中考数学压轴题必考题型二次函数的面积问题考点专练含解析强烈推荐

合集下载

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,抛物线2y ax x c =-+与y 轴交于点()0,4A -,与x 轴交于点()4,0B ,连接AB .(1)求抛物线的解析式.(2)P 是AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作PD x ⊥轴于点D .①求PC PD +的最大值.①连接PA ,PB ,是否存在点P ,使得线段PC 把PAB 的面积分成3:5两部分?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.综合与探究如图1,抛物线212y x bx c =-++经过点(4,0)B 和(0,2)C ,与x 轴的另一个交点为A ,连接AC ,BC .(1)求该抛物线的解析式及点A 的坐标;(2)如图1,点D 是线段AC 的中点,连接BD .点E 是抛物线上一点,若ABE BCD S S =△△,设点E 的横坐标为x ,请求出x 的值;(3)试探究在抛物线上是否存在一点P ,使得45PBO OBC ∠+∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图抛物线2y ax bx c =++经过点()1,0A -,点()0,3C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 是直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.4.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.5.如图,抛物线214y x bx c =-++与x 轴交于点,A B 两点(点A 在点B 的右侧),点()()8,02,0A B -、,与y 轴交于点C .(1)求抛物线的解析式; (2)点D 为抛物线的顶点,过点D 作DE AC ∥交抛物线于点E ,点P 为抛物线上点,D E 之间的一动点,连接,,,,AC AE AP CE CP ,线段,AP CE 交于点G ,记CPG △的面积为1,S AEG △的面积为2S ,且12S S S =-,求S 的最大值及此时点P 的坐标;(3)在(2)的条件下,将拋物线沿射线AC 方向平移5个单位长度后得到新抛物线,点Q 是新拋物线对称轴上一动点,在平面内确定一点R ,使得以点P Q B R 、、、为顶点的四边形是矩形.直接写出所有符合条件的点R 的坐标.6.如图,有一个长为30米的篱笆,一面利用墙(墙的最大可用长度18a =米)围成的中间隔有一道篱笆的长方形花圃设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)如何设计才能使长方形花圃面积最大;并求其最大面积.7.如图,过原点的抛物线212y x bx c =-++与x 轴的另一个交点为A ,且抛物线的对称轴为直线2x =,点B 为顶点(1)求抛物线的解析式(2)如图(1),点C 为直线OB 上方抛物线上一动点,连接AB,BC 和AC ,线段AC 交直线OB 于点E ,若CBE △的面积为1S ,ABE 的面积为2S ,求12S S 的最大值 (3)如图(2),设直线()20y kx k k =-≠与抛物线交于D ,F 两点,点D 关于直线2x =的对称点为D ,直线D F '与直线2x =交于点P ,求证:BP 的长是定值.8.抛物线2y x bx c =-++经过点A ,B ,C ,已知()1,0A -和()0,3C .(1)求抛物线的解析式及顶点E 的坐标;(2)点D 在BC 上方的抛物线上.①如图1,若CAB ABD ∠=∠,求点D 的坐标;①如图2,直线BD 交y 轴于点N ,过点B 作AD 的平行线交y 轴于点M ,当点D 运动时,求CBD AMNS S △△的最大值及此时点D 的坐标. 9.在平面直角坐标系中,O 为坐标原点,抛物线244y ax ax =-+交x 轴于点A 、B (A 左B右),交y 轴于点C ,直线123y x =-+,经过B 点,交y 轴于点D .(1)如图1,求a 的值;(2)如图2,点P 在第一象限内的抛物线上,过点A 、B 作x 轴的垂线,分别交直线PD 于点E 和F ,若PF DE =,求点P 的坐标;(3)如图3,在(2)的条件下,点Q 在第一象限内的抛物线上,过点Q 作QH DP ⊥于点H ,交直线BD 于点R ,连接EQ 和ER ,当QE ER =时,求ERQ △的面积.10.已知抛物线213222y x x =-++与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A .(1)判断ABC 的形状,并说明理由.(2)设点(,)P m n 是抛物线在第一象限部分上的点,过点P 作PH x ⊥轴于H ,交AC 于点Q ,设四边形OAPC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标和QHC △的面积;(3)在(2)的条件下,点N 是坐标平面内一点,抛物线的对称轴上是否存在点M ,使得以P 、C 和M 、N 为顶点的四边形是菱形,若存在,写出点M 的坐标,并选择一个点写出过程,若不存在,请说明理由.11.已知,如图,在平面直角坐标系中,点O 为坐标原点,直线6y x =+与x 轴相交于点B ,与y 轴交于点C ,点A 是x 轴正半轴上一点,且满足2tan 3ACO ∠=.(1)若抛物线2y ax bx c =++经过A 、B 和C 三点,求抛物线的解析式;(2)若点M 是第二象限内抛物线上的一个动点,过点M 作MP y ∥轴,交BC 于点P ,连接OP ,在第一象限内找一点Q ,过点Q 作⊥OQ OP 且OQ OP =,连接PQ ,MQ ,设MPQ 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,设PQ 与y 轴相交于点R ,若53=PR PC 时,求点P 的坐标. 12.已知抛物线22y ax ax c =-+过点()10A -,和()03C ,,与x 轴交于另一点B .(1)求抛物线的解析式;(2)若抛物线的顶点为D ,在直线BC 上方抛物线上有一点P (与D 不重合),BCP 面积与BCD △面积相等,求点P 的坐标;(3)若点E 为抛物线对称轴上一点,在平面内是否存在点F ,使得以E 、F 和B 、C 为顶点的四边形是菱形,若存在,请直接写出F 点的坐标;若不存在,请说明理由.13.如图,抛物线过点()08D ,,与x 轴交于()20A -,,()40B ,两点.(1)求抛物线的解析式;(2)若点C 为二次函数的顶点,求BCD S △.14.如图,O 为平面直角坐标系坐标原点,抛物线22y ax ax c =-+经过点()6,0B ,点()0,6C 与x 轴交于另一点A .(1)求抛物线的解析式;(2)D 点为第一象限抛物线上一点,连接AD 和BD ,设点D 的横坐标为t ,ABD △的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,P 为第四象限抛物线上一点,连接PA 交y 轴于点E ,点F 在线段BC 上,点G 在直线AD 上,若1tan 2DAO ∠=,四边形BEFG 为菱形,求点P 的坐标. 15.已知抛物线2()20y ax x c a =++≠与x 轴交于点(1,0)A -和点B ,与直线3y x =-+交于点B 和点C ,M 为抛物线的顶点,直线ME 是抛物线的对称轴.(1)求抛物线的解析式及点M 的坐标;(2)点P 为直线BC 上方抛物线上一点,连接PB ,PC ,当PBC 的面积取最大值时,求点P 的坐标.参考答案:1.(1)2142y x x =-- (2)① PC PD +取得最大值254 ① 53,2⎛⎫- ⎪⎝⎭或 316,2⎛⎫+- ⎪⎝⎭2.(1)213222y x x =-++ (1,0)-; (2)3172+或3172-或3332+或3332- (3)存在,517(,)39--或113(,)39-3.(1)故抛物线的表达式为:223y x x =-++,函数的对称轴为:1x =;(2)10113++(3)()4,5-或()8,45-4.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为45.(1)213442y x x =-++ (2)S 的最大值为1,()4,6P(3)()7,3或()5,3-6.(1)2330S x x =-+ 410x ≤<;(2)当宽AB 为5米,长15BC =米时,长方形花圃的最大面积为75平方米.7.(1)2122y x x =-+ (2)188.(1)()1,4(2)①()2,3D ;①CBD AMN S S △△的最大值为916,此时315,24D ⎛⎫ ⎪⎝⎭9.(1)13a =- (2)()4,4P(3)1010.(1)直角三角形(2)244S m m =-++ (2,3)P 1QHC S =(3)存在,点M 坐标为3651(,)22+或3651(,)22-或333(,)22或333(,)22-或31(,)22,理由见解析11.(1)211642=--+y x x (2)()2396042S t t t =---<< (3)()()124,2,2,4P P --12.(1)223y x x =-++(2)()23P ,(3)存在,点F 的坐标为()417,或()417-,或()2314-+,或()2314--,13.(1)228y x x =-++(2)614.(1)211642y x x =-++ (2)2553042S t t =-++ (3)()8,6P -15.(1)抛物线的解析式为223y x x =-++,点M 的坐标为(1,4)(2)315,24P ⎛⎫ ⎪⎝⎭。

中考数学总复习《二次函数中的面积问题》专题训练-附答案

中考数学总复习《二次函数中的面积问题》专题训练-附答案

中考数学总复习《二次函数中的面积问题》专题训练-附答案 学校:___________班级:___________姓名:___________考号:___________1.如图,已知顶点为325,28M ⎛⎫ ⎪⎝⎭的抛物线过点()3,2D ,交x 轴于A ,B 两点,交y 轴于点C 、点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求PAD 面积的最大值,并求出此时点P 的坐标.2.在平面直角坐标系中,点O 是坐标原点,抛物线2(0)y ax bx a =+≠过点(6,0)E ,y 的最大值为9,点A 在x 轴正半轴上,点A 向右平移2个单位得到点B ,过点A ,B 作x 轴的垂线分别交抛物线于点D ,C ,设A 的坐标为(,0)t .(1)求抛物线的函数表达式;(2)若OAD △与BCE 的面积分别记作1S 和2S ,当04t <<时,求12S S +的值;(3)若以A ,B ,C ,D 为顶点的四边形的面积记作S .①当04t <<时,求S 的最大值;①当3t ≥时,直接写出14S =时t 的值.4.如图,直线210y x =-分别与x 轴,y 轴交于点A 和B ,点C 为OB 的中点,抛物线2y x bx c =-++经过A ,C 两点.(1)求抛物线的函数表达式;(2)点D 是直线AB 上方的抛物线上的一点,且ABD 的面积为452. ①求点D 的坐标;①点P 为抛物线上一点,若APD 是以PD 为直角边的直角三角形,求点P 到抛物线的对称轴的距离.5.如图,在Rt ABC △,90ABC ∠=︒该三角形的三个顶点均在坐标轴上.二次函数2y ax bx c =++过(1,0)A -,(0,2)B 和(4,0)C .(1)求二次函数的解析式;(2)点P 为该二次函数第一象限上一点,当BCP 的面积最大时,求P 点的坐标.6.如图,在平面直角坐标系中,抛物线2y ax bx c =++经过(1,0)A -,(4,0)B 和(0,4)C 三点.(1)求抛物线的解析式及顶点D 的坐标:(2)在抛物线的对称轴上探求一点M 的坐标,使得点M 到点A 、点C 的距离之和最小;(3)在直线BC 上方的抛物线上探求一点P ,使得PBC 的面积最大,并求出PBC 的面积的最大值.7.在如图所示平面直角坐标系中,已知抛物线2y ax bx c =++与x 轴交于点()1,0A -和()3,0B ,与y 轴交于点()0,3C -.(1)求该抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,求PBC 面积的最大值及此时点P 的坐标;(3)将该抛物线向上平移433个单位得到新的抛物线,点E 是新抛物线上一点,点F 是已知抛物线对称轴上一点,若以点B 、C 、E 、F 为顶点的四边形为平行四边形,写出点E 的坐标,并把求其中一个点E 的过程写出来.8.抛物线2y ax x c =-+与x 轴交于点()4,0A -和()2,0B ,与y 轴交于点C .(1)求二次函数的解析式;(2)若点D 为第二象限内抛物线上一动点,点D 的横坐标为m ,四边形AOCD 的面积为S .求S 关于m 的函数解析式,并求出S 的最大值.9.已知:如图,抛物线2y ax bx c =++经过原点()0,0和()()1,3,1,5A B --三点.(1)求抛物线的解析式.(2)设抛物线与x 轴的另一个交点为C .以OC 为直径作M ,如果过抛物线上一点P 作M 的切线PD ,切点为D ,且与y 轴的正半轴交于点E ,连接MD .已知点E 的坐标为()0,m ,求四边形EOMD 的面积.(用含m 的代数式表示)(3)延长DM 交M 于点N ,连接,ON OD ,当点P 在(2)的条件下运动到什么位置时,能使得DON EOMD S S =△四边形?请求出此时点P 的坐标.10.如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点()1,0A -和点()0,5B -.(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P ,使得ABP 的周长最小,请求出点P 的坐标;(3)在抛物线上是否存在点M ,使ACM ABC SS =若存在,请求出点M 的坐标,若不存在,请说明理由.为抛物线上一点,且ABP的面积为13.如图,在平面直角坐标系中,已知抛物线经过()4,0A -,()0,4B -和()2,0C 三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,AMB 的面积为S ,求S 关于m 的函数关系式(3)求出S 的最大值;14.如图,在平面直角坐标系中,抛物线22(2)3y x k =--+(k 为常数)的顶点为C ,与x 轴交于点(1,0)A -和点B ;点D 在抛物线上,且位于抛物线上点A ,C 之间(不与点A ,C 重合),回答下列问题:(1)求点B 的坐标;(2)求ACB △的面积;(3)若ACD 的周长为14,则四边形ABCD 的周长为________.15.抛物线22y x x m =-++与x 轴交于点A 和点()3,0B ,与y 轴交于点C ,抛物线的顶点为D .(1)求m 的值;(2)求BCD △的面积;(3)若点P 是抛物线上的一点,当点P 在直线BC 的上方的抛物线上运动时,PBC 的面积是否存在最大值?若存在,请求出这个最大值,并写出此时P 点的坐标;若不存在,请说明理由.第 11 页 共 13 页参考答案: 1.(1)213222y x x =-++ (2)PAD S ∆有最大值4,此时点P 的坐标为()13,.2.(1)抛物线的函数表达式为26y x x =-+(2)当04t <<时1216S S +=(3)①当2t =时,S 有最大值16;①3t =或 5.5t =3.(1)24y x x =-+;(2)()2520299y x =--+;(3)()44D ,或()4,7D 或()4,1D -或()1,1D -- 4.(1)265y x x =-+-(2)①()2,3D ;①0或152+或512- 5.(1)抛物线的解析式为213222y x x =-++; (2)当BCP 的面积最大时()23P ,.6.(1)234y x x =-++ 325,24D ⎛⎫ ⎪⎝⎭(2)35,22⎛⎫ ⎪⎝⎭(3)当点P 坐标为()2,6时,PBC S 最大,最大值为8.(2)PBC的面积取值最大值为点E的坐标为.(1)1y=-2第12页共13页第 13 页 共 13 页 14.(1)(5,0)(2)18(3)20 15.(1)3m =(2)3(3)PBC S 有最大值,最大值为278 315,24P ⎛⎫⎪⎝⎭。

中考数学压轴题:二次函数中的面积问题(含答案)

中考数学压轴题:二次函数中的面积问题(含答案)

学生/课程年级日期学科时段课型数学授课教师核心内容二次函数中求面积最值,图形平移或折叠面积问题1.会利用函数的图象性质来研究几何图形的面积最值问题;教学目标重、难点2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。

3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.割补法求三角形面积,动态问题一般解题思路。

了解学生的学习情况S△ = a h或S△ = a d (d表示已知点到直线的距离)以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。

S△ = ×水平宽×铅垂高如下图:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC = S△DBC,S△AOB = S△COD2如图,在平面直角坐标系中,抛物线y=mx -8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x ,10),C(x ,0),且x -x =4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD2 2 1的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.图形面积的求法常见有三种,分别是:(1)_______________________________(2)_______________________________(3)_______________________________[学有所获答案] (1)直接公式求法 割补法 平行线等积变换法(2)(3) 2 如图,已知抛物线y =x +bx +c 与 轴交于A ,B 两点(点A 在点B 的左侧)与 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE =90°时,求出点P 的坐标;(3)当△PBC 的面积为 时,求点E 的坐标.2 如图,已知抛物线y = x +ax +4a 与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB =OC ,点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合.(1)求该抛物线的解析式;(2)若△PAC 的面积为 ,求点P 的坐标;(3)若以A ,B ,C ,P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?将()的图像如何平移到的图像。

最新中考数学专题复习:二次函数的面积问题压轴训练(含答案)

最新中考数学专题复习:二次函数的面积问题压轴训练(含答案)

2023年中考数学专题复习:二次函数的面积问题压轴训练1.综合与探究如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,﹣3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.(3)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.2.如图,抛物线2y x bx c =++经过()1,0A -、()4,5B 两点,点E 是线段AB 上一动点,过点E 作x 轴的垂线,交抛物线于点F .(1)求抛物线的解析式;(2)求线段EF 的最大值;(3)抛物线与x 轴的另一个交点为点C ,在抛物线上是否存在一个动点P ,使得25ACP ABC S S ∆∆=?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,二次函数23y ax bx =++的图像与x 正半轴相交于点B ,负半轴相交于点A ,其中A 点坐标是(-1,0),B 点坐标是(3,0).(1)求此二次函数的解析式;(2)如图1,点P 在第一象限的抛物线上运动,过点P 作PD x ⊥轴于点D ,交线段BC 于点E ,线段BC 把△CPD 分割成两个三角形的面积比为1△2,求P 点坐标;(3)如图2,若点H 在抛物线上,点F 在x 轴上,当以B 、C 、H 、F 为顶点的四边形是平行四边形时,请直接写出点F 的坐标.4.如图,抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于C 点,直线BC 方程为3y x =-.(1)求抛物线的解析式;(2)点P 为抛物线上一点,若12PBC ABC S S =,请直接写出点P 的坐标;(3)点Q 是抛物线上一点,若45ACQ ∠=︒,求点Q 的坐标.5.如图,已知直线y =43x +4与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2+bx +c 经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线x =﹣1.(1)求抛物线的表达式;(2)D 是第二象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时D 点的坐标;(3)若点P 在抛物线对称轴上,是否存在点P ,Q ,使以点A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请求出P ,Q 两点的坐标;若不存在,请说明理由.6.综合与探究:如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,2OA =,4OB =,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,当BCD △的面积是92时,求ABD △的面积; (3)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为一边的四边形是平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =2x +4与x 轴,y 轴分别交于A ,B 两点,抛物线()20y ax x c a =++≠经过A ,B 两点与x 轴相交于点C 点.(1)求抛物线的解析式;(2)点P 在抛物线上,连接PB ,当△PBC +△OBA =45°时,求点P 的坐标;(3)点M 为抛物线上任意一点,当13ABM ABC S S =△△::时,请直接写出点M 的坐标.8.如图,抛物线2y x bx c =++与x 轴交于,(4,0)A B 两点(A 在B 的左侧),与y 轴交于点(0,4)C -,点P 在抛物线上,连接,BC BP .(1)求抛物线的解析式;(2)如图1,若点P 在第四象限,点D 在线段BC 上,连接PD 并延长交x 轴于点E ,连接CE ,记DCE 的面积为1S ,DBP 的面积为2S ,当12S S 时,求点P 的坐标;(3)如图2,若点P 在第二象限,点F 为抛物线的顶点,抛物线的对称轴l 与线段BC 交于点G ,当90PBC CFG ∠+∠=︒时,求点P 的横坐标.9.如图,抛物线y =ax 2+bx +4与x 轴相交于点A (0),B 0),与y 轴相交于点C ,抛物线的对称轴与x 轴相交于点D ,点P 是x 轴上的一个动点,连接CP ,并把线段CP 绕着点C 按逆时针方向旋转60°,得到CQ ,连接PQ ,OQ .(1)求抛物线的解析式;(2)当点P 运动到点D 时,求Q 点坐标,并判断点Q 是否在抛物线上;(3)当△OPQ P 的坐标.10.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接AD 、BD ,探究是否存在点D ,使得△ABD 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得△P AB 为直角三角形,请求出点P 的坐标.11.如图,在平面直角坐标系中,抛物线22y ax bx =+-与x 轴交于(1,0)A -,B 两点,其对称轴1x =与x 轴交于点D .图1 图2(1)求该抛物线的函数表达式;(2)如图1,点P 为第四象限内的抛物线上一动点,连接PB ,PC ,CD ,求四边形PBDC 面积的最大值和此时点P 的坐标;(3)将该抛物线向左平移3个单位长度得到抛物线y',平移后的抛物线与原抛物线的对称轴相交于点E ,点F 为抛物线y'对称轴上的一点,M 是原抛物线上的动点,直接写出所有使得以点A ,E ,F ,M 为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.12.如图,抛物线22y ax bx =++经过点()()1040,,,A B -,与y 轴交于点C .(1)求抛物线的解析式;(2)点D 为y 轴右侧抛物线上一点,是否存在点D ,使23ABC ABD S S =△△若存在,求出点D 的坐标;若不存在,请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与直线AC 交于点F ,直接写出BF 的长.13.如图,在平面直角坐标系中,抛物线2(0)y ax c a =+≠与x 轴交于A ,B 两点,点B 的坐标是(2,0),顶点C 的坐标是(0,4),M 是抛物线上一动点,且位于第一象限,直线AM 与y 轴交于点G .(1)求该抛物线的解析式;(2)如图1,N 是抛物线上一点,且位于第二象限,连接OM ,记AOG MOG ,的面积分别为12,S S .当122S S =,且直线CN AM ∥时,求证:点N 与点M 关于y 轴对称;(3)如图2,直线BM 与y 轴交于点H ,是否存在点M ,使得27OH OG -=.若存在,求出点M 的坐标;若不存在,请说明理由.14.如图,已知在平面直角坐标系xOy 中,抛物线y =-12x 2+bx +c 经过点A (-2,0).与点C (0,4).与x 轴的正半轴交于点B .(1)求抛物线的表达式;(2)如果D 是抛物线上一点,AD 与线段BC 相交于点E ,且AD 将四边形ABDC 分成面积相等的两部分,求DE AE的值; (3)如果P 是x 轴上一点,△PCB =△ACO ,求△PCO 的正切值.15.如图,抛物线23y ax bx =+-交x 轴于()30A -,,()10B ,两点,与y 轴交于点.C 连接AC ,BC .(1)求抛物线的解析式;(2)如图1,点P 为抛物线在第三象限的一个动点,PM x ⊥轴于点M ,交AC 于点G ,PE AC ⊥于点E ,当PGE 的面积为1时,求点P 的坐标;(3)如图2,若Q 为抛物线上一点,直线OQ 与线段AC 交于点N ,是否存在这样的点Q ,使得以A ,O ,N 为顶点的三角形与ABC 相似.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.16.在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、 O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.17.如图,直线y =x +2与抛物线y =ax 2-8x +6(a ≠0)相交于A (4,6)和B (12,52),点P 是线段AB 上异于A 、B 的动点,过点P 作PD △x 轴于点E ,交抛物线于点D .(1)求抛物线的解析式;(2)当D 为抛物线顶点的时候,求△ADC 的面积;(3)是否存在这样的点P ,使△ADC 的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.18.如图,已经抛物线经过点(0,0)O ,(5,5)A ,且它的对称轴为2x =.(1)求此抛物线的解析式;(2)若点B 是抛物线对称轴上的一点,且点B 在第一象限,当OAB 的面积为15时,求B 的坐标;(3)在(2)的条件下,P 是抛物线上的动点,当PA PB -的值最大时,求P 的坐标以及PA PB -的最大值19.如图:已知关于x 的二次函数y =x 2+bx +c 的图像与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,3).(1)求二次函数的解析式;(2)在抛物线的对称轴上是否存在一点P,使△PBC为等腰三角形,若存在,请求出点P的坐标;(3)有一个点M在线段CB上运动,作MN△x轴交抛物线于点N,问当M、N点位于何处时,△BCN的面积最大,求最大面积.20.如图,抛物线y=ax2+bx﹣3与x轴交于点A(﹣1,0)和点B(9,0),与y轴交于点C,连接AC.BC.(1)求抛物线的解析式;(2)将△AOC以每秒一个单位的速度沿x轴向右平移,平移的时间为t秒,平移后的△A1O1C1与△ABC重叠部分的面积为S.当A1与B重合时,停止平移,求S与t的函数关系式;(3)点M在抛物线上,当△MAB=2△ACO时,请直接写出点M的横坐标.答案1.(1)223y x x =--(2)P 点坐标为315,24⎛⎫- ⎪⎝⎭,四边形ABPC 的最大面积为758(3)存在,P 点坐标为32⎫-⎪⎪⎝⎭2.(1)223y x x =-- (2)254(3)存在,点P 的坐标为(12) 或(12)或()12-或(12)-3.(1)2y x 2x 3=-++(2)P 点坐标115(,)24或(2,3)(3)F 点坐标为:(1,0)、(5,0)、)2,0、()2-4.(1)y =-x 2+4x -3或352,)或) (3)(72,54-)5.(1)y =﹣43x 2﹣83x +4 (2)S 最大=252,D (﹣32,5) (3)存在,Q (﹣2,198) 6.(1)233642y x x =-- (2)454(3)存在,151,4N ⎛⎫-- ⎪⎝⎭或1514N ⎛⎫ ⎪⎝⎭或1514N ⎛⎫ ⎪⎝⎭ 7.(1)2142y x x =-++(2)()6,8-和53,2⎛⎫ ⎪⎝⎭(3)()12,4M ,()24,8M --8.(1)234y x x =--(2)()34P -,(3)点P 的横坐标为65-9.(1)2144y x =-+(2)Q ,4),点Q 在抛物线上(3)符合条件的点P 0),,0),(0),(0)10.(1)2142y x x =+- (2)(-2,-4)(3)P 点坐标为:(-1,3),(-1,-5),(12--,,(12--,11.(1)224233y x x =--; (2)PBDC S 四边形的最大值为174,此时点P 的坐标为3(2,5)2-; (3)点M 的坐标为(4,14)-或(0,2)M -或(2,2)-.12.(1)213222y x x =-++ (2)存在,点D 的坐标为:(1,3)或(2,3)或(5,-3)(3)13.(1)24y x =-+(3)存在,115,24M ⎛⎫ ⎪⎝⎭14.(1)抛物线解析式为y =-12x 2+x +4; (2)14DE AE =;(3)△PCO 的正切值13或3.15.(1)223y x x =+-(2)()14P --,或()23--, (3)存在,坐标为⎝⎭或⎝⎭或或(-16.(1)2142y x x =+- (2)24=--S m m ,4(3)()4,4Q -或(2-+-或(2--+或()4,4-17.(1)抛物线的表达式为:y =2x 2﹣8x +6(2)18(3)当x =94时,S △ADC 最大值为:147818.(1)24.yx x (2)()2,8B(3)2,12,PPA PB -的最大值为19.(1)243y x x =-+(2)存在,P (2,2) (2,(2,3,(2(2,(3)当3322M ⎛⎫ ⎪⎝⎭,,3324N ⎛⎫- ⎪⎝⎭,时,△BCN 的面积最大,最大面积为27820.(1)218333y x x =-- (2)()()()222236012012719602331591020t t t S t t t t t ⎧-+<≤⎪⎪⎪=-+<≤⎨⎪⎪-+<≤⎪⎩(3)274或454.。

2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。

九年级数学中考复习:二次函数压轴题—与面积有关的问题(含解析)

九年级数学中考复习:二次函数压轴题—与面积有关的问题(含解析)

中考复习二次函数压轴题——与面积有关的问题(含答案解析)一、典型例题分析例1.(2019·辽宁初三月考)如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC=ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.【解析】本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.【分析】(1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式;(2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=12CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标;(3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组22333y x xy x⎧=--⎨=-+⎩,求解即可得出点Q的坐标.【答案解析】(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x12+x22﹣x1x2=13,∴(x1+x2)2﹣3x1x2=13,∴m2+3(m+1)=13,即m2+3m﹣10=0,解得m1=2,m2=﹣5.∵OA<OB,∴抛物线的对称轴在y轴右侧,∴m=2,∴抛物线的解析式为y=x2﹣2x﹣3;(2)连接BE、OE.∵在Rt △BCD 中,∠CBD =90°,EC =ED , ∴BE =12CD =CE . 令y =x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3, ∴A (﹣1,0),B (3,0), ∵C (0,﹣3), ∴OB =OC ,又∵BE =CE ,OE =OE , ∴△OBE ≌△OCE (SSS ), ∴∠BOE =∠COE ,∴点E 在第四象限的角平分线上,设E 点坐标为(m ,﹣m ),将E (m ,﹣m )代入y =x 2﹣2x ﹣3,得m =m 2﹣2m ﹣3,解得m ∵点E 在第四象限,∴E 点坐标为(12+,﹣12); (3)过点Q 作AC 的平行线交x 轴于点F ,连接CF ,则S △ACQ =S △ACF .∵S△ACQ=2S△AOC,∴S△ACF=2S△AOC,∴AF=2OA=2,∴F(1,0).∵A(﹣1,0),C(0,﹣3),∴直线AC的解析式为y=﹣3x﹣3.∵AC∥FQ,∴设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,得0=﹣3+b,解得b=3,∴直线FQ的解析式为y=﹣3x+3.联立22333y x xy x⎧=--⎨=-+⎩,解得113 12x y =-⎧⎨=⎩,2223xy=⎧⎨=-⎩,∴点Q的坐标为(﹣3,12)或(2,﹣3).例2: 如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标);(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c +⎨⎩+⎧==,解得:b=-4,c=3,∴二次函数的表达式为:y=x 2-4x+3;(2)令y=0,则x 2-4x+3=0,解得:x=1或x=3,∴B (3,0),∴BC=3点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1, ①当CP=CB 时,,∴或-3 ∴P 1(0,),P 2(0,);②当PB=PC 时,OP=OB=3, ∴P 3(0,-3);③当BP=BC 时,∵OC=OB=3,∴此时P 与O 重合,∴P 4(0,0);综上所述,点P 的坐标为:(0,)或(0,)或(0,-3)或(0,0);(3)如图2,设AM=t ,由AB=2,得BM=2-t ,则DN=2t ,∴S △MNB =12×(2-t )×2t=-t 2+2t=-(t-1)2+1,即当M (2,0)、N (2,2)或(2,-2)时△MNB 面积最大,最大面积是1。

中考复习之二次函数压轴之面积问题,含详细参考答案

中考复习之二次函数压轴之面积问题,含详细参考答案

二次函数压轴之面积问题问题简介:1.抛物线y=x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,直线y=kx-3,经过点B,C.(1)求抛物线的解析式(2)点P是直线BC下方抛物线上一动点,求 PBC面积最大时点P的坐标;2.如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3与x轴交于点A和点B,点A在点B的左侧,与y轴交于点C.(1)求A点、C点的坐标;(2)点P是第四象限内的抛物线上一点,连接AC,CP,BP,若四边形ACPB面积为63 8请求出此时点P的坐标;3.如图,抛物线y =24832999x x -++与x 轴交于A ,B 两点(点A 在点B 的左侧),顶点为D .点P 为对称轴右侧抛物线上的一个动点,其横坐标为m ,直线AD 交y 轴于点C ,过点P 作PF ∥AD ,交x 轴于点F ,PE ∥x 轴,交直线AD 于点E ,交直线DF 于点M . (1)求直线AD 的表达式及点C 的坐标;(2)当四边形AFPE 的面积与△ADF 的面积相等时,求m 的值;4.如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式;(2)设点Q 是抛物线上的一个动点,是否存在一点Q ,使S △QAB =S △CAB ,若存在,直接写出Q 点的坐标;若不存在,请说明理由.5.如图1,抛物线y =12x 2+b x +c 与x 轴、y 轴分别交于点B (6,0)和点C (0,﹣3). (1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,其横坐标为m ,连接PB 、PC ,当△PBC 的面积为152时,求m 值;6.已知抛物线y =12x 2﹣3x +52与x 轴交于A ,B 两点(点A 在点B 的左边).(1)求A ,B 两点的坐标;(2)如图1,若点P 是抛物线上在第四象限的点,PBC S 13PAB S ∆∆=时.求点P 的坐标;7.已知二次函数y=ax2+bx+2(a≠0)交x轴于点A,B(点A在点B左侧),AB=3,交y轴于点C,设抛物线的对称轴为直线x=m,且m≥0.(1)用含m的代数式表示出点A、点B的坐标;(2)若抛物线上存在点P使得S△ABP=S△ABC=3(点P与点C不重合),且这样的点P 恰好存在两个,求此时抛物线的解析式;8.如图,在平面直角坐标系中,一抛物线的对称轴为直线x=﹣1,与y轴负半轴交于点C,与x轴交于A,B两点,其中点A的坐标为(﹣3,0),且OA=OC,D为抛物线的顶点.(1)求抛物线的解析式;(2)若M(﹣2,y)是抛物线上一点,P是抛物线上另一点(点P与点D不重合),当S△BDM=S△BPM时,求出此时点P的坐标;9.如图,抛物线y=﹣x2+bx+c过点A(﹣1,0)和点B(3,0),与y轴交于点C在x轴上有一动点E(m,0)(其中m为实数,0<m<3),过动点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线解析式及点C的坐标;(3)连接BM并延长交y轴于点N,连接AM,OM若△AEM的面积等于△MON面积的2倍,求m的值.10.如图1,抛物线y=ax2﹣2ax+b(a<0)与x轴交于A、B两点(A点在B点的左边),与y轴的正半轴交于点C,顶点为D,OB=OC=3OA.(1)求抛物线解析式;(2)如图2,点E的坐标为(0,7),若过点E作一条直线与抛物线在对称轴右侧有且只有一个交点H,直线y=kx﹣2k﹣5(k≠0)与抛物线交于F、G两点,求当k为何值时,△FGH面积最小,并求出面积的最小值;参考答案1. 解:方法一:过点P 作PD||y 轴交BC 于点D ,设P(m ,m 2-2m -3),易知BC 的解析式为y =x -3,则D(m ,m -3)铅垂高PD=m -3-(m 2-2m -3)=-m 2+3m 水平宽x B -x C =3,S △PBC =32(-m 2+3m),当m =32时,△PBC 的面积取最大值,此时P(32,154-) 方法二:将BC 向下平移,当它与抛物线相切时,此时△PBC 的面积最大设平移后的直线l解析式为y=x+m 与抛物线y =x 2-2x -3联立得x 2-3x -(m+3)=0,此时△=0,即有9+4(m +3)=0,m =214-此时方程的根为x 1=x 2=32,P 点的坐标为(32,154-) 方法三:过点P 作EF||x 轴,过点B 作BF△EF 于点F ,设P(m,m 2-2m -3)S △PBC =S 四EFBO -S △BOC -S △PCE -S △PBF =32(-(m 2-2m -3)-12(3-m)(m 2-2m -3)-12m(-(m 2-2m -3-3)=32(-m 2+3m),当m =32时,△PBC 的面积取最大值,此时P(32,154-)2. 解:(1)A(-1,0),C(0,-3)(2)易知AB=4,OC=3,故S △ABC =6,而S 四ACBP =S △ABC +S △BCP ,故S △BCP =158设P(m ,m 2-2m -3),直线BC 的解析式为y=x -3,过点P 作PD||y 轴交BC 于点D ,则D(m ,m -3),PD=m -3-(m 2-2m -3)=-m 2+3m ,S △BCP =32(-m 2+3m)=158得m 1=12,m 2=52,此时P 点的坐标为(12,154-)或(52,74-)3. 解:(1)y =43x +83,C(0,83) (2) 作DG 、PH 垂直于x 轴于点G 、H ,P(m ,24832999m m -++),PH=|24832999m m -++|S AFPE =AF∙PH ,S △ADF =12AF∙DG ,即有|24832999m m -++|=2,解得m 1=1+2,m 2=1-2(舍去)m 3=1+2,m 4=1-2(舍去),故m 的值为1+2或1+24. 解:(1)y =-x 2+2x +3(2)作CD||y 交AB 于点D ,易知直线AB 的解析式为y =-x +3,故D(1,2),S ABC =3, 方法一:设Q(m ,-m2+2m+3)则E(m,-m+3),则QE=|-m 2+2m+3-(-m+3)|=|-m 2+3m|S ABQ =32|-m2+3m|=3,解得m 1=1,m 2=2,m 3=32,m 4=32,故Q 点的坐标为(1,4)或(2,3)或(32+,12-)或(32,12-+)5. 解:(1)y=12x 2-52x -3 (3) 易知直线BC 的解析式为y =12x -3设P(m,12m 2-52m -3),E(m ,12m -3),PE=12m -3-(12m2-52m -3)=-12m2+3m,S PBC =12∙6∙(-12m 2+3m)=152,解得m 1=1,m 2=56. 解:(1)A(1,0),B(5,0)y =12x2﹣3x+52 (2)易知直线BC 的解析式为y=-12x+52,设P(m,12m2﹣3m+52),则E(m,-12m+52),PE=-12m+52-(12m2﹣3m+52)=-12m2+52m ,S PBC =52(-12m2+52m),而S PAB =2(12m2﹣3m+52),PBC S 13PAB S ∆∆=得22152(3)1225153()222m m m m -+=+7. 解:(1)A(m -1.5,0)B(m+1.5,0)(2)1.a <0时,x 轴下方恰好存在两个纵坐标为-2的点,而x 轴上方有且仅有一点C ,则C 为最高点时,满足题意,故b =0,对称轴为直线x=0,m =0,得a =-89,抛物线的解析式为y=-89x 2+22. a >0时,x 轴上方有一个纵坐标为2的点,x 轴下方有一个纵坐标为-2的点,故(m ,-2)为其顶点,设y=a (x -m )2-2,点B(m+1.5,0)和(0,2)代入得a =89,m=2,故抛物线的解析式为y =89(x-2)2-28. 解:(1)y=x 2+2x -3(2) 易知M(-2,-3)故直线BM 的解析式为y =35x -95,D(-1,-4)过点D 、P 分别作DE 、PF 平行于y 轴,E(-1,-125),故DE=85,S △BDM =12∙385=125,设P(m ,m 2+2m -3)则F(m ,35m -95) PF=|35m -95-(m 2+2m -3)|=|-m 2+135m+65|,故S △BMP =12∙3|-m 2+135m+65|=125,解得m 1=0,m 2=-3(舍),m 3=12-,m 4=12-+,故点P 的坐标为(0,-3)或(12-,12)或(12-+,12)9. 解:(1)y=-x 2+2x+3(3) E(m ,0),M(m ,-m 2+2m+3),直线BM 的表达式为y=(-m -1)x+3m+3,x=0时,y=3m+3, 故N(0,3m+3),S AEM =21(1)(23)2m m m +-++,2S MON =(3m+3)m,即21(1)(23)2m m m +-++=(3m+3)m ,解得m=-2或-1(舍去负值),故-210. 解:(1)y=-x 2+2x+3(2) 设直线EH 的解析式为y =mx +7,与抛物线y=-x 2+2x +3联立得x 2+(m -2)x +4=0,∆=0,即有(m -2)2=16,得m=-2或6(舍),y =-2x +7,H(2,3)而M(2,-5),HM=8;联立y =kx -2k -5抛物线y =-x 2+2x +3得x 2+(k -2)x -2k -8=0,x F +x G =2-k ,x F ∙x G =-2k -8, x G -x FS FGH k =-2时,面积最小,最小值为。

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.已知矩形OABC中,OA=3,AB=6,以OA,OC所在的直线为坐标轴,建立如图1的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.(1)求证:△BCQ△△ODQ;(2)求点P的坐标;(3)若将矩形OABC向右平移(图2),得到矩形ABCG,设矩形ABCG与矩形ODEF重叠部分的面积为S,OG=x,请直接写出x≤3时,S与x之间的函数关系式,并且写出自变量x的取值范围.2.如图14,已知点A(-1,0),B(4,0),点C在y轴的正半轴上,且△ACB=900,抛物线2=++y ax bx c经过A 、B 、C 三点,其顶点为M.(1)求抛物线2y ax bx c =++的解析式;(2)试判断直线CM 与以AB 为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N ,使得BCN S 4∆=如果存在,那么这样的点有几个?如果不存在,请说明理由.3.如图一所示,在平面直角坐标系中,抛物线28y ax bx =+-与x 轴交于(4,0)(2,0)A B -、两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求PAC△面积的最大值及此时点P的坐标;(3)设直线135 :4l y kx k=+-交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线237 :4l y=-上总存在一点E,使得MEN∠为直角.4.如图,顶点为P(2,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M(1)求该二次函数的关系式.(2)若点A的坐标是(3,-3),求△OAP的面积.(3)当点A在对称轴l右侧的二次函数图象上运动时,l上有一点N,且点M、N关于点P对称,试证明:△ANM=△ONM.5.已知开口向下的抛物线223y x ax -=-+与x 轴的交点为A 、B 两点(点A 在点B 的左侧),与y 轴的交点为C ,OC =3OA .(1)求出该抛物线的解析式;(2)在抛物线第四象限上是否存在一点P ,使得△P AC 的面积等于△PBC 的面积的3倍,若存在,求点P 的坐标,若不存在,请说明理由;(3)P 是该抛物线上位于对称轴右侧的动点,经过点P 的直线交对称轴于G ,作PH △PG ,交对称轴于H ,当直线PG 与抛物线有且只有一个交点P 时,求证△PGH 的外心一定是某个定点,并求出这个定点的坐标.6.如图,已知等腰直角三角形ABC 90B 4AB BC == 点P 为AC 的中点,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件45EPF ∠=︒,设图中阴影部分图形的面积为1S .(1)求证:APE CFP ∠=∠;(2)若AE CF =,求CF 的长;(3)设CPF 的面积为2S ,CF x =和12S y S =.求y 关于x 的函数解析式和自变量x 的取值范围,并求出y 的最大值.7.如图,已知抛物线2y ax c =+过点(-2,2),(4,5),过定点F (0,2)的直线l :y =kx +2与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)求抛物线的解析式;(2)当点B 在抛物线上运动时,判断线段BF 与BC 的数量关系(>、<、=),并证明你的判断;(3)P 为y 轴上一点,以B 、C 、F 、P 为顶点的四边形是菱形,设点P (0,m ),求自然数m 的值;BPB'与ABC重叠部分的面积为判断ABC的形状,并证明;关于x的函数解析式,并直接写出自变量9.将抛物线2487y x x -=+先向左平移1个单位长度,再向下平移3个单位长度得到抛物线C ,经过定点D 的直线2y kx =+()0k ≠交抛物线C 于A ,B 两点(点A 在点B 的左侧),点O 为坐标原点.(1)直接写出抛物线C 的解析式和定点D 的坐标;(2)用字母S 表示三角形的面积,若21AOD BOD S S =-△△.请补充图1,求k 的值;(3)若点P 在直线=2y -上运动,且满足直线PA 与直线PB 分别与y 轴交于M 、N 两点,请补充图2,求证:OM 与ON 的积是定值.3(2)如图1,直线CD 交抛物线于另一点D ,过点D 作DE x ⊥轴于点E ,过点E 作//EF AC 交CD 于点F .求证://BF y 轴;(3)如图2,P 和Q 为抛物线上两点,直线BP ,BQ 交y 轴于点M ,N 和9OM ON ⋅=,求APQ △面积的最小值.12.已知抛物线()()2120y ax a x a =+--≠.(1)若1a =-,求该抛物线的顶点坐标;(2)若1a =,抛物线与x 轴交于A ,B 两点,点P 是抛物线上点A 与点B 之间的动点(不包含点A ,B ). △求PAB 面积的最大值,并求此时点P 的坐标;△点C 、D 是该抛物线上两点,且位于x 轴的两侧(点C 在点D 的右侧),点E 为直线4y x =-与y 轴的交点,连接EC ED 、.若直线OE 平分CED ∠,求证:C 、O 、D 三点共线.13.已知二次函数()()2211y kx k x k =-+++(0k ≠且k 为实数).(1)求证:无论k 为何值,该函数的图象与x 轴总有两个交点.(2)该函数的图象与x 轴交于A 、B 两点,与y 轴交于点C .当ABC 的面积等于2时,求k 的值.14.如图,在x轴上有两点A(m,0),B(n,0)(n>m>0),分别过点A,B作x轴的垂线交抛物线y=x2于点C,D,直线OC交直线BD于点E,直线OD交直线AC于点F.点E,F的纵坐标分别为y E,y F.(1)特例探究(填空):当m=1,n=2时,y E=____,y F=____;当m=3,n=5时,y E=____,y F=____.(2)归纳证明:对任意m,n(n>m>0),猜想y E与y F的大小关系,并证明你的猜想.(3)拓展应用:连结EF,AE,当S四边形OFEB=3S△OFE时,直接写出m与n的关系及四边形OFEA的形状.15.我们约定:图象关于y 轴对称的函数称为偶函数.(1)下列函数是偶函数的有________(填序号);△2023y x =+;△220012020y x =-+;△ 6.09y x=;△220002023 6.19y x x =-+. (2)已知二次函数()()22111y k x k x =++-+(k 为常数)是偶函数,将此偶函数向下平移得到新的二次函数2y ax bx c =++,新函数的图象与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,若以AB 为直径的圆恰好经过点C ,求平移后新函数的解析式;(3)如图,已知偶函数2y ax bx c =++(0a ≠)经过()1,2和()2,5,过点()0,2E 的一次函数的图象与二次函数的图象交于A ,B 两点(A 在B 的左侧),过点AB 分别作AC x ⊥轴于点C ,BD x ⊥轴于点D ,取AB 的中点Q ,连接CQ 、DQ ,分别用1S ,2S 和3S 表示ACQ ,QCD 和QDB 的面积,若213S S S =⋅. △证明:13111S S +=; △求直线AB 的解析式.参考答案:1.【答案】(1)(2)P 的坐标是(5,0);(3)S =2229(0)35{315279(3)8485x x x x x ≤≤-+-<≤. 2.【答案】1) 213y x +x+222=-.(2)直线CM 与以AB 为直径的圆相切. (3).3.【答案】(1)228=+-y x x (2)PAC △面积的最大值为8,此时点P 的坐标为()2,8P --(1)ABC是等腰直角三角形)24y x=【答案】解:(1)△的坐标为(2 -,2528△DG DE BC BE=,即5DG 31023=.△DG=1. △△D 的半径是1,且DG△BE ,△BE 是△D的切线.(3)由题意,得E (23-,0),B (2,2).设直线BE 为y=kx+h ,则2k h 2{2k h 03+=-+=,解得,3k 4{1h 2==. △直线BE 为:31y x 42=+. △直线BE 与抛物线的对称轴交点为P ,对称轴直线为x=1 △点P 的纵坐标5y 4=,即P (1,54). △MN△BE ,△△MNC=△BEC .△△C=△C=90°,△△MNC△△BEC .△CN MC EC BC =,即CN t 823=.△4CN t 3=. △4DN t 13=-. △PND 14555S DN PD t 1t 23434∆⎛⎫=⋅⋅=-⋅=- ⎪⎝⎭ 2MNC 1142S CN CM t t t 2233∆=⋅⋅=⋅⋅= ()PDCM 11551S PD CM CD t 1t 22482=+⋅=⋅+⋅=+梯形(). △()22PND MNC PDCM 2422S S S S t t t 13333∆∆=+-=-+=--+梯形(0<t <2). △抛物线()222S t 133=--+(0<t <2)的开口方向向下 △S 存在最大值,当t=1时,S 最大=23.11.【答案】(1)243y x x =-+;(2)见解析;(3)APQ S 的最小值为1.(2)△PAB面积最大值13=,或k,n=2时,(3) n=2m,21x-(3)△。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c=3
a=
3 4
解得,
b= 9

4
c=3
抛物线的函数表达式为 y=﹣ 3 x2+ 9 x+3; 44
(2)过点 D 作 DM⊥x 轴交 BC 于 M 点,
由勾股定理得,BC= OC2 OB2 =5, 设直线 BC 的解析是为 y=kx+b,
4k b=0

b=3

解得
k
3 4

b 3
44
4
②如图
2,当
0<t≤1
时,PQ=
yP
yQ
mt 2
mt
=
m(t
1 )2 2
1 4
m

∵m>0,
∴当 t=1 时,PQ 有最大值,且最大值为 2m.
∵0<m≤3,
∴0<2m≤6,即 PQ 的最大值为 6.
综上所述,PQ 的最大值为 6.
【点睛】 此题主要考查二次函数的应用,(1)(2)题相对简单,(3)题要分情况进行讨论方右解答, 因此做此类题型,在进行分类讨论时,尽量通过大致图象数型结合进行解答. 【变式 1-2】如图 1,已知抛物线 y=﹣x2+mx+m﹣2 的顶点为 A,且经过点 B(3,﹣3). (1)求顶点 A 的坐标 (2)若 P 是抛物线上且位于直线 OB 上方的一个动点,求△OPB 的面积的最大值及比时点 P 的坐标; (3)如图 2,将原抛物线沿射线 OA 方向进行平移得到新的抛物线,新抛物线与射线 OA 交 于 C,D 两点,请问:在抛物线平移的过程中,线段 CD 的长度是否为定值?若是,请求出 这个定值;若不是,请说明理由.
点 Q 的坐标为(t,mt+m-1). 故分两种情况进行讨论:①如图 1,当-1≤t≤0 时;②如图 2,
当 0<t≤1 时,求出对应的最大值即可.
【详解】
解:(1)∵y=mx2+2mx+m-1=m(x+1)2-1,
∴抛物线的顶点坐标为(-1,-1).
(2)由 y=mx2+2mx+m-1 和 y=mx+m-1 可得:mx2+2mx+m-1=mx+m-1, mx2+mx=0,mx(x+1)=0, ∵m≠0, ∴x1=0,x2=-1. ∴抛物线与直线有两个交点. (3)由(2)可得:抛物线与直线交于(-1,-1)和(0,m-1)两点,
∴直线 BC 的解析是为 y=﹣ 3 x+3, 4
设点 M 的坐标为(a,﹣ 3 a+3), 4
DM=(﹣ 3 a2+ 9 a+3)﹣(﹣ 3 a+3)=﹣ 3 a2+3a,
44
4
4
∵∠DME=∠OCB,∠DEM=∠BOC,
∴△DEM∽△BOC,
∴ DE BO ,即 DE = 4 ,
DM BC
DM 5
解得,DE= 4 DM 5
∴DE=﹣ 3 a2+ 12 a=﹣ 3 (a﹣2)2+ 12 ,
55
5
5
当 a=2 时,DE 取最大值,最大值是 12 . 5
【点睛】
本题考查的是二次函数、一次函数的性质,相似三角形的判定和性质,掌握待定系数法求二次
函数解析式、一次函数解析式的一般步骤是解题的关键.
【变式 1-1】.已知抛物线 y=mx2+2mx+m-1 和直线 y=mx+m-1,且 m≠0.
点 P 的坐标为(t,mt2+2mt+m-1),点 Q 的坐标为(t,mt+m-1).
①如图
1,当-1≤t≤0
时,PQ=
yQ
yP
mt 2
mt
= m(t
1 )2 2
1 4
m.
∵m>0,
当 t 1 时,PQ 有最大值,且最大值为 1 m .
2
4
∵0<m≤3,∴ 1 m ≤ 3 ,即 PQ 的最大值为 3 .
(1)求抛物线的顶点坐标;
(2)试说明抛物线与直线有两个交点;
(3)已知点 T(t,0),且-1≤t≤1,过点 T 作 x 轴的垂线,与抛物线交于点 P,与直线交于
点 Q,当 0<m≤3 时,求线段 PQ 长的最大值.
【答案】(1)(-1,-1);(2)见解析;(3)PQ 的最大值为 6.
【解析】
【Hale Waihona Puke 析】标,根据勾股定理,可得答案. 【详解】 解:(1)把 B(3,﹣3)代入 y=﹣x2+mx+m2 得:﹣3=﹣32+3m+m2, 解得 m=2, ∴y=﹣x2+2x=﹣(x+1)2+1, ∴顶点 A 的坐标是(﹣1,1); (2)过点 P 作 y 轴的平行线交 OB 与点 Q. ∵直线 OB 的解析式为 y=﹣x, 故设 P(n,﹣n2+2n),Q(n,﹣n), ∴PQ=﹣n2+2n﹣(﹣n)=﹣n2+3n, ∴S△OPB= (﹣n2+3n)=﹣ (n﹣ )+ , 当 n= 时,S△OPB 的最大值为 . 此时 y=﹣n2+2n= , ∴P( , ); (3)∵直线 OA 的解析式为 y=x, ∴可设新的抛物线解析式为 y=﹣(x﹣a)2+a,
(1)化为顶点式即可求顶点坐标;
(2)由 y=mx2+2mx+m-1 和 y=mx+m-1 可得:mx2+2mx+m-1=mx+m-1,整理得,mx(x+1)
=0,即可知抛物线与直线有两个交点;
(3)由(2)可得:抛物线与直线交于(-1,-1)和(0,m-1)两点,点 P 的坐标为(t,mt2+2mt+m-1),
【答案】(1)(﹣1,1);(2)P( , );(3) .
【解析】 【分析】 (1)根据待定系数法,可得函数解析式,根据配方法,可得顶点坐标; (2)过点 P 作 y 轴的平行线交 OB 与点 Q,求出直线 BP 的解析式,表示出点 Q 的坐标,根 据三角形的面积公式列出函数关系式,利用二次函数的最值可得 P 点坐标; (3)根据平移规律,可得新抛物线,根据联立抛物线与 OA 的解析式,可得 C、D 点的横坐
2020 年中考数学压轴题:二次函数的面积问题考点专练强烈推荐
【考点 1】二次函数的线段最值问题 【例 1】如图,抛物线 y=ax2+bx+c 经过 A(﹣1,0)、B(4,0)、C(0,3)三点,D 为直 线 BC 上方抛物线上一动点,DE⊥BC 于点 E. (1)求抛物线的函数表达式; (2)求线段 DE 长度的最大值.
【答案】(1)y=﹣ 3 x2+ 9 x+3;(2)最大值是 12 .
44
5
【解析】
【分析】
(1)根据待定系数法,可得函数解析式;
(2)根据平行于 y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得 DM,根据
相似三角形的判定与性质,可得 DE 的长,根据二次函数的性质,可得答案.
【详解】
a b c=0 解:(1)由题意得, 16a 4b c=0 ,
相关文档
最新文档