Linux2 进程概念
精品课件-Linux操作系统原理与应用(张玲)-第4章

第4章 进 程 管 理
2. 进程的特性 进程与程序的不同主要体现在进程有一些程序所没有的特 性。要真正理解进程,首先应了解它的基本性质。进程具有以 下几个基本特性: (1) 动态性:进程由“创建”而产生,由“撤销”而消 亡,因“调度”而运行,因“等待”而停顿。进程从创建到消 失的全过程称为进程的生命周期。 (2) 并发性:在同一时间段内有多个进程在系统中活动。 它们宏观上是在并发运行,而微观上是在交替运行。
第4章 进 程 管 理
(3) 独立性:进程是可以独立运行的基本单位,是操作 系统分配资源和调度管理的基本对象。因此,每个进程都独立 地拥有各种必要的资源,独立地占有CPU并独立地运行。
(4) 异步性:每个进程都独立地执行,各自按照不可预 知的速度向前推进。进程之间的协调运行由操作系统负责。
第4章 进 程 管 理
第4章 进 程 管 理
4) 现场信息 现场信息一般包括CPU的内部寄存器和系统堆栈等,它们 的值刻画了进程的运行状态。退出CPU的进程必须保存好这些 现场状态,以便在下次被调度时继续运行。当一个进程被重新 调度运行时,要用PCB中的现场信息来恢复CPU的运行现场。 现场一旦切换,下一个指令周期CPU将精确地接着上次运行的 断点处继续执行下去。
第4章 进 程 管 理
4.1.1 程序的顺序执行与并发执行 1. 程序的顺序执行 如果程序的各操作步骤之间是依序执行的,程序与程序之
间是串行执行的,这种执行程序的方式就称为顺序执行。顺序 执行是单道程序系统中的程序的运行方式。
程序的顺序执行具有如下特点: (1) 顺序性:CPU严格按照程序规定的顺序执行,仅当一 个操作结束后,下一个操作才能开始执行。多个程序要运行时, 仅当一个程序全部执行结束后另一个程序才能开始。
操作系统第二版第二章课后习题答案

第二章进程和线程作业答案1,2,4,6,7,10,11,12,14, 211.在操作系统中为什么要引入进程概念它与程序的差别和关系是怎样的答:由于多道程序的并发执行时共享系统资源,共同决定这些资源的状态,因此系统中各程序在执行过程中就出现了相互制约的新关系,程序的执行出现“走走停停”的新状态。
用程序这个静态概念已经不能如实反映程序并发执行过程中的这些特征。
为此,人们引入“进程(Process)”这一概念来描述程序动态执行过程的性质。
进程和程序是两个完全不同的概念。
进程与程序的主要区别:进程和程序之间存在密切的关系:进程的功能是通过程序的运行得以实现的,进程活动的主体是程序,进程不能脱离开具体程序而独立存在。
2.PCB的作用是什么它是怎样描述进程的动态性质的答:PCB是进程组成中最关键的部分。
每个进程有惟一的进程控制块;操作系统根据PCB对进程实施控制和管理,进程的动态、并发特征是利用PCB表现出来的;PCB是进程存在的唯一标志。
PCB中有表明进程状态的信息,该进程的状态包括运行态、就绪态和阻塞态,它利用状态信息来描述进程的动态性质。
4. 用如图2-26所示的进程状态转换图能够说明有关处理机的大量内容。
试回答:①什么事件引起每次显着的状态变迁②下述状态变迁因果关系能否发生为什么(A)2→1 (B)3→2 (C)4→1答:(1)就绪→运行:CPU空闲,就绪态进程被调度程序选中运行→阻塞:运行态进程因某种条件未满足而放弃CPU的占用。
阻塞→就绪:阻塞态进程所等待的事件发生了。
运行→就绪:正在运行的进程用完了本次分配给它的时间片(2)下述状态变迁(A)2→1,可以。
运行进程用完了本次分配给它的时间片,让出CPU,从就绪队列中选一个进程投入运行。
(B)3→2,不可以。
任何时候一个进程只能处于一种状态,它既然由运行态变为阻塞态,就不能再变为就绪态。
(C)4→1,可以。
某一阻塞态进程等到的事件出现了,而且此时就绪队列为空,该进程进入就绪队列后马上又被调度运行。
Linux多进程

LINUX进程控制课程内容linux下进程的创建、终止、控制;进程间资源的继承;多进程间的通讯;守护进程。
目录1. Linux进程概述 (1)1.1. 进程标识 (2)1.2. 进程的用户ID与组ID(进程的运行身份) (2)2. 进程的创建 (3)2.1. system函数 (4)2.2. fork函数 (4)2.3. exec函数族 (5)2.4. popen函数 (6)3. 进程控制与终止 (8)3.1. 进程的控制 (8)3.2. 进程的终止 (9)4. 进程间打开文件的继承 (9)4.1. 用fork继承打开的文件 (9)4.2. 用exec*继承打开的文件 (10)4.3. 用管道(FIFO)传递打开的文件的信息 (11)5. 进程间通信(Interprocess Communication,IPC) (13)5.1. 无名管道(PIPE) (13)5.2. 命名管道(FIFO) (15)5.3. 共享内存 (18)5.4. 消息队列 (20)6. 守护进程(Daemon) (24)1.Linux进程概述进程是程序的执行实例,它是Linux的基本调度单位。
一个进程由如下元素组成:●程序的当前上下文,即程序的当前执行状态;●程序的当前执行目录●程序访问的文件和目录●程序的访问权限,比如它的文件模式和所有权●内存和其他分配给进程的系统资源内核使用进程来控制对CPU和其他系统资源的访问,并且使用进程来决定在CPU上运行哪个程序,运行多久以及采用什么特性运行它。
内核的调度器负责在所有的进程间分配CPU执行时间,称为时间片(time slice),它轮流在每个进程分得的时间片用完后从进程那里抢回控制权。
1.1.进程标识OS会为每个进程分配一个唯一的整型ID,做为进程的标识号(pid)。
进程除了自身的ID外,还有父进程ID(ppid),所有进程的祖先进程是同一个进程,它叫做init进程,ID为1,init进程是内核自举后的一个启动的进程。
Linux进程管理-实验报告

《Linux 操作系统设计实践》实验一:进程管理实验目的:(1) 加深对进程概念的理解,明确进程和程序的区别。
(2)进一步认识并发执行的实质.(3) 学习通过进程执行新的目标程序的方法。
(4) 了解Linux 系统中进程信号处理的基本原理.实验环境:Red Hat Linux实验内容:(1)进程的创建编写一段程序,使用系统调用fork()创建两个子进程,当此进程运行时,在系统中有一个父进程和两个子进程活动,让每一个进程在屏幕上显示一个字符,父进程显示字符“a";子进程分别显示字符“b”和字符“c”,试观察记录屏幕上的显示结果,并分析原因.程序代码:#include<stdio。
h〉int main(){int p1 ,p2 ;while((p1=fork())==-1);if(p1==0)putchar(’b');else{while((p2=fork())==—1);if(p2==0)putchar(’c');elseputchar(’a');}return 0;}运行结果:bca分析:第一个while里调用fork()函数一次,返回两次。
子进程P1得到的返回值是0,父进程得到的返回值是新子进程的进程ID(正整数);接下来父进程和子进程P1两个分支运行,判断P1==0,子进程P1符合条件,输出“b”;接下来else里面的while里再调用fork()函数一次,子进程P2得到的返回值是0,父进程得到的返回值是新子进程的进程ID(正整数);接下来判断P2==0,子进程P2符合条件,输出“c”,接下来父进程输出“a”,程序结束。
(2)进程的控制①修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕上出现的现象,并分析原因。
程序代码:#include〈stdio。
h>int main(){int p1,p2;while((p1=fork())==-1);if(p1==0)printf("Child1 is running!\n”);else{while((p2=fork())==—1);if(p2==0)printf(”Child2 is running!\n”);elseprintf(”Fath er is running!\n”);}return 0;}运行结果:Child1 is running!Child2 is running!Father is running!分析:本实验和上一个实验一样,只是将每个进程输出一个字符改为每个进程输出一句话.第一个while里调用fork()函数一次,返回两次。
Linux 进程概念

Linux 进程概念进程是执行中的程序,这是一种非正式的说法。
进程不只是程序代码,程序代码有时称为文本段。
进程还包括当前活动,通过程序计数器的值和处理器寄存器的内容来表示。
另外,进程通常还包括进程堆栈段(包含临时数据,如方法参数、返回地址和局部变量)和数据段(包含全局变量)。
这里强调,程序本身不是进程;程序只是被动实体,如存储在磁盘上的文件内容,而进程是活动实体,它有一个程序计数器用来表示下一个要执行的指令和相关资源集合。
虽然两个进程可以与同一程序相关,但是它们被当做两个独立的执行序列。
例如,多个用户可运行电子邮件程序中的不同拷贝命令,或者同一用户能调用编辑器程序的多个拷贝命令。
这些都是独立的进程,虽然文本段相同,但是数据段不同。
1.进程状态进程在执行时会改变状态,进程状态部分地由进程的当前活动所定义。
每个进程可能处于下列状态之一:●新建进程正在被创建。
●运行指令正在被执行。
●等待进程等待一定事件的出现(如接收某个信号)。
●就绪进程等待被分配给某个处理器。
●终止进程已完成执行。
这些状态的名称较随意,且随操作系统的不同而变化。
不过,它们所代表的状态可以出现在所有系统上。
有的操作系统更为仔细地描述了进程状态。
在任何时刻一次只能有一个进程可在任何一个处理上运行,尽管许多进程可能处于就绪或等待状态。
2.进程控件块每个进程在操作系统内用进程控制块(Process control block,PCB也称为任务控制块)来表示。
每个任务控制块都包含与特定进程相关的许多信息。
●进程状态状态可包括新的、就绪、运行、等待和停止等。
●程序计数器计数器表示这个进程要执行的下个指令的地址。
●CPU寄存器根据计算机体系结构的不同,寄存器的数量和类型也不同。
它们包括累加器、索引寄存器、堆栈指针、通用寄存器和其他条件码信息寄存器。
与程序计数器一样,这些状态信息在出现中断时也需要被保存,以便进程以后正确地继续执行。
●CPU调度信息这类信息包括进程优先级、调度队列的指针和任何其他高度参数。
Linux系统编程之进程控制(进程创建、终止、等待及替换)

Linux系统编程之进程控制(进程创建、终⽌、等待及替换)进程创建在上⼀节讲解进程概念时,我们提到fork函数是从已经存在的进程中创建⼀个新进程。
那么,系统是如何创建⼀个新进程的呢?这就需要我们更深⼊的剖析fork 函数。
1.1 fork函数的返回值调⽤fork创建进程时,原进程为⽗进程,新进程为⼦进程。
运⾏man fork后,我们可以看到如下信息:#include <unistd.h>pid_t fork(void);fork函数有两个返回值,⼦进程中返回0,⽗进程返回⼦进程pid,如果创建失败则返回-1。
实际上,当我们调⽤fork后,系统内核将会做:分配新的内存块和内核数据结构(如task_struct)给⼦进程将⽗进程的部分数据结构内容拷贝⾄⼦进程添加⼦进程到系统进程列表中fork返回,开始调度1.2 写时拷贝在创建进程的过程中,默认情况下,⽗⼦进程共享代码,但是数据是各⾃私有⼀份的。
如果⽗⼦只需要对数据进⾏读取,那么⼤多数的数据是不需要私有的。
这⾥有三点需要注意:第⼀,为什么⼦进程也会从fork之后开始执⾏?因为⽗⼦进程是共享代码的,在给⼦进程创建PCB时,⼦进程PCB中的⼤多数数据是⽗进程的拷贝,这⾥⾯就包括了程序计数器(PC)。
由于PC中的数据是即将执⾏的下⼀条指令的地址,所以当fork返回之后,⼦进程会和⽗进程⼀样,都执⾏fork之后的代码。
第⼆,创建进程时,⼦进程需要拷贝⽗进程所有的数据吗?⽗进程的数据有很多,但并不是所有的数据都要⽴马使⽤,因此并不是所有的数据都进⾏拷贝。
⼀般情况下,只有当⽗进程或者⼦进程对某些数据进⾏写操作时,操作系统才会从内存中申请内存块,将新的数据拷写⼊申请的内存块中,并且更改页表对应的页表项,这就是写时拷贝。
原理如下图所⽰:第三,为什么数据要各⾃私有?这是因为进程具有独⽴性,每个进程的运⾏不能⼲扰彼此。
1.3 fork函数的⽤法及其调⽤失败的原因fork函数的⽤法:⼀个⽗进程希望复制⾃⼰,通过条件判断,使⽗⼦进程分流同时执⾏不同的代码段。
linux的进程管理实验总结

linux的进程管理实验总结Linux的进程管理实验总结1. 引言Linux中的进程管理是操作系统的核心功能之一,在实际的系统运行中起着重要的作用。
进程管理能够有效地分配系统资源、管理进程的运行状态和优先级,以及监控进程的行为。
本文将以Linux的进程管理实验为主题,分步骤介绍实验过程及总结。
2. 实验目的本次实验的目的是理解Linux中进程的概念,掌握进程的创建、运行和终止的基本操作,以及进程的状态转换过程。
3. 实验环境本次实验使用的是Linux操作系统,可以选择使用虚拟机安装Linux或者使用Linux主机进行实验。
4. 实验步骤4.1 进程的创建在Linux中,可以使用系统调用fork()来创建一个新的子进程。
在实验中,可以编写一个简单的C程序来调用fork()系统调用,实现进程的创建。
具体步骤如下:(1)创建一个新的C程序文件,例如"process_create.c"。
(2)在C程序文件中,包含必要的头文件,如<stdio.h>和<unistd.h>。
(3)在C程序文件中,编写main()函数,调用fork()函数进行进程的创建。
(4)编译并运行该C程序文件,观察控制台输出结果。
实验中,可以通过观察控制台输出结果,判断新的子进程是否被成功创建。
4.2 进程的运行在Linux中,通过调用系统调用exec()可以用一个新的程序替换当前进程的执行。
可以使用exec()函数来实现进程的运行。
具体步骤如下:(1)创建一个新的C程序文件,例如"process_run.c"。
(2)在C程序文件中,包含必要的头文件和函数声明,如<stdio.h>和<unistd.h>。
(3)在C程序文件中,编写main()函数,调用execl()函数来执行一个可执行程序。
(4)编译并运行该C程序文件,观察控制台输出结果。
实验中,可以通过观察控制台输出结果,判断新的程序是否被成功执行。
第6章 linux进程控制开发及多线程编程

进程的状态
进程是程序的执行过程,根据它的生命周期可以划分成3种 状态。 执行态:该进程正在运行,即进程正在占用CPU。 就绪态:进程已经具备执行的一切条件,正在等待分配 CPU的处理时间片。 等待态:进程不能使用CPU,若等待事件发生(等待的 资源分配到)则可将其唤醒。
Linux下进程地址空间(1)
互斥锁线程控制 (1)
在同一时刻只能有一个线程掌握某个互斥锁,拥有上锁状态 的线程能够对共享资源进行操作。若其他线程希望上锁一个 已经被上锁的互斥锁,则该线程就会挂起,直到上锁的线程 释放掉互斥锁为止。
互斥锁机制主要包括下面的基本函数。 互斥锁初始化: pthread_mutex_init() 互斥锁上锁: pthread_mutex_lock() 互斥锁判断上锁:pthread_mutex_trylock() 互斥锁解锁: pthread_mutex_unlock() 消除互斥锁: pthread_mutex_destroy()
示例
阅读并执行示例7-2-4 开始
教材P216-P217
fork()
程序功能: (1)使用fork创建一个子进程, 然后让其子进程暂停5s(sleep函 数)。 (2)父进程使用waitpid,参数 WNOHANG使进程不会阻塞; (3)若子进程退出,则waitpid返 回子进程号,若没有则waitpid返 回0,并且父进程每隔一秒循环判 断。
因此,可以通过返回值来判定该进程是父进程还是子进程。
fork示例
1.Fork返回两个值返回到哪里??
int main(void)
{
pid_t result;
2.怎样区分是父、子进程??
result = fork();
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Linux2 进程概念
进程是执行中的程序,这是一种非正式的说法。
进程不只是程序代码,程序代码有时称为文本段。
进程还包括当前活动,通过程序计数器的值和处理器寄存器的内容来表示。
另外,进程通常还包括进程堆栈段(包含临时数据,如方法参数、返回地址和局部变量)和数据段(包含全局变量)。
这里强调,程序本身不是进程;程序只是被动实体,如存储在磁盘上的文件内容,而进程是活动实体,它有一个程序计数器用来表示下一个要执行的指令和相关资源集合。
虽然两个进程可以与同一程序相关,但是它们被当做两个独立的执行序列。
例如,多个用户可运行电子邮件程序中的不同拷贝命令,或者同一用户能调用编辑器程序的多个拷贝命令。
这些都是独立的进程,虽然文本段相同,但是数据段不同。
1.进程状态
进程在执行时会改变状态,进程状态部分地由进程的当前活动所定义。
每个进程可能处于下列状态之一:
●新建进程正在被创建。
●运行指令正在被执行。
●等待进程等待一定事件的出现(如接收某个信号)。
●就绪进程等待被分配给某个处理器。
●终止进程已完成执行。
这些状态的名称较随意,且随操作系统的不同而变化。
不过,它们所代表的状态可以出现在所有系统上。
有的操作系统更为仔细地描述了进程状态。
在任何时刻一次只能有一个进程可在任何一个处理上运行,尽管许多进程可能处于就绪或等待状态。
2.进程控件块
每个进程在操作系统内用进程控制块(Process control block,PCB也称为任务控制块)来表示。
每个任务控制块都包含与特定进程相关的许多信息。
●进程状态状态可包括新的、就绪、运行、等待和停止等。
●程序计数器计数器表示这个进程要执行的下个指令的地址。
●CPU寄存器根据计算机体系结构的不同,寄存器的数量和类型也不同。
它们包括累
加器、索引寄存器、堆栈指针、通用寄存器和其他条件码信息寄存器。
与程序计数器
一样,这些状态信息在出现中断时也需要被保存,以便进程以后正确地继续执行。
●CPU调度信息这类信息包括进程优先级、调度队列的指针和任何其他高度参数。
●内存管理信息这类信息包括基址寄存器和界限寄存器的值、页表或段表(与操作系
统所使用的内存系统有关)。
●计账信息这类信息包括CPU时间、实际使用时间、时间界限、记账数量、作业或进
程数量等。
●I/O状态信息这类信息包括分配给该进程的I/O设备列表、打开文件的列表等。
PCB
简单地作为这些信息的仓库,这些信息在进程与进程之间是变化的。
3.线程
迄今为止所讨论的进程模型暗示:一个进程是一个只能进行单个执行线程的程序。
例如,如果一个进程运行一个字处理器程序,那么只能执行指令的单个线程。
这种单一控制线程使得一次只能执行一个任务。
例如,用户不能在同一进程内,同时输入字符和运行拼写检查。
许多现代操作系统执行多进程。
因此允许进程一次完成多个任务。