炮 发 射药 , 洲 含 能 材 料 公 司 将 F 一2熔 融 欧 OX 1 于 T T中制 备 出 GUN OL 钢 托儿 ) 药 , 国开 N T ( 炸 中 展 了不 同 催 化 剂 对 F 一2 热 分 解 催 化 作 用 的 研 OX 1 究 。 , 行 了含 F 一2的 复 合 改 性 双 基 推 进 剂 热 性 。 进 OX 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .,2008,24(3):453-458Received:August 14,2007;Revised:December 11,2007;Published on Web:January 23,2008.∗Corresponding author.Email:npecc@;Tel:+8629⁃88291663ⒸEditorial office of Acta Physico ⁃Chimica Sinica[Article]March N ⁃脒基脲二硝酰胺放热分解反应的动力学行为高红旭1张海2赵凤起1,∗胡荣祖1马海霞3徐抗震3仪建华1徐司雨1高茵1(1西安近代化学研究所,西安710065;2西北大学数学系,西安710069;3西北大学化工学院,西安710069)摘要:用DSC 和微热量仪研究了N ⁃脒基脲二硝酰胺(GUDN)的放热分解反应动力学行为和比热容,计算得到程序升温下GUDN 主放热分解反应的动力学参数(活化能E a 和指前因子A )、自加速分解温度(T SADT )、绝热条件下达到最大分解反应速率的时间(t TM Rad )和至爆时间(t TIad ).结果表明,在非等温DSC 条件下,GUDN 的热分解过程可用经验级数自催化动力学方程d α/d t =1018.49exp(-195500/RT )(1-α)0.81+1018.00exp(-177000/RT )α1.29(1-α)0.71描述.热分解转热爆炸的临界温升速率为0.1236K ·h -1.所得的T SADT 、t TMRad 和t TIad 值分别为473.95K 、2.24s 和3.51s.关键词:N ⁃脒基脲二硝酰胺;自催化分解;动力学参数;临界温升速率;热爆炸;非等温DSC中图分类号:O642;O643Kinetic Behaviour of the Exothermic Decomposition Reaction ofN ⁃Guanylurea DinitramideGAO Hong ⁃Xu 1ZHANG Hai 2ZHAO Feng ⁃Qi 1,∗HU Rong ⁃Zu 1MA Hai ⁃Xia 3XU Kang ⁃Zhen 3YI Jian ⁃Hua 1XU Si ⁃Yu 1GAO Yin 1(1Xi ′an Modern Chemistry Research Institute,Xi ′an 710065,P.R.China ;2Department of Mathematics,Northwest University,Xi ′an 710069,P.R.China;3College of Chemical Engineering,Northwest University,Xi ′an 710069,P.R.China )Abstract :The kinetic behaviour of the exothermic decomposition reaction and the specific heat capacity of N ⁃guanylurea dinitramide (GUDN)were determined by DSC and mircocalorimeter.Its kinetic parameters of the major exothermic decomposition reaction in a temperature ⁃programmed mode [the apparent activation energy (E a )and pre ⁃exponential factor (A )],self ⁃accelerating decomposition temperature (T SADT ),time to maximum rate (t TM rad ),and time ⁃to ⁃ignition (t TIad )under adiabatic conditions were calculated.The results showed that under non ⁃isothermal DSC conditions,the thermal decomposition of GUDN could be described by the empiric ⁃order autocatalytic equation:d α/d t =1018.49×exp(-195500/RT )(1-α)0.81+1018.00exp (-177000/RT )α1.29(1-α)0.71,and the value of the critical rate of temperature rise in GUDN was 0.1236K ·h -1when the decomposition reaction converted into thermal explosion.The values of T SADT ,t TMRad ,and t TIad were 473.95K,2.24s,and 3.51s,respectively.Key Words :GUDN;Autocatalytic decomposition;Kinetic parameters;Critical rate of temperature rise;Thermal explosion;Non ⁃isothermal DSCN ⁃Guanylurea dinitramide (GUDN)is a new energetic oxidiz-er with higher energy and lower sensitivities.Its crystal density is 1.755g ·cm -3,detonation velocity is about 8210m ·s -1,specific impulse and pressure exponent are 213.1s and 0.73[1],respec-tively.Therefore,it has the potential for possible use as an ener-gy ingredient of propellants and explosives from the point ofview of the above ⁃mentioned high performances.A number of papers have reported on its preparation [2,3]and properties [4-13],however,its kinetic parameters and critical rate of temperature rise of thermal explosion for the autocatalytic decomposing re-action have not been described unequivocally.The aim of the present work is to obtain more detailed information on the auto-453Acta Phys.⁃Chim.Sin.,2008Vol.24catalytic decomposition of GUDN to fit kinetic models of the re-action and to estimate kinetic parameters,self⁃accelerating de-composition temperature(T SADT),time to maximum rate(t TM Rad) and time⁃to⁃ignition(or explosion)(t Tlad)under adiabatic condi-tions and the critical rate of temperature rise of thermal explo-sion.This is quite useful in the evaluation of its thermal stability under non⁃isothermal condition and in the study of its thermal changes at high temperature.1Theoretical and method1.1Basic theory of decomposition reactionThe enthalpy(q1)of thermal decomposition reaction per unit time for energetic materials(EMs)can be expressed by the e-quation:q1=QVd M dαd t(1) where Q is the enthalpy of the thermal decomposition reaction in J·mol-1,V the volume of EMs loaded in cm3,d the loading den-sity in g·cm-3,M the mole mass of EMs in g·mol-1and dα/d t the reaction rate in s-1.The thermal decomposition,as an autocatalytic reaction,can be described by the following equations:k1A➝B(2) k2A+B➝2B(3) where A represents the initial reactant and B the thermal decom-position product.The rate expression that corresponds to this scheme isdαd t=k1(1-α)m+k2αn(1-α)p(4) whereαstands for the conversion degree,for DSC curve,α=H/H o,H o is the total exothermicity of the EMs(corresponding to the global area under the DSC curve)and H is the reaction heat in a certain time(corresponding to the partial area under the DSC curve);k1=A1exp(-E a1/RT),k2=A2exp(-E a2/RT),where A1and A2are the pre⁃exponential factors,E a1and E a2the activa-tion energies for the autocatalytic reaction,R is the gas constant, T the temperature,t the time;m,n and p are the apparent reac-tion orders.Substituting Eq.(4)into Eq.(1)givesq1=QVd M[A1exp-E a1RT()(1-α)m+A2exp-E a2RT()αn(1-α)p](5)At the same time,the amount of heat(q2)transferred by the wall of the reactor to surrounding medium in unit time isq2=k′(T-T c)S(6) where k′is an overall heat transfer coefficient in J·cm-2·K-1·s-1; T c the temperature of the reaction wall and surroundings accord-ing to the linear relationship T c=T o+βt,whereβis the heating rate K·min-1,T o the initial temperature at which the DSC curve devi-ates from the baseline in K;S the external surface of the loaded sample in cm2.1.2Transition from decomposition to thermal explosion With the boundary conditions of thermal explosion,Eq.(5)be-comesq1|Tb=QVd M[k1b(1-αb)m+k2bαn b(1-αb)p](7) whereαb is the value ofαcorresponding to T b,k1b=A1exp(-E a1/ RT b),k2b=A2exp(-E a2/RT b),where T b is the critical temperature of thermal explosion of EMs in K and Eq.(6)becomesq2|Tb=k′(T b-T e0)S(8) where T e0is the onset temperature in the DSC curve under linear temperature increase condition whenβtends to zero. According to the q1-T and q2-T relations,the sufficient and es-sential conditions from thermal decomposition to thermal explo-sion can be expressed asq1|Tb=q2|T b(9)d q1d T Tb=d q2d T Tb(10)⎧⎩⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐Differentiation of Eq.(5)with respect to t givesd q1d T T=Tb,α=αb=QVd(d T/d t)TbRT b[(k1b E a1(1-αb)m+k2b E a2αn b(1-αb)p)+ (k1b(1-αb)m+k2bαn b(1-αb)p)(k2b n(1-αb)pαn-1b-k2b p(1-αb)p-1αn b-k1b m(1-αb)m-1)]/M(d T/d t)T b(11)where(d T/d t)Tbis the increasing rate of temperature in EMs when thermal decomposition converts into thermal explosion. This is difficult to solve directly from conventional experiments. Differentiation of Eq.(6)with respect to t givesd q2d T T=Tb=k′S(d T/d t)Tbd Td t()T b-β[](12)Combining Eqs.(7)-(9),yieldsQVdM[k1b(1-αb)m+k2bαn b(1-αb)p]=k′S(T b-T e0)(13) Combining Eqs.(10)-(12),yieldsQVd(d T/d t)T bRT2b[(k1b E a1(1-αb)m+k2b E a2αn b(1-αb)p)+(k1b(1-αb)m+k2bαn b(1-αb)p)(k2b n(1-αb)pαn-1b-k2b p(1-αb)p-1αn b-k1b m(1-αb)m-1)]/M(d T/d t)T b=k′S(d T/d t)T b d T d t()T b-β[](14)As the thermal explosion starts,(d T/d t)T b>>β,and Eq.(14)may be simplified to the following form:QVd(d T/d t)T bRT2b[(k1b E a1(1-αb)m+k2b E a2αn b(1-αb)p)+(k1b(1-αb)m+k2bαn b(1-αb)p)(k2b n(1-αb)pαn-1b-k2b p(1-αb)p-1αn b-k1b m(1-αb)m-1)]/M(d T/d t)T b=k′S(15) Combining Eqs.(13)and(15),we getd Td t()T b={(T b-T e0)(k1b(1-αb)m+k2bαn b(1-αb)p)(k2b n(1-αb)pαn-1b-k2b p(1-αb)p-1αn b-k1b m(1-αb)m-1)}/{(k1b(1-αb)m+k2bαn b(1-αb)p-(T b-T e0)(k1b E a1RT2b(1-αb)m+k2b E a2RT2bαn b(1-αb)p}(16) Equation(16)is the relation formula for estimating the critical rate of temperature rise in EMs when the apparent empiric⁃order autocatalytic decomposition converts into thermal explosion. Once the values of E a1,E a2,A1,A2,T e0,T b,αb,m,n,and p have been calculated from an analysis of the DSC curves under the454No.3GAO Hong ⁃Xu et al .:Kinetic Behaviour of the Exothermic Decomposition Reaction of N ⁃Guanylurea Dinitramidesame experimental conditions,the corresponding value of (d T /d t )T bcan then be obtained from Eq.(16).1.3Method of computing kinetic parametersIn order to obtain the values of A 1,A 2,E a1,E a2,αb ,m ,n,and p needed for solving Eq.(16)obtained from Eq.(4),combing Eq.(4)and α=H /H 0,we obtaind H d t=H 0A 1e -E a1/RT (1-α)m +H 0A 2e -E a2/RT αn (1-α)p(17)Where d T d t,T ,α()is a three ⁃dimension data vector,(A 1,A 2,E a1,E a2,m ,n ,p )is a seve n ⁃dimension vector about parameters which would be estimated.Setting ζ=(T ,α)(18)andθ=(A 1,A 2,E a1,E a2,m ,n ,p )=(θ1,θ2,θ3,θ4,θ5,θ6,θ7)(19)the Eq.(17)may be denoted asd H d t=f (T ,α,A 1,A 2,E a1,E a2,m ,n ,p )=f (ζ,θ)(20)Substituting the original data d Td t ()i ,T i ,αi[]i =1,2,…,L into Eq.(20)givesd H d t=f (T i ,αi ,A 1,A 2,E a1,E a2,m ,n ,p )=f (T i ,αi,θ)i =1,2,…,L (21)In order to analyze the non ⁃linear function f (T i ,α,θ)about θ=(A 1,A 2,E a1,E a2,m ,n ,p ),the Taylor expansion of Eq.(21)at theinitial point θ(0)=(A (0)1,A (0)2,E (0)a1,E (0)a2,m (0),n (0),p (0))and reserving the first item and the second item is usedd H d t=f (ζ,θ(0))+əf (ζ,θ)əA 1θ=θ(0)(A 1-A (0)1)+əf (ζ,θ)əA 2θ=θ(0)(A 2-A (0)2)+əf (ζ,θ)əE a1θ=θ(0)(E a1-E (0)a1)+əf (ζ,θ)əE a2θ=θ(0)(E a2-E (0)a2)+əf (ζ,θ)əm θ=θ(0)(m -m (0))+əf (ζ,θ)ənθ=θ(0)(n -n (0))+əf (ζ,θ)əpθ=θ(0)(p -p (0))(22)where d H d t is a linear function as (A 1-A (0)1),(A 2-A (0)2),(E a1-E (0)a1),(E a2-E (0)a2),(m -m (0)),(n -n (0))and (p -p (0)).Setting θ(l +1)=θ(l )+γ(l )(l =0,1,2,…)and substituting the origins data d Hd t ()i ,T i ,αi []into Eq.(22)gived H d t ()=f (T i ,αi ,θ(l ))+7j =1∑əf (T i ,αi ,θ)əθj θ=θ(l )(θ(l +1)j -θ(l )j )(23)Then the mean ⁃square procedure is applied by taking minimalvalues of evaluation function SS (θ)=Li =1∑d H d t ()i-f (T i,αi,θ(l ))-7j =1∑əf (T i,αi,θ)əθjθ=θ(l )(θj -θ(l )j )[]2=note Li =1∑d H d t()i-f (T i,αi,θ(l ))-7j =1∑X (l )ijγ(l )j[]2(24)LettingY (l )=d H d t ()1-f (T 1,α1,θ(l ))d H d t ()2-f (T 2,α2,θ(l ))…d H d t ()L-f (T L ,αL ,θ(l ))⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥X (l )=X (l )11…X (l )17X (l )21…X (l )27…X (l )L 1…X (l )L 7⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥γ(l )=γ(l )1γ(l )2γ(l )7⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥=θ1-θ(l )1θ2-θ(l )2θ7-θ(l )7⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥where γ(l )j =θj -θ(l )j ,X (l )ij =əf (T i ,αi ,θ)əθjθ=θ(l )Under the condition of the existence of (X (l )′X (l )),we have(X (l )′ij X (l ))γ(l )=X (l )Y (l )l =0,1,2, (25)Letting A (0)1,A (0)2,E (0)a1,E (0)a2,m (0),n (0),and p (0)as an initial values and using these values,the value of θ(1)=θ(0)+γ(0)may be calculat-ed.This modified value of θ(1)is used as an initial value for the next calculation which yields another modified value of θ(2)=θ(1)+γ(1).Thus after satisfying the condition of Eq.(26)seven consis-tent estimation values in Eq.(27)will be obtained.θ(l +1)j -θ(l )j <δ(j =1,2,…7)(26)δ[14].θ^=θ(l +1)=(A (l +1)1,A (l +1)2,E (l +1)a1,E (l +1)a2,m (l +1),n (l +1),p (l +1))(27)1.4Estimation of adiabatic time ⁃to ⁃explosionIf E a1≈E a2,A 1≈A 2and m ≈p ≈1in Eq.(4),and the catalyst concentration achieves a stationary state:αcat ≈const.(28)Eq.(4)becomesd αd t=(k 1+k 2α)(1-α)≡k (1-α)(29)Under the adiabatic condition,the differential equation [15,16]de-scribing the time ⁃temperature relation of this one ⁃order exother-mal decomposition with an Arrhenius temperature dependence isC p d T d t=Q (1-α)A exp(-E /RT )(30)where C p ,Q ,A and E are the specific heat capacity,heat of reac-tion,pre ⁃exponential constant and activation energy,respective-ly,R is the gas constant,T is the absolute temperature,t is the time,αis the fraction of substance decomposed and can be ex-pressed as a function of temperatureα=TT 0∫C p Q d T =TT 0∫a+bT Qd T (31)where C p =a +bT ,on rearranging and integrating Eq.(30),we ob-taint =1QA T T 0∫a+bT 1-αe E /RT d T =1QA T T 0∫(a+bT )e E /RT1-TT 0∫(a+bT )Qd T []d T =1QAT T 0∫(a+bT )e E /RT1-1QT p 0T 00or e0∫(a+bT )d T[]d T455Acta Phys.鄄Chim.Sin.,2008Vol.24=1QATT 0∫(a+bT )e E /RT1-1Qa (T p0-T 00or e0)+b 2(T 2p0-T 200or e0)[]{}d T (32)Once the values of a ,b ,Q ,A ,E ,T e0,and T p0,have been calculated from an analysis of the DSC curves,the correspondent value of t can then be obtained from Eq.(32).2Experimental2.1MaterialsGUDN was prepared according to the method reported in the literature [1].It is a pale yellow crystal.m.p.=214℃(decompo-sition).For GUDN(C 2H 7O 5N 7)M r =209.15,w i (calculated):11.48%C,3.34%H,46.89%N;w i (found):11.14%C,3.34%H,46.99%N.IR spectrum(KBr)ν/cm -1:1743(—C(NH)—),1688(—C(O)—),1523,1444(—NO 2—).UV ⁃Vis spectrum(H 2O),λmax :282.5,212.0nm.The analytical results show that it has the composition of C 2H 7O 5N 7.2.2Instruments and conditionsIn the present experiments,the initial data needed for calculating all the kinetic parameters were obtained using a differentialscanningcalorimeter(TA,USA)with an aluminum cell.The conditions of the DSC analyses were:sample mass,about 1mg;heating rates,2.5,5,10and 15K ·mi n -1;atmosphere,N 2gas;reference sample,α⁃Al 2O 3.DSC curves obtained under the same conditions overlap with each other,indicating that the reproducibility of tests is satisfactory.Specific heat capacity of GUDN was determined by a mircocalorimeter Micro ⁃DSC III (SETARAM,France).The mircocalorimeter was calibrated by Joule effect before each experiment.The solution enthalpy of KCl in deionized water was determined at 298.15K with the value of (17.266±0.074)kJ ·mol -1,close to the literature value of (17.241±0.018)kJ ·mol -1[17],indicating that the calorimetric system was reliable.The specific heat capacity of standard sample α⁃Al 2O 3,m =320.60mg,was determined at 298.15K with the value of 79.44kJ ·mol -1,close to the literature of 79.02kJ ·mol -1[18],indicating that the calorimetric system was accurate.The conditions of the mircocalorimeter analyses were:atmosphere,N 2gas;sample mass,608.46mg;the range of temperature,283-353K ,heating rates,0.15K ·min -1.3Results and discussion3.1Decomposition kinetics of GUDNThe typical DSC curve of GUDN is shown in Fig.1.The DSC curve shows that only one exothermic peak before 250℃.A major exothermic peak at 219.17℃is due to the decomposition of GUDN in molten state.The original data (T i ,αi ,i =1,2,…,13)taken from the DSC curve at a heating rate of 10K ·mi n -1are shown in Table 1.The measured values of βi and T e i (i =1,2,…,4),the calculated value of E oe and E op by the Ozawa ′s method [19],the values of E Kp and A K by the Kissinger ′s method [20],the value (T e0)of T e ,which is self ⁃accelerating decomposition temperature (T SADT ),corresponding toβ→0obtained by Eq.(33)taken from literature [21],the value (T p0)of corresponding to β→0,the value of T b obtained by Eq.(34)taken from literature [21],and the value of αb corresponding to T b are shown in Table 2.T e i =T e0+b βi +c β2i ,i =1,2,…4(33)T b =E oe -E 2oe -4E oe RT e0√2R(34)The calculated v alues of E a1,E a2,A 1,A 2,m ,n,and p by the above ⁃mentioned method are given in Table 3.By substituting the values of T e0,T b ,and αb in Table 2,and E a1,E a2,A 1,A 2,m ,n,and p in Table 3into Eq.(16),the value of (d T /d t )T b listed inTable 3is obtained.The results in Tables 2and 3show that:(1)under our non ⁃isothermal DSC conditions,the thermal decomposition of GUDN can be described by the empiric ⁃order autocatalytic equation:d αd t=1018.49exp -195500RT ()(1-α)0.81+1018.00exp -177000RT()α1.29(1-α)0.71(35)(2)The value of the critical rate of temperature rise in GUDN is 0.1236K ·h -1when the decomposition reaction converts into thermal explosion;(3)Because (d T /d t )T b >>β,we conclude thatinFig.1DSC curve for GUDN at a heating rate of 10K ·min -1Table1Basic data of the major exothermic decompositionof GUDN determined by DSC aao o -1Datrum pointT i /K αi (d H i /d t )i /(mJ ·s -1)103(d α/d T )i /(K -1)1467.150.000010.07240.44572469.150.00010.08670.53413471.150.00040.10880.67044473.150.00100.14170.87305475.150.00210.1902 1.1716477.150.00370.2619 1.6137479.150.00660.3881 2.3908481.150.01170.6584 4.0559483.150.0216 1.2507.69810485.150.0420 2.57115.8411487.150.0837 5.28032.5212489.150.161910.8867.0213491.150.291624.60151.2456No.3GAO Hong ⁃Xu et al .:Kinetic Behaviour of the Exothermic Decomposition Reaction of N ⁃Guanylurea Dinitramidethe derivation process of Eq.(16),the assumption of adopting (d T /d t )T b-β(d T /d t )Tb=1is rational.3.2The value of C p for GUDNThe determination and linear ⁃fit result of the specific heat capacity (C p )of GUDN are shown in Fig.2.The result shows,the equation of specific heat capacity of GUDN with temperature is C p =0.2068579+0.003439981T in the temperature range of 283.3-354.9K.3.3Time ⁃to ⁃maximum rate and time ⁃to ⁃explosionunder adiabatic conditionThe adiabatic time ⁃to ⁃explosion (t TIad )and adiabatic time ⁃to ⁃maximum rate (t TM Rad )are the time of energetic material thermal decomposition achieving to explosion and maximum rate under the adiabatic conditions and are two important parameters of assessing the stability and the security of energetic materials.By substituting the values of C p =0.2068579+0.003439981T ,differential mechanism function f (α)=(1-α),E =E K =237706J ·mol -1,A =A K =1023.43s -1,decomposition heat Q =1629J ·g -1,R =8.314J ·mol -1·K -1,α,conversion degree,α=TT 0∫C p Qd T ,integral upper limit,T =T p0=478.25K for t TMRad ,T =T b =482.32K for t Tlad and integral lower limit,T 0=T e0=473.85K into Eq.(32),the valuesof t TM Rad of 2.24s and t TIad of 3.51s of GUDN are obtained.4Conclusions(1)Under our non ⁃isothermal DSC conditions,the thermaldecomposition of GUDN can be described by the empiric ⁃order autocatalytic equation:d αd t=1018.49exp -195500/RT (1-α)0.81+1018.00exp-177000/RT α1.29(1-α)0.71(2)The value of the critical rate of temperature rise in GUDN is 0.1236K ·h -1when the decomposition reaction converts into thermal explosion.(3)The equation of specific heat capacity of GUDN with temperature is C p =0.2068579+0.003439981T in the temperature range of 283.3-354.9K.The values of T SADT ,t TM Rad ,and t Tlad are 473.95K,2.24s,and 3.51s,respectively.References1Zhao,F.Q.;Chen,P.;Yuan,H.A.;Gao,S.L.;Hu,R.Z.;Shi,Q.Z.Chin.J.Chem.,2004,22(2):1362Venkatachalam,S.;Santhosn,G.;Ninan,K.N.Propellants Explosives Pyrotechnics ,2004,29(3):1783Liu,Q.;Wang,B.Z.;Zhang,Z.Z.;Zhu,C.H.;Lian,P.Chin.J.Explo.Prop.,2006,29(1):29[刘愆,王伯周,张志忠,朱春华,廉鹏.火炸药学报,2006,29(1):29]4Yang,T.H.;He,J.X.;Zhang,H.L.Chin.J.Energ.Mater.,2004,12(1):36[杨通辉,何金选,张海林.含能材料,2004,12(1):36]5Östmark,H.;Bemm,U.;Bergman,H.;Langlet,A.Thermochim.Acta ,2002,384:2536Wang,B.Z.;Liu,Q.;Zhang,Z.Z.;Ji,Y.P.;Zhu,C.H.Chin.J.Energ.Mater.,2004,12(2):38[王伯周,刘愆,张志忠,姬月萍,朱春华.含能材料,2004,12(2):38]7Pang,J.;Wang,J.N.;Zhang,R.E.;Xie,B.Chinese J.Explo.Prop.,2005,28(1):19[庞军,王江宁,张蕊娥,谢波.火炸药学报,2005,28(1):19]8Langlet,A.Guanylurea dinitramide,an explosive,propellant,rocket motor charge and generator.U.S.Patent 6291711.20019Wang,J.N.;Feng,C.G.;Tian,Z.H.Chinese J.Explo.Prop.,2005,28(3):17[王江宁,冯长根,田长华.火炸药学报,2005,28(3):17]10Sj öberg,P.Gas ⁃generating material for gas ⁃actuated car safetydevices.U.S.Patent 20040154711.2004Table 3Results for analyzing the data in Tables 1and 2by Eqs.(4)and (16)athe residual sum of squaresTable 2The calculated values of the critical temperature (T b )of thermal explosion for GUDN aae p oe op Kp activation energy obtained by Kissinger ′s method;A K ,pre ⁃exponential constant obtained by Kissinger ′s method;T SADT ‗defT e0,the value of T e corresponding toβ→0;T p0,the value of T p corresponding to β→0;αb ,the value of αcorresponding to T bMeasured valuesCalculated valuesβ/(K ·min -1)T e /K E oe /(kJ ·mol -1)E op /(kJ ·mol -1)E Kp /(kJ ·mol -1)A K /s -1T SADT /K T p0/K T b /K αb 2.5478.01231.10233.82237.761023.43473.95478.25482.320.025486.8610488.1315492.41T p /K 482.21491.01492.32496.76E a1(kJ ·mol -1)E a2(kJ ·mol -1)A 1s -1A 2s -1m n p RSS a(d T /d t )T b(K ·h -1)195.50177.001018.491018.000.811.290.710.76090.1236Fig.2Determination curve of the continuous specificheat capacity of GUDN457Acta Phys.鄄Chim.Sin.,2008Vol.2411Persson,S.;Sjöqvist,posite gas⁃generating material for gas⁃actuated car safety.U.S.Patent6764562.200412Persson,S.;Sjöqvist,posite gas⁃generating material for gas⁃actuated car safety devices.U.S.Patent20040231768.2004 13Xu,S.Y.;Zhao,F.Q.;Li,S.W.;Hao,H.X.;Gao,H.X.;Dang,Y.Z.J.Prop.Tech.,2006,27(2):182[徐司雨,赵凤起,李上文,郝海霞,高旭红,党永战.推进技术,2006,27(2):182]14Zhao,F.Q.;Guo,P.J.;Hu,R.Z.;Zhang,H.;Xia,Z.M.;Gao,H.X.;Chen,P.;Luo,Y.;Zhang,Z.Z.;Zhou,Y.S.;Zhao,H.A.;Gao, S.L.;Shi,Q.Z.;Lu,G.E;Jiang,J.Y.Chin.J.Chem.,2006,24(5): 63115Hu,R.Z.;Zhang,H.;Xia,Z.M.;Guo,P.J.;Gao,S.L.;Shi,Q.Z.;Lu,G.;Jiang,J.Y.Chin.J.Energ.Mater.,2003,11(3):130[胡荣祖,张海,夏克明,郭鹏江,高胜利,史启祯,路桂娥,江劲勇.含能材料,2003,11(3):130]16Smith,L.C.Thermochim.Acta,1975,13:117Marthada,V.K.J.Res.Natl.Bur.Stand,1980,85:46718Ditmars,D.A.;Ishihara,S.;Chang,S.S.J.Res.Natl.Bur.Stand, 1982,87:15919Ozawa,T.Bull.Chem.Soc.Jpn.,1965,38:188120Kissinger,H.E.Anal.Chem.,1975,29:170221Zhang,T.L.;Hu,R.Z.;Xie,Y.Thermochim.Acta,1994,244: 171458。