末三校联考数学试题
山东省烟台市莱州市第一中学等三校联考2024-2025学年高二上学期10月月考数学试题

山东省烟台市莱州市第一中学等三校联考2024-2025学年高二上学期10月月考数学试题一、单选题1.若直线:10l x my ++=的倾斜角为5π6,则实数m 值为( )AB .CD .2.在四面体OABC 中,OA a =u u u r r ,OB b =u u u r r ,OC c =u u ur r ,G 为三角形ABC 的重心,P 在OG 上,且13OP PG =u u u r u u u r ,则AP =u u u r( )A .1111121212a b c --+r r rB .1111121212a b c --r r rC .1111121212a b c -++r r rD .1111121212a b c ++r r r3.过点()1,2A 的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .10x y -+=B .10x y +-=C .20x y -=或10x y -+=D .20x y +=或10x y ++=4.已知A (2,3),B (﹣1,2),若点P (x ,y )在线段AB 上,则3yx -的最大值为( ) A .1B .35C .12-D .﹣35.如图,平行六面体1111ABCD A B C D -的所有棱长为2,四边形ABCD 是正方形,11π3A AD A AB ∠=∠=,点O 是1B C 与1BC 的交点,则直线AO 与CB 所成角的余弦值为( )A .1B .56C D .126.过定点A 的直线20ax y +-=与过定点B 的直线420x ay a -+-=交于点P (P 与A ,B 不重合),则PAB V 周长的最大值为( )A 4B .4C .6D .87.过点()3,0P 作一条直线l ,它夹在两条直线1l :220x y --=和2l :30x y ++=之间的线段恰被点P 平分,则直线l 的方程为( ) A .8240x y +-= B .8240x y --= C .8240x y ++=D .8240x y ++=8.如图所示,四面体ABCD 的体积为V ,点M 为棱BC 的靠近B 的三等分点,点F 分别为线段DM 的中点,点N 为线段AF 的中点,过点N 的平面α与棱AB ,AC ,AD 分别交于O ,P ,Q ,设四面体AOPQ 的体积为'V ,则V'V的最小值为( )A .332B .932C .364D .964二、多选题9.下列说法正确的是( )A .直线sin 20x y α++=的倾斜角θ的取值范围是π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .“1a =-”是“直线210a x y -+=与直线20x ay --=互相垂直”的充要条件C .两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线D .已知向量()9,4,4a =-r ,()1,2,2b =r ,则a r 在b r上的投影向量为()1,2,210.已知直线1l :0x ay a +-=和直线2l :()2310ax a y ---=,下列说法正确的是( )A .2l 始终过定点21,33⎛⎫⎪⎝⎭B .若12l l //,则1a =或3-C .若12l l ⊥,则0a =或2D .当0a >时,1l 始终不过第三象限11.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 为线段BD 的中点,且点P 满足BP BC λ=+u u u r u u u r1BB μu u u r ,则下列说法正确的是( )A .若1λ=,0μ=,则118P A BD V -=B .若1λμ+=,则1//D P 平面1A BDC .若1λ=,12μ=,则OP ⊥平面1A BDD .若1λ=,01μ≤≤时,直线OP 与平面1A BD 所成的角为θ,则sin θ⎤∈⎥⎣⎦三、填空题12.在x 轴上的截距为1且方向向量为()2,1的直线的方程是.13.已知正方体1111ABCD A B C D -的棱长为1,P 在正方体内部且满足1312423AP AB AD AA =++uu u ruuu r uuu r uuu r ,则点P 到直线AB 的距离为 .14.如图,边长为2的正方形ABCD 沿对角线AC 折叠,使23AD BC ⋅=u u u r u u u r ,则三棱锥D ABC -的体积为.四、解答题15.已知ABC V 的顶点(2,5)A ,边AB 上的中线CM 所在直线方程为250x y +-=,边AC 的高BH 所在直线过点()2,6,且直线BH 的一个方向向量为()6,5.(1)求顶点C 的坐标; (2)求直线BC 的方程.16.如图,在直四棱柱1111ABCD A B C D -中,底面四边形ABCD 为梯形,AD BC ∥,2AB AD ==,BD =4BC =.(1)证明:111A B AD ⊥;(2)已知点B 到平面11B CD 1AA .17.如图,在正四棱锥P ABCD -M 为侧棱PD 上的点,N 是PC 中点.(1)若M 是PD 中点,求直线BN 与平面MAC 所成角的正弦值; (2)是否存在点M ,使得//BN 平面MAC ?若存在,求出PMPD的值;若不存在,说明理由. 18.平面直角坐标系中,直线34y x m =-+交x 轴于点()4,0A ,交y 轴正半轴于点B .(1)求AOB V 的面积;(2)如图2,直线AC 交y 轴负半轴于点C ,AB BC =,P 为射线AB (不含A 点)上一点,过点P 作y 轴的平行线交射线AC 于点Q ,设点P 的横坐标为t ,线段PQ 的长为d ,求d 与t之间的函数关系式;(3)在(2)的条件下,在y 轴上是否存在点N ,使PQN V 是等腰直角三角形?若存在,请求出点N 的坐标;若不存在,请说明理由.19.在空间直角坐标系O xyz -中,已知向量(),,u a b c =r ,点()0000,,P x y z .若直线l 以u r为方向向量且经过点0P ,则直线l 的标准式方程可表示为000x x y y z z a b c---==(0abc ≠);若平面α以u r为法向量且经过点0P ,则平面α的点法式方程表示为()()()0000a x x b y y c z z -+-+-=.平面内任一点(),,x y z 在面α的两侧分别对应()()()0000a x x b y y c z z -+-+->和()()()0000a x x b y y c z z -+-+-<.(1)已知直线1l 的标准式方程为12x z -==,平面1α的点法式方程可表示为250y z +-+=,求直线1l 与平面1α所成角的余弦值;(2)已知平面2α的点法式方程可表示为2360x y z ++-=,点()2,4,4A 与点()000,,B x y z 在平面2α外的同侧,点B 在平面2α内的投影点为()01,0,4B ,且0BB =C 为平面2α内任意一点,求AC BC +的最小值;(3)若平面3α为3x y z ++=,平面β与平面3α的交线2l 为21112x y z--==-,且平面β与平面3αβ的点法式方程.。
2024-2025学年辽宁省三校高三数学上学期10月联考试卷及答案解析

2024—2025学年度上学期高三10月联合教学质量检测高三数学试卷本试卷共5页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1. 已知集合{}21A x x =-<,{}3B x a x a =<<+,若{}15A B x x ⋃=<<,则a =()A. 0B. 1C. 2D. 3【答案】C 【解析】【分析】先求出集合A ,再根据并集得出参数的值.【详解】因为()1,3A =,()1,5A B ⋃=,又因为(),3B a a =+,所以35,a +=即a =2.故选:C.2. 如图,在ABC V 中,点D 是BC 边的中点,3AD GD = ,则用向量AB ,AC表示BG 为( )A. 2133BG AB AC=-+u u u u r uu r u u u r B. 1233BG AB AC=-+u u u r u uu r u u u r C. 2133BG AB AC=-u u u r u u u r u u u r D. 2133BG AB AC=+u u u r u u u r u u u r【答案】A 【解析】【分析】利用向量的线性运算求解即可.【详解】3AD GD =,故23AG AD = ,则()2212133233B C G BA BA BA AG AD AB A AB AC =+=+=+⨯+=-+.故选:A3. 在等比数列{}n a 中,记其前n 项和为n S ,已知3212a a a =-+,则84S S 的值为( )A. 2 B. 17 C. 2或8D. 2或17【答案】D 【解析】【分析】根据等比数列通项公式求得1q =或2q =-,再利用等比数的求和公式求解即可.【详解】解:由等比数列的通项公式可得21112a q a q a =-+,整理得220q q +-=,解得1q =或2q =-.当q =1时,1841824S a S a ==;当2q =-时,()()814844184111117111a q S q q q S q a q q ---====-+--.所以84S S 的值为2或17.故选:D .4. 每年10月1日国庆节,根据气象统计资料,这一天吹南风的概率为25%,下雨的概率为20%,吹南风或下雨的概率为35%,则既吹南风又下雨的概率为( )A. 5% B. 10%C. 15%D. 45%【答案】B 【解析】【分析】根据概率公式直接得出结论.【详解】由题知,既吹南风又下雨的概率为25%20%35%10%+-=.故选:B5. 若直线:3l y kx k =+-与曲线:C y =恰有两个交点,则实数k 的取值范围是( )A. 4,+3∞⎛⎫⎪⎝⎭B. 43,32⎛⎤⎥⎝⎦C. 40,3⎛⎫ ⎪⎝⎭D. 43,32⎡⎫⎪⎢⎣⎭【答案】B 【解析】【分析】先得到直线过定点()1,3P ,作出直线l 与曲线C ,由图求出直线l 过点()1,0A -时的斜率和直线l 与曲线C 相切时的斜率即可树形结合得解.【详解】由()313y kx k k x =+-=-+可知直线l 过定点()1,3P ,曲线:C y =两边平方得()2210x y y +=≥,所以曲线C 是以()0,0为圆心,半径为1且位于直线x 轴上方的半圆,当直线l 过点()1,0A -时,直线l 与曲线C 有两个不同的交点,此时3032k k k =-+-⇒=,当直线l 与曲线C 相切时,直线和圆有一个交点,圆心()0,0到直线l的距离1d ,两边平方解得43k =,所以结合图形可知直线l 与曲线C 恰有两个交点,则4332k <≤.故选:B.6. 已知()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,()()sin g x x ωϕ=+,则下列结论不正确的A. π6ϕ=B. 若()g x 的最小正周期为3π,则23ω=C. 若()g x 在区间()0,π上有且仅有3个最值点,则ω的取值范围为710,33⎛⎫⎪⎝⎭D. 若π4g ⎛⎫= ⎪⎝⎭,则ω的最小值为2【答案】D 【解析】【分析】先根据()f x 是偶函数求ϕ判断A 选项;根据最小正周期公式计算可以判断B 选项;据有且仅有3个最值点求范围判断C 选项;据函数值求参数范围结合给定范围求最值可以判断D 选项.【详解】()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,则πππππ,Z,,,3226k k ϕϕϕ+=+∈<∴=∣∣A 选项正确;若()g x 的最小正周期为3π,由()sin()g x x ωϕ=+则2π23π,3T ωω==∴=,B 选项正确;πππ(0,π),(,π)666x x ωω∈+∈+ 若()g x 在区间()0,π上有且仅有3个最值点,则5ππ7π710π,26233ωω<+≤<≤,C 选项正确;若π()sin(6g x x ω=+ πππsin +446g ω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则πππ+2π463k ω=+或ππ2π+2π463k ω=+,Z k ∈,则 283k ω=+或28,Z k k ω=+∈,又因为0ω>,则ω的最小值为23,D 选项错误.故选:D.7. 已知()612a x x x ⎛⎫-- ⎪⎝⎭的展开式中,常数项为1280-,则a =( )A. ―2B. 2C. D. 1【解析】【分析】根据已知条件,结合二项式定理并分类讨论,即可求解.【详解】由题意,62a x x ⎛⎫- ⎪⎝⎭的通项公式为()()6662166C 2C 2rr r r r rr r a T x a x x ---+-⎛⎫=⋅=- ⎪⎝⎭,令620r -=,则3r =,令621r -=-,则72r =不符合题意,所以()612a x x x ⎛⎫-- ⎪⎝⎭的常数项为()3336C 21280a --=-,解得2a =-.故选:A .8. 已知函数22()log f x x mx x =-+,若不等式()0f x >的解集中恰有两个不同的正整数解,则实数m的取值范围是( )A. 23log 33,89+⎡⎫⎪⎢⎣⎭B. 23log 33,94+⎛⎫⎪⎝⎭C. 23log 33,94+⎡⎫⎪⎢⎣⎭ D. 23log 33,89+⎛⎫⎪⎝⎭【答案】C 【解析】【分析】不等式()0f x >可化为2log 1xmx x-<,利用导数分析函数()2log x g x x =的单调性,作函数()1h x mx =-,()2log xg x x=的图象,由条件结合图象列不等式求m 的取值范围.【详解】函数22()log f x x mx x =-+的定义域为(0,+∞),不等式()0f x >化为:2log 1xmx x-<.令()1h x mx =-,()2log x g x x=,()2222221log e log log e log x xx x g x x x --='=,故函数()g x 在()0,e 上单调递增,在()e,∞+上单调递减.当1x >时,()0g x >,当1x =时,()0g x =,当01x <<时,()0g x <,当x →+∞时,()0g x →,当0x >,且0x →时,()g x ∞→-,画出()g x 及()h x 的大致图象如下,因为不等式()0f x >的解集中恰有两个不同的正整数解,故正整数解为1,2.故()()()()2233h g h g ⎧<⎪⎨≥⎪⎩,即22log 2212log 3313m m ⎧-<⎪⎪⎨⎪-≥⎪⎩,解得23log 3943m +≤<.故选:C.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9. 已知复数232023i i i i 1iz ++++=+ ,则下列结论正确的是( )A. 1i 2z -=-B. 1i 2z -=C. 1i 2z +=-D. z =【答案】ACD 【解析】【分析】利用234i+i +i +i 0=对分子化简,然后利用复数的除法化简,可求共轭复数、复数的模依次判断即可得出结果.【详解】因为i,411,42i ,i,431,4nn k n k k n k n k=+⎧⎪-=+⎪=∈⎨-=+⎪⎪=⎩Z ,所以234i+i +i +i 0=,所以()()()()2342323202323505i+i +i +i i i i 1i i i i i i i i 111i 1i 1i 1i 1i 1i 1i 22z +++--++++++-======-++++++- ,所以A 正确,B 错误,111i i=222z +=---,C 准确,所以z ==D 正确.故选:ACD10. “费马点”是由十七世纪法国数学家费马提出并征解的一个问题. 该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.意大利数学家托里拆利给出了解答,当 ABC V 的三个内角均小于120°时,使得120AOB BOC COA ︒∠=∠=∠=的点O 即为费马点;当 ABC V 有一个内角大于或等于120°时,最大内角的顶点为费马点.下列说法正确的是( )A. 正三角形的的费马点是正三角形的中心B. 若P 为ABC V 的费马点, 且 0PA PB PC ++=u u r u u r u u u r r,则ABC V 一定为正三角形C. 若ABC V 三边长分别为2D. ABC V 的内角A ,B ,C 所对的边分别为a ,b , c , π22A ,bc ∠==,若点P 为ABC V 的费马点,则PA PB PB PC PC PA ⋅+⋅+⋅=.【答案】ABC 【解析】【分析】对A ,根据正三角形中心的性质结合费马点定义易判断;对B ,取AB 的中点D ,由0PA PB PC ++=可得点P 是ABC V 的重心,再结合条件可得点P 是ABC V 的中心,得证;对C ,利用三角形旋转,结合费马点定义,构造正三角形转化线段长求解;对D ,由向量数量积定义,结合费马点定义和三角形等面积法列式求解.【详解】对于A ,如图O 是正三角形ABC 的中心,根据正三角形的性质易得o 120AOB AOC BOC ∠=∠=∠=,所以点O 是正三角形ABC 的费马点,故A 正确;对于B ,如图,取AB 的中点D ,则2PA PB PD += ,因为0PA PB PC ++=,所以2PC PD =-u u u r u u u r,所以,,C P D 三点共线,且点P 是ABC V 的重心,又点P 是ABC V 费马点,则o 120APB APC BPC ∠=∠=∠=,则o 60APD BPD ∠=∠=,又AD BD =,易得PA PB =,同理可得PC PB =,所以PA PB PC ==所以点P 是ABC V 的外心,所以点P 是ABC V 的中心,即ABC V 是正三角形.故B 正确;对于C ,如图,在Rt ABC △中,1AB =,BC =,2AC =,o 30ACB ∠=,点O 是Rt ABC △的费马点,将COA 绕点C 顺时针旋转o 60,得到CED △,易证COE ,ACD 是正三角形,则OC OE =,OA DE =,CD AC =,且点,,,B O E D 共线,所以o90BCD ∠=,所以BD ===又OA OB OC DE OE OB DB ++=++==,的.故C 正确;对于D ,由费马点定义可得o 120APB APC BPC ∠=∠=∠=,设PA x =,PB y =,PC z =,,,0x y z >,由ABC PAB PAB PAB S S S S =++V V V V,可得111122222xy xz yz ++=⨯,整理得xy yz xz ++=,所以111222PA PB PB PC PC PA xy yz xz ⎛⎫⎛⎫⎛⎫⋅+⋅+⋅=⋅-+⋅-+⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()1122xy yz xz =-++=-=,故D 错误.故选:ABC.【点睛】关键点点睛:解答本题首先要理解费马点的含义,解答D 选项的关键在于利用三角形等面积法求出xy yz xz ++=.11. 在四面体ABCD 中,棱AB 的长为4,AB BD ⊥,CD BD ⊥,2BD CD ==,若该四面体的体积为)A. 异面直线AB 与CD 所成角的大小为π3B. AC的长可以为C. 点D 到平面ABCD. 当二面角A BC D --是钝角时,其正切值为【答案】ACD【解析】【分析】根据等体积法可结合三角形的面积公式可得sin CDE ∠=A ,根据余弦定理即可求解B ,根据等体积法即可求解C ,根据二面角的几何法,结合同角关系即可求解D.【详解】在平面ABD 内过D 作DE AB ∥,且ED AB =,由于AB BD ⊥,故四边形ABDE 为矩形,CD BD ⊥,DE BD ⊥,BD DE C = ,CD ⊂平面CDE ,DE ⊂平面CDE ,故BD ⊥平面CDE ,故11233C ABD C EDA B CDE CDE CDE V V V S BD S ---===⋅=⨯=,11sin 24sin 4sin 22CDE S CD DE CDE CDE CDE=⋅⋅∠=⨯⨯∠=∠故1124sin 233C ABD CDE V S CDE -=⨯=⨯∠⨯=,因此sin CDE ∠=由于()0,CDE π∠∈,所以3CDE π∠=或23π,由于CDE ∠为异面直线AB 与CD 所成角或其补角,故异面直线AB 与CD 所成角的大小为3π,A 正确,当23CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时AC ==当3CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时4AC ==,故B 错误,由于BC ==,4AB =,当AC =cos BAC ∠==sin BAC ∠=,11sin 422ABC S AB AC BAC =⋅⋅∠=⨯⨯= ,当4AC =时,161683cos 2444BAC +-∠==⨯⨯,故sin BAC ∠=,1sin 2ABC S AB AC BAC =⋅∠= ,故点D 到平面ABC的距离为d ===,C 正确,当4AC =时,4AB AC ==,2CD BD ==,取BC 中点为O ,连接OA ,OD ,则AOD ∠即为二面角A BC D --的平面角,12OD BC ===,AO ==所以22cos 0AOD ∠===<,故AOD ∠为钝角,符合题意,此时sin tan cos AODAOD AOD∠∠==∠,当4AC =,由于2DBCS =,点A 到平面BDC距离为d ===,设A 在平面BDC 的投影为H ,则AH =,故HD==HC ==,因此点O 为以D ,C为圆心,以半径为,显然交点位于BC ,同D 的一侧,故此时二面角A BC D --为锐角,不符合要求,故D 正确,故选:ACD三、填空题(本大题共3小题,每小题5分,共15分)12. 已知,a b +∈R ,41a b +=,则aba b+的最大值是________.【答案】19【解析】的【分析】先求出11a b+的最小值,再将aba b +化为111a b+,即可求得答案.【详解】因为,a b +∈R ,41a b +=,故()111144559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b=,结合41a b +=,即11,63==a b 时等号成立,所以11119ab a b a b =≤++,即ab a b +的最大值是19,故答案为:1913. 刻画空间的弯曲性是几何研究的重要内容,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体(四个面都是等边三角形围成的几何体)在每个顶点有3个面角,每个面角是π3,所以正四面体在每个顶点的曲率为π2π3π3-⨯=,故其总曲率为4π.我们把平面四边形ABCD 外的点P 连接顶点A 、B 、C 、D 构成的几何体称为四棱锥,根据曲率的定义,四棱锥的总曲率为______.【答案】4π【解析】【分析】根据曲率的定义求解即可.【详解】由定义可得多面体的总曲率2π=⨯顶点数各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为()2π5π42π14π⨯-⨯+⨯=.故答案为:4π.14. 过双曲线22221(0,0)y x a b a b-=>>的上焦点1F ,作其中一条渐近线的垂线,垂足为H ,直线1F H 与双曲线的上、下两支分别交于,M N ,若3NH HM =,则双曲线的离心率e =__________.【解析】【分析】设双曲线右焦点为2F ,HM t =,3NH t =,由题意结合双曲线定义可依次求出1F H 、1OF 、1F M 、1F N 、2F N 和2F M ,接着分别在1Rt F OH 、12F MF △和12F NF △中结合余弦定理求出1cos OF M ∠,进而建立等量关系式求出t ,从而求得2b a =,进而由离心率公式即可得解.【详解】设双曲线右焦点为2F ,由题()10,F c ,双曲线的一条渐近线方程为ay x b=-即0ax by +=,过该渐近线作垂线,则由题1F H b =,1OF c =,设HM t =,则由题3NH t =,1F M b t =-,13F N b t =+,所以232F N b t a =+-,22F M b t a =-+,所以在1Rt F OH 中,111cos F H bOF M OF c∠==①,在12F MF △中,()()()()()22222211221112||||22cos 222F M F F F M b t c b t a OF M b t c F M F F +--+--+∠==-⋅②,在12F NF △中,()()()()()22222211221112||||3232cos 2322F N F F F N b t c b t a OF M b t c F N F F +-++-+-∠==+⋅③,由①②得()()()()()2222222b t c b t a bb tc c-+--+=-,化简解得ab t a b =+,由①③得()()()()()2223232232b t c b t a b b t c c++-+-=+,化简解得()3ab t b a =-,所以()23ab abb a a b b a =⇒=+-,故双曲线的离心率c e a====.【点睛】思路点睛:依据题意设双曲线右焦点为2F ,HM t =,则结合双曲线定义可得1Rt F OH 、12F MF △和12F NF △的边长均是已知的,接着结合余弦定理均可求出三个三角形的公共角1OF M ∠的余弦值1cos OF M ∠,从而可建立等量关系式依次求出t 和2b a =,进而由离心率公式得解.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15. 设n S 为数列{}n a 的前n 项和,满足()*1N n n S a n =-∈.(1)求数列{}n a 的通项公式;(2)记22212n n T S S S =+++ ,求n T .【答案】(1)1()2n n a = (2)1235111((3232n nn n T --=+-⋅【解析】【分析】(1)应用1n n n S S a --=,再结合等比数列定义及通项公式计算即可;(2)先化简得出21111()()24n n n S --+=,再应用分组求和及等比数列前n 项和公式计算.小问1详解】因为数列{a n }的前n 项和,满足1n n S a =-,当2n ≥时,可得111n n S a --=-,两式相减得1n n n a a a -=-,即12n n a a -=,所以112n n a a -=,令1n =,可得1111S a a =-=,解得112a =,所以数列{a n }构成首项为12,公比为12的等比数列,所以{a n }的通项公式为1111()(222n nn a -=⋅=.【小问2详解】由(1)知1(2nn a =,可得11(2nn S =-,所以222111111()]12()()1((22224[1n n n n n n S -=-⋅=+=-+-,【则222121111()[1()]244(111)111124n n n n T S S S -⋅-=+++=+++-+-- 1235111()()3232n n n --=+-⋅.16. 如图,正四棱台ABCD EFGH -中,24,EG AC MN ==上为上下底面中心的连线,且MN 与侧面.(1)求点A 到平面MHG 的距离;(2)求二面角E HM G --的余弦值.【答案】(1(2)23-【解析】【分析】(1)由题意建立空间直角坐标系,求得平面法向量,利用点面距向量公式,可得答案;(2)求得两个平面的法向量,利用面面角的向量公式,可得答案.【小问1详解】由题意,易知,,MN MA MB 两两垂直,分别以,,MA MB MN 为,,x y z 轴建立直角坐标系,如下图:则()()()()1,0,0,0,0,0,0,2,1,2,0,1A M H G --,取()()0,2,1,2,0,1MH MG =-=-,设平面MHG 的法向量(),,n x y z = ,则2020n MH y z n MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令2z =,则1,1x y ==,所以平面MHG 的一个法向量()1,1,2n =,取()1,0,0MA = ,点A 到平面MHG的距离MA n d n ⋅===.【小问2详解】由(1)可知()()()()2,0,1,0,2,1,0,0,0,2,0,1E H M G --,取()()()()2,2,0,2,0,1,2,2,0,2,0,1HE ME HG MG ===-=-,设平面EHM 的法向量()1111,,m x y z = ,则11111122020m HE x y m ME x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令11x =-,则221,2y z ==,所以平面EHM 的一个法向量()11,1,2m =-,设平面HMG 的法向量()2222,,m x y z = ,则22222222020m HG x y m MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21x =,则111,2y z ==,所以平面EHG 的一个法向量()21,1,2m =,设二面角E HM G --的大小为θ,则12121142cos 1143m m m m θ⋅-++=-=-=-++⋅ .17. 某汽车公司最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行整理,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表);(2)由频率分布直方图计算得样本标准差s 的近似值为49.75.根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x ,σ近似为样本标准差S.(ⅰ)利用该正态分布,求()250.25399.5P X <<;(ⅱ)假设某企业从该汽车公司购买了20辆该款新能源汽车,记Z 表示这20辆新能源汽车中单次最大续航里程位于区间(250.25,399.5)的车辆数,求E (Z );参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<<+=,()()220.9545,330.99731P P μσξμσμσξμσ-<<+=-<<+=.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在x 轴上从原点O 出发向右运动,已知硬币出现正、反面的概率都12,客户每掷一次硬币,遥控车向右移动一次,若掷出正面,则遥控车向移动一个单位,若掷出反面,则遥控车向右移动两个单位,直到遥控车移到点(59,0)(胜利大本营)或点(60,0)(失败大本营)时,游戏结束,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.设遥控车移到点(),0n 的概率为()160n P n ≤≤,试证明数列{}1n n P P --是等比数列()259n ≤≤,求出数列{}()160n P n ≤≤的通项公式,并比较59P 和60P 的大小.【答案】(1)300 (2)(ⅰ)0.8186;(ⅱ)16.372(3)证明见解析,158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩,5960P P >【解析】【分析】(1)根据平均数的求法求得正确答案.(2)(ⅰ)根据正态分布的对称性求得正确答案.(ⅱ)根据二项分布的知识求得正确答案.(3)根据已知条件构造等比数列,然后利用累加法求得n P ,利用差比较法比较59P 和60P 的大小.【小问1详解】2050.12550.23050.453550.24050.05300x ≈⨯+⨯+⨯+⨯+⨯=.【小问2详解】(ⅰ)0.95450.6827(250.25399.5)0.68270.81862P X -<<=+=.(ⅱ))∵Z 服从二项分布()20,0.8186B ,∴()200.818616.372E Z =⨯=.【小问3详解】当359n ≤≤时,()12112111,222n n n n n n n P P P P P P P -----=+-=--,1221111131,,222244P P P P ==⨯+=-=.∴{}1(259)n n P P n --≤≤是以14为首项,12-为公比的等比数列,2111(259)42n n n P P n --⎛⎫-=⋅-≤≤ ⎪⎝⎭.22132111111,,,(259)44242n n n P P P P P P n --⎛⎫⎛⎫-=-=⋅-⋯-=⋅-≤≤ ⎪⎪⎝⎭⎝⎭.累加得:115816058111422111111,(259),1362236212n n n n P P P n P P --⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭-==-⋅-≤≤==+⋅ ⎪ ⎪⎝⎭⎝⎭+.∴158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩∵58585960111111033232P P ⎛⎫⎛⎫⎛⎫-=-⨯=-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴5960P P >.注:比较59P 和60P 的另一个过程:58596059592112111,13623622P P P P ⎛⎫=-⋅>-==-<< ⎪⎝⎭.18. 已知函数()1e xx f x +=.(1)求函数()f x 的极值;(2)若不等式()e ln 1xf x a x +≥恒成立,求实数a 的取值范围;(3)已知直线l 是曲线()y f x =在点()(),t f t 处的切线,求证:当1t >时,直线l 与曲线()y f x =相交于点()(),s f s ,其中s t <.【答案】(1)极大值为1,没有极小值 (2)[]e,0- (3)证明见解析【解析】【分析】(1)求导,利用导数判断()f x 的单调性和极值;(2)根据题意可得ln 0x a x +≥恒成立,构建()ln ,0g x x a x x =+>,分类讨论a 的符号,利用导数求最值,结合恒成立问题分析求解;(3)根据导数的几何意义可得当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,构建()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >,利用导数研究函数零点分析证明.小问1详解】由题意可知:()f x 的定义域为R ,且()ex xf x '-=,令()0f x '=时,0x =,则x ,f ′(x ),()f x 的关系为x(),0∞-0(0,+∞)f ′(x )+0-()f x 单调递增极大值单调递减所以,当0x =时,()f x 取到极大值为1,没有极小值.【小问2详解】若()e ln 1xf x a x +≥,即ln 0x a x +≥恒成立,设()ln ,0g x x a x x =+>,则()1a x a g x x x'+=+=,①当0a =时,则()0g x x =>恒成立,符合题意;②当0a >时,则()0g x '≥,可知()g x 在(0,+∞)上单调递增,因为11e e 10a a g --⎛⎫=-< ⎪⎝⎭,所以ln 0x a x +≥不恒成立;③当0a <时,x ,()g x ',()g x 的关系为x()0,a -a-(),a ∞-+()g x '-+【()g x 单调递减极小值单调递增可知()g x 的最小值为()()min ln g x a a a =-+-,则()ln 0a a a -+-≥,因为0a <,则()1ln 0a --≥,解得e 0a ≤-<;综上所述:实数a 的取值范围是[]e,0-.【小问3详解】因为()1e x x f x +=,()e x x f x '-=,则()1e t tf t +=,e t t k -=即切点坐标为1,e t t t +⎛⎫⎪⎝⎭,切线l 斜率为e tt k -=,可得l 的方程为()1e e t t t t y x t +--=-,即21e et tt t t y x -++=+,联立方程21e e 1e t txt t t y x x y ⎧-++=+⎪⎪⎨+⎪=⎪⎩,可得2110e e e x t tx tx t t ++++-=,由题可知:当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,设()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >且()0h t =,则()e e x t x t h x '-=+,设()()F x h x =',则()1e xx F x '-=,因为1t >,x ,()F x ',F (x )的关系为x(),1∞-1()1,t ()F x '-+F (x )单调递减1e et t -+,单调递增可知F (x )的最小值()()()min 10F x F F t =<=,且()1e 0e ttF -=+>,可知()01,1x ∃∈-,使()00F x =,当()0,x x ∞∈-时,()0F x >,即h ′(x )>0;当()0,x x t ∈时,()0F x <,即h ′(x )<0;可知h (x )在()0,x ∞-内单调递增;在()0,x t 内单调递减,可知h (x )的最大值()()()0max 0h x h x h t '=>=,且()()2110e t t h -+-=<,可知h (x )存在小于t 的零点,所以当1t >时,直线l 与曲线y =f (x )相交于点()(),s f s ,其中s t <,得证.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.19. 蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为222()x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.设CF 交x 轴于点P ,ED 交x 轴于点Q .(1)当0b =,r =,12m =-,2n =时,分别求线段OP 和OQ 的长度;(2)①求证:34121234y y y y y y y y ++=.②猜想|OP |和|OQ |的大小关系,并证明.【答案】(1)53OP OQ == (2)①证明见解析;②猜测OP OQ =,证明见解析.【解析】【分析】(1)联立直线与圆的方程,可求,,,C D E F 各点的坐标,利用直线的两点式方程,可得直线CF 和ED 的方程,并求它们与x 轴的交点坐标,可得问题答案.(2)①联立直线与圆的方程,求出两根之和与两根之积,找到相等代换量,从而证明成立.②分别求出点P 和点Q 的横坐标表达式,结合①中的结论,从而证明成立.【小问1详解】当0b =,r =,12m =-,2n =时,圆M :225x y +=,直线CD :12x y =-,由22512x y x y ⎧+=⎪⎨=-⎪⎩⇒12x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩,故()1,2C -,()1,2D -;直线EF :2x y =,由2252x y x y⎧+=⎨=⎩⇒21x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩,故()2,1E ,()2,1F --.所以直线CF :122112y x ++=+-+,令0y =得53x =-,即5,03P ⎛⎫- ⎪⎝⎭;直线ED :122112y x --=---,令0y =得53x =,即5,03Q ⎛⎫ ⎪⎝⎭.所以:53OP OQ ==.【小问2详解】①由题意:22b r <.由()222x y b r x my ⎧+-=⎪⎨=⎪⎩⇒()()222my y b r +-=⇒()2222120m y by b r +-+-=,则1y ,2y 是该方程的两个解,由韦达定理得:12222122211b y y m b r y y m ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,所以1222122y y b y y b r +=⋅-.同理可得:3422342y y b y y b r +=⋅-,所以34121234y y y y y y y y ++=⋅⋅.②猜测OP OQ =,证明如下:设点(),0P p ,(),0Q q .因为,,C P F 三点共线,所以:414100y y x p x p --=--⇒411414x y x y p y y -=-,又因为点C 在直线x my =上,所以11x my =;点F 在直线x ny =上,所以44x ny =.所以()1441141414y y n m ny y my y p y y y y --==--;同理因为,,E Q D 三点共线,可得:()2323y y n m q y y -=-.由①可知:34121234y y y y y y y y ++=⋅⋅⇒12341111y y y y +=+⇒14321111y y y y -=-⇒23411423y y y y y y y y --=⋅⋅⇒231414230y y y y y y y y ⋅⋅+=--, 所以()()14231423y y n m y y n m p q y y y y --+=+--()23141423y y y y n m y y y y ⎛⎫=-+ ⎪--⎝⎭0=.即p q =-,所以OP OQ =成立.【点睛】关键点点睛:本题的关键是联立直线与圆的方程,结合一元二次方程根与系数的关系,进行化简处理,设计多个字母的运算,整个运算过程一定要小心、仔细.。
初三数学三校联考试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √16B. √-9C. √0D. √12. 已知x²=1,则x的值为()A. ±1B. 1C. -1D. 无法确定3. 下列函数中,是反比例函数的是()A. y=x+1B. y=2xC. y=2/xD. y=x²4. 已知a、b、c是等差数列,且a+b+c=12,a+c=8,则b的值为()A. 4B. 5C. 6D. 75. 已知正方形的边长为a,则其对角线的长度为()A. aB. √2aC. 2aD. a²6. 下列各数中,绝对值最小的是()A. -3B. 0C. 3D. -27. 已知函数f(x)=2x+1,则f(-3)的值为()A. -5B. -7C. 5D. 78. 下列方程中,无解的是()A. 2x+3=7B. 3x-2=0C. 5x+4=0D. x²+2x+1=09. 已知a、b、c是等比数列,且a+b+c=24,ab=12,则c的值为()A. 4B. 6C. 8D. 1210. 下列各数中,属于无理数的是()A. √9B. √-1C. √0D. √4二、填空题(每题4分,共40分)11. 已知x²-6x+9=0,则x的值为______。
12. 函数f(x)=x²-2x+1的顶点坐标为______。
13. 若等差数列的前三项分别为a、b、c,且a+b+c=18,a+c=12,则该等差数列的公差为______。
14. 已知正方形的对角线长度为d,则该正方形的面积S为______。
15. 若函数f(x)=2x-3在x=2时的值为1,则该函数的解析式为______。
16. 已知一元二次方程x²-5x+6=0的解为x₁和x₂,则x₁+x₂的值为______。
17. 若等比数列的前三项分别为a、b、c,且a+b+c=27,ab=12,则该等比数列的公比为______。
2023年四川省成都市三校高中联考自主招生数学试卷(解析版)

2023年四川省成都市三校高中联考自主招生数学试卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的选项中,只有一项是符合题目要求的.1.某几何体从三个方向看到的平面图形都相同,这个几何体可以是()A. B. C. D.【答案】C【解析】【分析】根据题意,结合几何体的三视图的规则,逐项判定,即可求解.【详解】对于A 中,由圆锥的主视图和左视图都是等腰三角形,俯视图是带圆心的圆,所以A 不合题意;对于B 中,由三棱柱的主视图和左视图都是矩形,俯视图是三角形,所以B 不合题意;对于C 中,由正方体的三视图都是正方形,所以C 符合题意;对于D 中,由圆柱的主视图和左视图都是矩形,俯视图是圆,所以D 不合题意.故选:C.2.把抛物线23(1)2y x =+-先向右平移1个单位,再向上平移n 个单位后,得到抛物线23y x =,则n 的值是()A.1B.2C.3D.4【答案】B【解析】【分析】由函数的平移变化可得20n -+=,即可得出答案.【详解】解:把抛物线23(1)2y x =+-先向右平移1个单位,再向上平移n 个单位后,得到:23(11)2,y x n =+--+即:232,y x n =-+由题意可知:20n -+=,2n ∴=,故选:B.3.已知点()()()1232,1,,,3,y y y --都在反比例函数21k y x+=的图象上,那么123y y y 、、的大小关系正确的是()A .123y y y << B.321y y y <<C.213y y y << D.312y y y <<【答案】C【解析】【分析】根据反比例函数的,x y 的变化情况,即可比较大小.【详解】20k ≥Q ,211k ∴+≥,是正数,∴反比例函数21k y x+=的图象位于第一三象限,且在每一个象限内y 随x 的增大而减小,()()()1232,,1,,3,y y y -- 都在反比例函数图象上,2130,0y y y ∴<<>,213y y y ∴<<.故选:C.4.在直角ABC 中,90,3,2C AB AC ∠=== ,则sin A 的值为()A.53B.C.23 D.【答案】A【解析】【分析】根据直角三角形正弦值的表示,即可求解.【详解】如图.在Rt ABC 中,90C = ∠,BC ∴===.5sin 3BC A AB ∴==.故选:A 5.如图,半径为R 的O 的弦AC BD =,且AC BD ⊥于E ,连结,AB AD ,若1AD =,则R 的值为()A.12 B.22 C.1 D.【答案】B【解析】【分析】连接OA ,OD ,由弦AC BD =,可得 AC BD =,继而可得 =BC AD ,然后由圆周角定理,证得ABD BAC ∠=∠,即可判定AE BE =,由AE BE =,AC BD 丄,可求得45ABD ∠=︒,继而可得AOD △是直角三角形,则可求得AD =,由此可解决问题.【详解】解: 弦AC BD =, AC BD∴=, BC AD ∴=,ABD BAC ∴∠=∠,;AE BE ∴=如图,连接,OA OD ,,AC BD AE BE ⊥= ,45ABE BAE ∠∠∴== ,290AOD ABE ∠∠∴== ,OA OD = ,AD ∴=,1AD = ,22R ∴=,故选:B.6.已知点()()111222,,,P x y P x y 为抛物线()240y ax ax c a =-++≠上两点,且12x x <,则下列说法正确的是()A.若124x x +<,则12y y <B.若124x x +>,则12y y <C.若()1240a x x +->,则12y y >D.若()1240a x x +-<,则12y y >【答案】C【解析】【分析】分a<0和0a >,结合图象对选项一一判断即可得出答案.【详解】解:24y ax ax c =-++ ,∴抛物线对称轴为直线422a x a=-=-,当点()()111222,,,P x y P x y 恰好关于2x =对称时,有1222x x +=,124x x ∴+=,即1240x x +-=,12x x < ,122;x x ∴<< 抛物线的开口方向没有确定,则需要对a 进行讨论,故排除A ,B ;当0a >时,抛物线24y ax ax c =-++的开口向下,此时距离直线2x =越远,y 值越小;()1240a x x +-> ,1240x x ∴+->,∴点()222,P x y 距离直线2x =较远,12y y ∴>当0a <时,抛物线24y ax ax c =-++的开口向上,此时距离直线2x =越远,y 值越大;()1240a x x +-> ,1240x x ∴+-<,∴点()111,P x y 距离直线2x =较远,12y y ∴>故C 符合题意,D 不符合题意.7.如图,点,,A B C 在正方形网格的格点上,则sin BAC ∠等于()A.3B.105 C.510 D.【答案】D【解析】【分析】求出CD ,AD 和AC ,由勾股定理可证明ACD 是直角三角形,再由sin sin CDBAC CAD AC ∠=∠=,代入即可得出答案.【详解】解:连接CD ,点D 在格点上,如图所示:设每个小正方形的边长为a ,则CD ==,AC ==,AD ==,222222)))CD AD AC ∴+=+==,ACD ∴是直角三角形,5sin sin5CD BAC CAD AC ∠∠∴===,8.如图,四边形ABCD 为O 的内接四边形,110BCD ∠= ,则BOD ∠的度数是()A.70B.120C.140D.160o【答案】C【解析】【分析】利用圆周角和圆心角关系求解.【详解】 四边形ABCD 为O 的内接四边形,110BCD ∠= ,18070A BCD ∠∠∴=-= ,由圆周角定理得,2140BOD A ∠∠== ,故选:C.9.如图,在平面直角坐标系中,四边形OABC 是矩形,四边形ADEF 是正方形,点,A D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点,B E 在反比例函数(0,0)k y x k x=>>的图象上,若正方形ADEF 的面积为4,且BF AF =,则k 的值为()A.12B.8C.6D.3【答案】B【解析】【分析】先由正方形的面积得出边长,据此可设B (),4t ,则E ()2,2t +,根据点,B E 在反比例函数(0,0)k y x k x=>>的图象上,得()422k t t ==+,求解即可.【详解】解: 正方形ADEF 的面积为4,∴正方形ADEF 的边长为2,2,224BF AF AB AF BF ∴===+=+=.设B 点坐标为(),4t ,则E 点坐标()2,2t +,点,B E 在反比例函数(0,0)k y x k x=>>的图象上,()422k t t ∴==+,解得2,8t k ==.故选:B.10.如图,在等边三角形ABC 中,4AB =,点D 是边AB 上一点,且1BD =,点P 是边BC 上一动点(D P 、两点均不与端点重合),作60,DPE PE ∠= 交边AC 于点E .若CE a =,当满足条件的点P 有且只有一个时,则a 的值为()A.2B.2.5C.3D.4【答案】D【解析】【分析】依题意得BDP CPE ,即240BP BP a -+=,根据一元二次方程有一个解Δ0=求解即可.【详解】解:ABC 是等边三角形,60B C ∴∠=∠= ,180120BDP BPD B ∠∠∠∴+=-= ,60DPE ∠= ,120BPD CPE ∠∠∴+= ,BDP CPE ∴∠=∠,60B C ∠=∠= ,BDP CPE ∴ ;BD BP CP CE∴=,14BP BP a∴=-,240BP BP a ∴-+=,满足条件的点P 有且只有一个,∴方程240BP BP a -+=有两个相等的实数根,2Δ440a ∴=-⨯=,4a ∴=.故选:D.二、填空题:本题共9小题,每小题4分,共36分.11.点()3,2m +和点3,3m ⎛⎫ ⎪⎝⎭是同一个反比例函数图象上的点,则m 的值为__________.【答案】6-【解析】【分析】根据两点在同一反比例函数图象上,可构造方程求得结果.【详解】 点()3,2m +和点3,3m ⎛⎫ ⎪⎝⎭是同一个反比例函数图象上的点,()2333m m ∴+=⨯,解得:6m =-.故答案为:6-.12.已知二次函数222(0)y x kx k k k =-+->,当1x <时,y 随x 的增大而减小,则k 的最小整数值为__________.【答案】1【解析】【分析】根据二次函数的图象、单调性即可求解.【详解】二次函数2222()y x kx k k x k k =-+-=--的对称轴为x k =,开口向上,所以当x k ≤时,y 随x 的增大而减小,又当1x <时,y 随x 的增大而减小,所以1k ≥,即k 的最小整数值为1.故答案为:1.13.如图,线段9,AB AC AB =⊥于点,A BD AB ⊥于点,2,4B AC BD ==,点P 为线段AB 上一动点,且以A C P 、、为顶点的三角形与以B D P 、、为顶点的三角形相似,则AP 的长为__________.【答案】1或3或8.【解析】【分析】由三角形相似,对应边成比例,列方程求AP 的长.【详解】设AP x =,以A C P 、、为顶点的三角形与以B D P 、、为顶点的三角形相似,①当AC AP BD PB =时,249x x=-,解得3x =.②当AC AP BP BD=时,294x x =-,解得1x =或8x =,所以当以A C P 、、为顶点的三角形与以B D P 、、为顶点的三角形相似时,AP 的长为1或3或8,故答案为:1或3或8.14.已知二次函数22y x x n =++,当自变量x 的取值在21x -≤≤的范围内时,函数的图象与x 轴有且只有一个公共点,则n 的取值范围是__________.【答案】1n =或30n -≤<【解析】【分析】先确定抛物线的对称轴为直线=1x -,利用函数图象,可得120n ++≥且440n -+<,解不等式组即可.【详解】解:抛物线的对称轴为直线2121x =-=-⨯,且开口向上,若抛物线与x 轴有且仅有一个交点,则有1,0x y =-=;当1,0x y =≥时,在21x -≤≤的范围内,抛物线与x 轴有且只有一个公共点,根据对称性,公共点不可能在20x -≤≤范围内,而在01x <≤范围内,则120n ++≥且440n -+<,解得30n -≤<;所以,n 的取值范围是1n =或30n -≤<.故答案为:1n =或30n -≤<.15.若关于x 的方程()221210mx mx -+-=的所有根都是比1小的正实数,则实数m 的取值范围是__________.【答案】{}12m m m =>或【解析】【分析】对m 分类讨论,求出方程的根,根据方程的根满足条件求m 的范围.【详解】解:当210-=m 时,1m =±.当1m =时,可得1210,2x x -==,符合题意;当1m =-时,可得1210,2x x --==-,不符合题意;当210m -≠时,()221210m x mx -+-=,即()()11110m x m x ⎡⎤⎡⎤+--+=⎣⎦⎣⎦,1211,11x x m m-∴==+-. 关于x 的方程()221210m x mx -+-=的所有根都是比1小的正实数,10111011m m⎧<<⎪⎪+∴⎨-⎪<<⎪-⎩,解得02m m >⎧⎨>⎩,即2m >.综上可得,实数m 的取值范围是{}12m m m =>或.故答案为:{}12m m m =>或.16.对,x y 定义一种新运算T ,规定:(),2ax by T x y x y +=+(其中,a b 均为非零常数),这里等式右边是通常的四则运算,例如:()010,1201a b T b ⨯+⨯==⨯+,已知()()1,12,4,21-=-=T T ,若关于m 的不等式组()()2,544,32T m m T m m P ⎧-≤⎪⎨->⎪⎩恰好有3个整数解,则实数P 的取值范围是________.【答案】123P -≤<-【解析】【分析】根据已知得出关于,a b 的方程组,求出,a b ,再代入不等式组求出解集,再根据已知条件得到取值范围.【详解】因为()()1,12,4,21-=-=T T ,所以422,212124a b a b -+=-+=-⨯,解得1,3a b ==,所以()()235412,5444542m m T m m m m m +⨯--=≤⇒≥-+-,()()33293,322325m m P T m m P m m m +⨯---=>⇒<+-,因为不等式组恰有3个整数解,所以93123253P P -<≤⇒-≤<-,故答案为:123P -≤<-.17.如图,四边形OABC 为矩形,点A 在第二象限,点A 关于OB 的对称点为点D ,点,B D 都在函数(0)y xx =>的图像上,BE x ⊥轴于点E .若DC 的延长线交x 轴于点F ,当矩形OABC 的面积为时,EF OE的值为___________;点F 的坐标为___________.【答案】①.12##0.5;②.33(,0)2【解析】【分析】连接OD ,作DG x ⊥轴,设点6262(,),(,)B b D a b a,根据矩形的面积得出三角形BOD 的面积,将三角形BOD 的面积转化为梯形BEGD 的面积,从而得出, a b 的等式,将其分解因式,从而得出, a b 的关系,进而在直角三角形BOD 中,根据勾股定理列出方程,进而求得 B D 、的坐标,进一步可求得结果.【详解】如图,作DG x ⊥轴于G ,连接OD ,设BC 和OD 交于I ,设点6262(,(,)B b D a b a,由对称性可得:,BOD BOA OBC ≌≌ ,OBC BOD BC OD OI BI ∴∠=∠=∴=,,DI CI ∴=,,DI CI OI BI∴=,CID BIO ∠=∠ ,,CDI BOI CDI BOI ∴∴∠=∠ //,CD OB ∴1,22BOD AOB EAOCB S S S ∴=== 矩形1||2BOE DOG S S k === ,BOD DOG BOE BEGD S BOGD S S S BEGD S =+=+ 四边形梯形92,2BOD BEGD S S == 梯形1()22a b a b ∴+-=222320,a ab b ∴--=(2)(2)0,a b a b ∴-⋅+=2,2b a b a ∴==-(舍去),62(2,),2D b b ∴即32(2,),D b b在Rt BOD 中,由勾股定理得222,OD BD OB +=22222232623262(2)()(2)()(),b b b b b b b b ⎡⎤⎡⎤∴++-+=+⎢⎥⎢⎥⎣⎦⎣⎦b ∴=B D ∴因为直线OB 的解析式为:,y =所以直线DF 的解析式为:y =-当0y =时,0,2x -=∴=3333(,0),22F OE OF ∴== 31,,22EF EF OF OE OE ∴=-=∴=故答案为:133,(,0).22【点睛】关键点点睛:本题考查了矩形性质,轴对称性质,反比例函数的“k ”的几何含义,勾股定理,一次函数及其图像性质,分解因式等知识,解决问题的关键是等式变形,进行分解因式.18.如图,面积为4的平行四边形ABCD 中,4AB =,过点B 作CD 边的垂线,垂足为点E ,点E 正好是CD 的中点,点M 、点N 分别是AB AC 、.上的动点,MN 的延长线交线段DE 于点P ,若点P 是唯一使得线段45MPB ∠= 的点,则线段BM 长x 的取值范围是__________.【答案】24x -≤≤【解析】【分析】根据点P 是唯一使得线段45MPB ∠= 的点,可看成弦MB 所对的圆周角45MPB ∠= ,设MBP 外接圆的圆心为O ,由CD 与AB 之间的距离为1,12122x x +≥,又4MB ≤,即可得出答案.【详解】解: 平行四边形ABCD 的面积为4,4,AB BE CD =⊥,1BE ∴=, 点P 是唯一使得线段45MPB ∠= 的点,则可看成弦MB 所对的圆周角45MPB ∠= ,设MBP 外接圆的圆心为O ,则90MOB ∠= ,22OB x ∴=,CD 与AB 之间的距离为1,12122x x ∴+≥,2x ∴≥,又4MB ≤ ,24x ∴≤≤.故答案为:24x -≤≤.19.如图,平行四边形,,4,60ABCD AB AD AD ADB ∠>== ,点E F 、为对角线BD 上的动点,2DE BF =,连接AE CF 、,则2AE CF +的最小值为__________.【答案】【解析】【分析】在直线DB 的上方作60BDT ∠= ,且使得2DT BC =.过点T 作TH AD ⊥交AD 的延长线于,将2AE CF +的最小值问题转化为AT 的最小值问题,利用平面几何知识求解即可.【详解】如图,在直线DB 的上方作60BDT ∠= ,且使得2DT BC =.过点T 作TH AD ⊥交AD 的延长线于H .四边形ABCD 是平行四边形,BC ∴ ,4AD AD BC ==,60ADB DBC ∠∠∴== ,CBF TDE ∠∠∴=,12BC BF DT DE == ,CBF TDE ∴~ ,12CF BC ET DT ∴==,2ET CF ∴=,180606060,90,28TDH H DT BC ∠∠=--==== ,cos604,DH DT HT ∴=⋅===,8AH AD DH ∴=+=,AT ∴===,2,AE CF AE ET AE ET AT +=++≥ ,2AE CF ∴+≥2AE CF ∴+的最小值为.故答案为:三、计算题:本大题共1小题,共12分.20.(1)计算:0(1π)2cos451++-+- .(2)解不等式组:()5231131722x x x x ⎧->+⎪⎨-≤-⎪⎩①②【答案】(1)2;(2)542x <≤【解析】【分析】(1)分别进行算术平方根、零次幂、三角、绝对值运算,再由加减运算法则计算求值;(2)分别求解两个一次不等式的解集,再利用数轴求它们的公共部分即可.【详解】(1)原式21212=+-⨯+-211=+-+-2=;(2)由①得:52x >,由②得:4x ≤,则不等式组的解集为542x <≤.四、解答题:本题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.21.先化简,再求值:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭,其中3=a .【答案】13a +,3【解析】【分析】对式子变形结合因式分解及完全平方和化简式子,代入3=-a 即可计算.【详解】原式212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=-a时,原式33==.22.河南某中学准备在感恩节向全校学生征集书画作品,美术田老师从全校随机抽取了四个班级记作A 、B 、C 、D ,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图2.(1)田老师抽查的四个班级共征集到作品多少件?(2)请把图2的条形统计图补充完整.(3)若全校参展作品中有五名同学获奖,其中有二名男生、三名女生.现在要在其中抽三名同学去参加学校书画座谈会,请用画树状图或列表的方法求恰好抽中一名男生、两名女生的概率.【答案】(1)15件;(2)答案见解析(3)35【解析】【分析】(1)根据B 班有5件作品,且对应的圆心角为120 求解;(2)结合(1)根据总件数和A ,B ,D 班的件数求解;(3)利用古典概型的概率求解.【小问1详解】解:120515360︒÷=︒(件),即田老师抽查的四个班级共征集到作品15件;【小问2详解】C 班级的作品数为:153543---=(件),把图2的条形统计图补充完整如下:【小问3详解】恰好抽中一名男生、两名女生的概率,即为不参加学校书画座谈会的获奖选手为一名男生、一名女生的概率.不参加学校书画座谈会的获奖选手情况画树状图如下:共有20种等可能的结果,恰好一名男生、一名女生不参加学校书画座谈会的结果有12种,∴恰好抽中一名男生、两名女生的概率为123205=.23.东西走向海岸线上有一个码头(图中线段AB ),已知AB 的长为132米,小明在A 处测得海上一艘货船M 在A 的东北方向,小明沿海岸线向东走60米后到达点C ,在C 测得M 在C 处的北偏东15 方向(参考数据:2 1.41,3 1.73,6 2.45)≈≈≈(1)求AM 的长;(结果精确到1米)(2)如图,货船从M 出发,沿着南偏东30 方向行驶,问该货船是否能行驶到码头所在的线段AB 上?请说明理由.【答案】(1)116米(2)该货船能行驶到码头所在的线段AB 上,理由见解析【解析】【分析】(1)过点C 作CD AM ⊥,垂足为D ,45MAC ∠= ,30∠= AMC ,60AC =米,利用三角函数求出,AD DM ,得AM 的长;(2)设货船行驶路线交线段AB 所在的直线于点G ,构造直角三角形,利用三角函数求AG 的长度,与AB 比较即可.【小问1详解】过点C 作CD AM ⊥,垂足为D ,由题意得:904545,9015105MAC ACM ∠∠=-==+= ,18030AMC MAC ACM ∠∠∠∴=--= ,在Rt ADC 中,60AC =米,2cos456022AD AC ∴=⋅=⨯= (米),2sin456022CD AC =⋅=⨯= (米),在Rt CDM △中,26tan3033CD DM == (米),302306116AM AD DM ∴=+=+≈(米),AM ∴的长约为116米;【小问2详解】该货船能行驶到码头所在的线段AB 上,理由:过点M 作MF AB ⊥,垂足为F ,设货船从M 出发,沿着南偏东30 方向行驶,交线段AB 所在的直线于点G ,由题意得:30FMG ∠= ,在Rt AMF 中,(26AM =米,45MAF ∠= ,((cos45302AF AM ∴=⋅=⨯=+ 米,((2sin45302FM AM =⋅=⨯=+ 米,在Rt MGF 中,(()3tan3030303FG MF =⋅=+⨯=+ 米,303060129.2(AG AF FG ∴=+=+=+米),132AB = 米,132∴米>129.2米,∴该货船能行驶到码头所在的线段AB 上.24.如图,在平面直角坐标系中,直线3y x b =+经过点()1,0A -,与y 轴正半轴交于B 点,与反比例函数(0)k y x x =>交于点C ,且3,//AC AB BD x =轴交反比例函数(0)k y x x=>于点D .(1)求b k 、的值;(2)如图1,若点E 为线段BC 上一点,设E 的横坐标为m ,过点E 作//EF BD ,交反比例函数(0)k y x x =>于点F .若13EF BD =,求m 的值.(3)如图2,在(2)的条件下,连接FD 并延长,交x 轴于点G ,连接OD ,在直线OD 上方是否存在点H ,使得ODH 与ODG 相似(不含全等)?若存在,请求出点H 的坐标;若不存在,请说明理由.【答案】(1)3b =,18k =(2)1(3)存在,()3,4或()1,3或927,22⎛⎫ ⎪⎝⎭或1515,22⎛⎫- ⎪⎝⎭,理由如下【解析】【分析】(1)作CM x ⊥轴于M ,证明BOA CMA ,再根据直线3y x b =+经过点A ,即可求得b ,进而可求得B 点的坐标,即可求出C 点的坐标,进而可求得k ;(2)根据BD //x 轴可求出D 点的坐标,再根据EF //BD 可求得F 点的坐标,再根据13EF BD =即可得解;(3)过点D 作DQ x ⊥轴于点Q ,先求出,OD DG ,再分HOD DOG ∠=∠,HOD DGO ∠=∠和HOD ODG ∠=∠三种情况讨论即可得解.【小问1详解】作CM x ⊥轴于M ,如图1:,BOA CMA BAO CAM ∠∠∠∠== ,BOA CMA ∴ ,直线3y x b =+经过点()1,0A -,30b ∴-+=,解得3b =,∴直线解析式为:33y x =+,()0,3B ∴,3AC AB = ,39,33CM BO AM OA ∴====,C ∴点坐标为()2,9,∴将C 点坐标代入k y x=,得18k =;【小问2详解】BD Q //x 轴,D ∴点的纵坐标为3,代入18y x=,得6x =,D ∴点坐标为()6,3,将E 点横坐标代入33y x =+,得33y m =+,EF //BD ,F ∴点纵坐标为33m +,代入18y x =,得61x m =+,F ∴点坐标为6,331m m ⎛⎫+ ⎪+⎝⎭,13EF BD = ,61613m m ∴-=⨯+,解方程得1m =或4-(舍),1m ∴=;【小问3详解】存在,理由如下:如图2,过点D 作DQ x ⊥轴于点Q ,由(2)知()()3,6,6,3D F ,∴直线FD 的解析式为:9,6,3y x OQ DQ =-+==,9OG ∴=,:3DQ GQ ∴=,45QGD QDG ∠∠∴== ,OD DG ∴==,当HOD DOG ∠=∠时,如图2所示,设BD 与OH 交于点P ,由(2)知,BD //x 轴,BDO DOG ∴∠=∠,BDO HOD ∴∠=∠,OP PD ∴=,设OP m =,则6BP m =-,在Rt OBP △中,由勾股定理可得,2223(6)m m +=-,解得154m =,94BP ∴=,9,34P ⎛⎫∴ ⎪⎝⎭,∴直线OP 的解析式为:43y x =;①若ODG ODH ,则::1OD OD OG OH ==,不符合题意,舍去;②若ODG OHD ,::OD OH OG OD ∴=,即9OH =,解得5OH =,设()3,4H t t ,222(3)(4)5t t ∴+=,解得1t =,负值舍去,()3,4H ∴;当HOD DGO ∠=∠时,①若ODG DHO ,如图4,,::DOG ODH DG OH OG DO ∠∠∴==,DH ∴//OG,即点H 在BD 上,:9OH =,OH ∴=,1BH ∴=,()1,3H ∴,直线OH 的解析式为:3y x =;②若ODG HDO ~ ,::DG OD OG OH ∴=,即9:OH =,解得OH =设(),3H t t ,222910(3)2t t ⎛∴+= ⎝⎭,解得92t =,负值舍去,927,22H ⎛⎫∴ ⎪⎝⎭;当HOD ODG ∠=∠时,OH //EG ,∴直线OH 的解析式为:y x =-;①若ODG DOH ,则::1OD OD OG DH ==,不符合题意,舍去;②若ODG HOD ,如图5,::OD OH DG OD ∴=,即OH =,解得2OH =,设(),H t t -,222152()2t t ⎛⎫∴+-= ⎪ ⎪⎝⎭,解得152t =-,正值舍去,1515,22H ⎛⎫∴- ⎪⎝⎭;综上,符合题意的点H 的坐标为:()3,4或()1,3或927,22⎛⎫ ⎪⎝⎭或1515,22⎛⎫- ⎪⎝⎭.【点睛】关键点点睛:熟练掌握三角形相似的判定和性质是解决本题的关键.25.在O 中»»AB AC =,顺次连接A B C 、、.(1)如图1,若点M 是 AC 的中点,且//MN AC 交BC 延长线于点N ,求证:MN 为O 的切线;(2)如图2,在(1)的条件下,连接MC ,过点A 作AP BM ⊥于点P ,若,,BP a MP b CM c ===,则a b c 、、有何数量关系?(3)如图3,当60BAC ∠= 时,E 是BC 延长线上一点,D 是线段AB 上一点,且BD CE =,若5,BE AEF = 的周长为9,请求出AEF S 的值?【答案】(1)证明见解析(2)a b c=+(3)15316【解析】【分析】(1)利用切线定义,证明OM MN ⊥即可;(2)连接OM 交AC 于K ,通过勾股定理和ABP MCK 对应边成比例,得a b c 、、的数量关系;(3)构造平行四边形,求利用三角形全等和平行线的性质求相应的边长,由AEF ADE ADF S S S =- 计算面积.【小问1详解】如图1,连接OM ,M 是 AC 的中点,OM AC ∴⊥,//MN AC ,OM MN ∴⊥,OM Q 为O 的半径,MN ∴为O 的切线;【小问2详解】如图2,连接OM 交AC 于K ,连结AM ,M 是 AC 的中点, AM CM∴=,AM CM c ∴==,AP BM ⊥ ,90APM APB ∠∠∴== ,22222AP AM PM c b ∴=-=-,222222AB AP BP c b a ∴=+=-+,AC AB ∴==,M 是 AC 的中点,OM AC ∴⊥,12AK CK AC ∴===90,APB CKM ABP MCK ∠∠∠∠=== ,ABP MCK ∴ ,BP CK AB CM ∴=,BP CM CK AB ∴⋅=⋅,ac ∴=,2222ac c b a ∴=-+,22()0a c b ∴--=,()()0a b c a b c ∴+---=,0a b c +-> ,0a b c ∴--=,a b c ∴=+;【小问3详解】过点B 作//BH AC ,过点D 作//DH BC ,BH 与DH 交于点H ,连接CH ,当60BAC ∠= 时,BAC 为等边三角形,则60,60BDH ABC DBH BAC ∠∠∠∠==== ,BDH ∴ 是等边三角形,,60BH BD DHB ∠∴== ,BH CE ∴=,6060120CBH ABC DBH ∠∠∠=+=+= ,180120,ACE ACB CBH AC BC ∠∠∠=-=== ,()ACE CBH SAS ∴≅ ,,CAE BCH AE CH ∠∠∴==,//DH BC Q ,DH CE =,∴四边形CEDH 是平行四边形,//D CH E ∴,CH ED =,BCH BED ∠∠∴=,CH AE =,AE ED ∴=,,BED CAE ∠∠=过点E 作ET AB ⊥于点T ,交AC 于点L ,连接DL ,则12AT TD AD ==,AL DL =,60BAC ∠= ,ADL ∴ 是等边三角形,60ALD ACB ∠∠∴== ,//DL BC ∴,即HD 与DL 在同一直线上,∴四边形BCLH 是平行四边形,CL BH BD CE ∴===,LH BC =,设CE x =,则52,5,52,2x CL x BC AC x AD DL AL AC CL x AT -===-===-=-=,//DF CH ,LF LD CL LH ∴=,即525LF x x x -=-,()525x x LF x-∴=-,()()525525255x xx AF AL LF x x x --∴=+=-+=--,在Rt BET 中,53sin602ET BE =⋅= ,222AE AT ET =+ ,22225252522x AE x x ⎛-⎛⎫∴=+=-+ ⎪ ⎝⎭⎝⎭,延长,BH ED 交于点R ,则,,RHD FCE R CFE DH CE ∠∠∠∠===,()HDR CEF AAS ∴≅ ,DR EF ∴=,()552209955x x ER ED DR AE EF AF x x-+∴=+=+=-=-=--,//CH ED ,CH BC ER BE ∴=,52020555BC x x x CH ER BE x -++∴=⋅=⨯=-,205x AE +∴=,22205255x x x +⎛⎫∴-+= ⎪⎝⎭,解得:15=x (舍去),2158x =,()5521552552,1021584558x AD AF x -∴=-⨯===-=--,作DM AL ⊥于点M ,则5353sin60428DM AD =⋅=⨯= ,1115531531532222422816AEF ADE ADF S S S AD ET AF DM ∴=-=⋅-⋅=⨯⨯-⨯⨯= .26.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是__________元;当每个公司租出的汽车为__________辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元(0)a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.【答案】(1)48000;37(2)33150(3)50150a <<【解析】【分析】(1)直接根据条件列式计算即可;(2)分甲公司的利润大于乙公司和乙公司的利润大于甲公司两种情况分别计算,算出最大利润差;(3)根据利润差最大,利用二次函数的性质列不等式求解.【小问1详解】()5010503000102001048000⎦-⨯+⨯-⎡⎤⎣⨯=元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦,解得:37x =或=1x -(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;【小问2详解】设两公司的月利润分别为y 甲,y 乙,月利润差为y ,则y 甲()50503000200,x x x ⎡⎤=-⨯+-⎣⎦35001850y x =-乙,当甲公司的利润大于乙公司时,037,x <<()()5050300020035001850y y y x x x x ⎡⎤=-=-⨯+---⎣⎦甲乙25018001850x x =-++,当180018502x =-=-⨯时,利润差最大,且为18050元;当乙公司的利润大于甲公司时,3750,x <≤()3500185050503000200y y y x x x x⎡⎤=-=---⨯++⎣⎦乙甲25018001850x x =--,对称轴为直线180018502x -=-=⨯,当50x =时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;【小问3详解】捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为()2250180018505018001850y x x ax x a x =-++-=-+-+,对称轴为直线1800100a x -=,x 只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,180016.517.5100a -∴<<,解得:50150a <<.27.在ABC 中,90,CAB AC AB ∠== .若点D 为AC 上一点,连接BD ,将BD 绕点B 顺时针旋转90 得到BE ,连接CE ,交AB 于点F .(1)如图1,若75,4ABE BD ∠== ,求AC 的长;(2)如图2,点G 为BC 的中点,连接FG 交BD 于点H .若30ABD ∠= ,猜想线段DC 与线段HG 的数量关系,并写出证明过程;(3)如图3,若4,AB D =为AC 的中点,将ABD △绕点B 旋转得A BD '' ,连接A C A D ''、,当22A D A C ''+最小时,求A BC S '△.【答案】(1(2)34HG CD =,证明见解析(3)4-【解析】【分析】(1)过D 作DG BC ⊥,垂足是G ,构造直角三角形,借助解直角三角形求得线段的长度;(2)延长CA ,过E 作EN 垂直于CA 的延长线,垂足是N ,连接,BN ED ,过G 作GM AB ⊥于M ,构造全等三角形,设AC a =,利用中位线定理,解直角三角形,用a 的代数式表示CD 和HG ,即可得CD 和HG 的数量关系;(3)取BC 的中点N ,连接A N ',连接DN ,构造相似三角形,利用两点之间线段最短,确定A '的位置,继而求得相关三角形的面积.【小问1详解】过D 作DG BC ⊥,垂足是G ,如图1:将BD 绕点B 顺时针旋转90 得到BE ,90EBD ∠∴= ,75ABE ∠= ,15ABD ∠∴= ,45ABC ∠= ,30DBC ∴∠= ,∴在直角BDG 中有12,332DG BD BG DG ====,45ACB ∠= ,∴在直角DCG △中,2CG DG ==,23BC BG CG ∴=+=+226;2AC BC ∴==【小问2详解】线段DC 与线段HG 的数量关系为:34HG CD =,证明:延长CA ,过E 作EN 垂直于CA 的延长线,垂足是N ,连接,BN ED ,过G 作GM AB ⊥于M ,如图:90END ∠∴= ,由旋转可知90EBD ∠= ,45EDB ∴∠=90END EBD ∠∠∴== ,,,,E B D N ∴四点共圆,45,180BNE EDB NEB BDN ∠∠∠∠∴==+=180,45BDC BDN BCD ∠∠∠+== ,BEN BDC ∠∠∴=,45BNE BCD ∠∠∴== ,在BEN 和BDC 中,BNE BCD BEN BDC BE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BEN BDC AAS ∴≅ ,BN BC ∴=,90BAC ∠= ,在等腰BNC 中,由三线合一可知BA 是CN 的中线,90BAC END ∠∠== ,EN ∴//AB ,A 是CN 的中点,F ∴是EC 的中点,G 是BC 的中点,FG ∴是BEC 的中位线,FG ∴//1,2BE FG BE =,BE BD ⊥ ,FG BD ∴⊥,30ABD ∠= ,60BFG ∠∴= ,45ABC ∠= ,75BGF ∠∴= ,设AC a =,则AB a =,在Rt ABD △中,,33AD a BD BE ===,12FG BE ∴=,3FG a ∴=,GM AB ⊥ ,BGM ∴是等腰三角形,221211222222MG MB BG BC a ∴====⨯⨯=,在Rt MFG 中,60MFG ∠=,MG =,36MF a ∴=,336BF BM MF ∴=+=,在Rt BFH △中,60BFG ∠=,13212FH BF a +∴==,)3113124HG FG FH a a a +∴=-=-=-,又)33133CD a a a =-=- ,CD HG ∴=,4HG CD ∴=.【小问3详解】设AB a =,则BC =,取BC 的中点N ,连接,,A D A C A N ''',连接DN ,如图3,由旋转可知A B AB a '==,22A B BC BN A B a===''=,A B BC BN A B∴'==',又A BN CBA ∠∠''=,A BN CBA ∴'' ∽,22A N A B A C BC ''=='∴,22A N A C =''∴,根据旋转和两点之间线段最短可知,22A D A C ''+最小,即是A D A N '+'最小,此时D A N '、、共线,即A '在线段DN 上,设此时A '落在A ''处,过A ''作A F AB ''⊥于F ,连接AA '',如图4,,D N 分别是,AC BC 的中点,DN ∴是ABC 的中位线,DN ∴//AB ,AB AC ⊥ ,DN AC ∴⊥,90A A FA A DA ∠∠∠=='''=' ,∴四边形A FAD ''是矩形,,2AF A D A F AD '''='∴==, 又4A B AB ='=',设AF x =,在直角三角形A FB ''中,222A B A F BF ''=+'',22242(4)x ∴=+-,解得4x =-∴此时111222A BC ABC AA B A AC S S S S AB AC AB A F AC A D ''''''=--=⋅-'-''⋅'⋅(1114442444222=⨯⨯-⨯⨯-⨯⨯-=-.28.如图,抛物线222y x mx m =-+++与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,3OB OA =.(1)求抛物线的解析式;(2)设D 是第四象限内抛物线上的点,连接,:12:5COD AOD AD OD CD S S = 、、.①求点D 的坐标;②连接BD ,若点,P Q 是抛物线上不重合的两个动点,在直线(0)x a a =>上是否存在点,M N (点,,A P M 按顺时针方向排列,点,,A Q N 按顺时针排列),使得APM AQN ≅ 且APM ABD ∽?若存在,求出a 的值;若不存在,请说明理由.【答案】(1)223y x x =-++(2)①()4,5-,②存在,214a =【解析】【分析】(1)将点带入抛物线方程,利用韦达定理求得m ,即可得到抛物线方程.(2)①利用三角形面积之比、点D 抛物线上并根据象限即可求得点D 坐标;②假设存在利用三角形全等、相似知识确定P Q 、的位关系,再根据相似比得到a 的值.【小问1详解】由题设A 坐标()0,0x -,则B 为()003,0,0x x ≠且00x >,则有()2002002209620x m x m x mx m ⎧-+⋅-++=⎨-+++=⎩,两式作差得200880x mx -=,则0m x =,又0032-⋅=-- x x m ,则解得1m =或23-(舍去),即1m =,所以抛物线解析式为223y x x =-++.【小问2详解】①如图1,设()00,D x y ,易知3CO =,1AO =,则001322COD S CO x x =⨯⋅= ,()001122AOD S AO y y =⨯⨯-=- ,又:12:5COD AOD S S = ,003122152x y ∴=-,则0054y x =-,又 点D 在抛物线上,200023y x x ∴=-++,解得04x =或034x =-(舍去),则004,5x y ==-,即点D 的坐标为()4,5-.②由(1)得()3,0B ,如图2,APM AQN ≅ ,AM AN ∴=,又P Q 、不重合,则M N 、不重合,且MN 都在x a =上,M N ∴、关于x 轴对称,假设存在这样的P Q 、,APM ABD ∽,AQN ABD ∴ ∽,且相似比相同,APQ AMN ∴ ∽,且45NAQ DAB ∠∠== ,AMN ∴ 的中线与APQ △中线夹角也为45 ,而AMN 的中线在x 轴上,APQ ∴△的中线在1y x =+上,P Q ∴、关于1y x =+对称,从而PQ 与直线1y x =+垂直.设PQ 解析式为:,y x b PQ =-+中点为(),R m n ,联立223y x b y x x =-+⎧⎨=-++⎩,得2330x x b -+-=,123x x ∴+=,32m ∴=,将3,2R n ⎛⎫ ⎪⎝⎭代入1y x =+得52n =,35,22R ⎛⎫∴ ⎪⎝⎭,AR ∴=设x a =与x 轴交于H ,则由APQ AMN ∽可得,AR AP AB AH AM AD ===,254AH ∴=,214a ∴=.【点睛】方法点睛:在求解解析式时,可以考虑代入曲线上的点,并根据数量关系求得系数,进而得到解析式;在解决解析几何问题时,要充分利用初中所学的三角形相关的全等、相似知识,对于直线和圆锥曲线交点的问题,可以联立方程结合韦达定理得到相关数值.。
2025届吉林省三校联考高考仿真卷数学试卷含解析

2025届吉林省三校联考高考仿真卷数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为 A .171.25cm B .172.75cm C .173.75cm D .175cm2.记集合(){}22,16A x y xy =+≤和集合(){},4,0,0B x y x y x y =+≤≥≥表示的平面区域分别是1Ω和2Ω,若在区域1Ω内任取一点,则该点落在区域2Ω的概率为( ) A .14πB .1πC .12πD .24ππ- 3.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布3531尺,则这位女子织布的天数是( ) A .2B .3C .4D .14.已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值是( ) A .29B .30C .31D .325.函数()231f x x x =-+在[]2,1-上的最大值和最小值分别为( ) A .23,-2 B .23-,-9 C .-2,-9 D .2,-26.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种. A .360B .240C .150D .1207.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f =,()2log 5b f =,(2)c f m =+则a ,b ,c 的大小关系为( ) A .a b c <<B .a c b <<C .c a b <<D .c b a <<8.已知三棱柱111ABC A B C -的所有棱长均相等,侧棱1AA ⊥平面ABC ,过1AB 作平面α与1BC 平行,设平面α与平面11ACC A 的交线为l ,记直线l 与直线,,AB BC CA 所成锐角分别为αβγ,,,则这三个角的大小关系为( )A .αγβ>>B .αβγ=>C .γβα>>D .αβγ>=9.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了2010年至2018年国家财政性教育经费投入情况及其在GDP 中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A .随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B .2012年以来,国家财政性教育经费的支出占GDP 比例持续7年保持在4%以上C .从2010年至2018年,中国GDP 的总值最少增加60万亿D .从2010年到2018年,国家财政性教育经费的支出增长最多的年份是2012年10.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .11.数列{}n a 满足:21n n n a a a +++=,11a =,22a =,n S 为其前n 项和,则2019S =( ) A .0 B .1C .3D .412.设1tan 2α=,4cos()((0,))5πββπ+=-∈,则tan 2()αβ-的值为( )A .724-B .524-C .524D .724二、填空题:本题共4小题,每小题5分,共20分。
2024届广东省高三三校12月联考数学试题及答案

绝密★启用前 试卷类型:A深圳实验、湛江一中、珠海一中2024届高三三校联考数学试题 2023.12注意事项:1.本试卷共4页,22小题,满分150分,考试用时120分钟.2.答卷前,考生务必将自己的学校,班级和姓名填在答题卡上,正确粘贴条形码.3.作答选择题时,用2B 铅笔在答题卡上将对应答案的选项涂黑.4.非选择题的答案必须写在答题卡各题目的指定区域内相应位置上,不准使用铅笔和涂改液.5.考试结束后,考生上交答题卡.一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合*{2}A x =∈≤N ,集合2{|2}B y y x ==+,则A B =A .[1,4]B .[2,4]C .{1,2,3,4}D .{2,3,4} 2. 若复数z 满足i 12i z =--,则z 在复平面上所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.在梯形ABCD 中,设AB = a ,AD = b ,若2AB CD =- ,则AC =A .1+2a bB .12-+a bC .1+2a bD .12-a b4.已知函数14e ,1,()41,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为A .1B .4C .4eD .5 5.若tan 2α=,则sin 2α=A .43-B .43 C.45- D .456.已知圆台的上、下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为1,则圆台的体积为ABC .D .7.已知抛物线2:4C y x =的焦点为F ,直线1x my =+与C 交于A ,B 两点,与其准线交于点D ,若AF FD =,则||BF =A .13B .1C .43D .48.已知函数2()e 2xx f x =-,过点(,)m n 作()f x 的切线l ,若1n m =+(1n ≠),则直线l的条数为A .0B .1C .2D .3二、多项选择题:本题共4小题,每小题5分,共20分。
2022-2023学年湖北省天门市三校联考六年级(上)期末数学试卷

2022-2023学年湖北省天门市三校联考六年级(上)期末数学试卷一、认真填一填。
(每空1分,共21分)1.(3分)6:10==30÷=%2.(2分)在一个圆里有条直径,条半径.3.(2分)的倒数是1,没有倒数。
4.(3分)在横线里填“>”、“<”或“=”×××5.(2分)两个圆的半径分别是2厘米和3厘米,它们的直径比是,面积比是。
6.(1分)把10克盐放入100克水中,盐和盐水的比是.7.(1分)求的是多少,列式为。
8.(1分)一个圆形喷水池的半径是5米,它的周长是米。
9.(2分)比60米多是米;240吨比少。
10.(1分)鸡的孵化期是21天,鸭的孵化期比鸡长,鸭的孵化期是天。
11.(2分)的是18;48的是。
12.(1分)国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的,我国约有只。
二、准确判一判。
(10分,每小题2分)13.(2分)一个数乘分数,积一定小于这个数.(判断对错)14.(2分)果树的成活率是105%。
(判断对错)15.(2分)圆有无数条对称轴。
(判断对错)16.(2分)直径是半径的2倍..(判断对错)17.(2分)一根绳子长米,可以写成90%米..(判断对错)三、精心选一选。
(10分,每小题2分)18.(2分)六年级女生占总人数的,六年级女生占男生的()A.B.C.19.(2分)如果a×=b×(a、b都不为0),则()A.a>b B.a<b C.a=b20.(2分)一种商品先涨价10%,再降价10%,现价()原价。
A.高于B.低于C.等于D.不能确定21.(2分)与圆的大小无关的是()A.半径B.直径C.圆周率D.周长22.(2分)北偏西30°,还可以说成()A.南偏西30°B.西偏北30°C.西偏北60°四、仔细算一算。
(28分)23.(10分)直接写出得数。
广东惠州一中、深圳实验学校、东莞中学等三校2024-2025学年高三9月联考数学试题

2025届高三 ·九月·三校联考数学科 试题(满分150 分。
考试时间 120 分钟。
)注意事项:1.答题前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。
并用2B 铅笔将对应的信息点涂黑,不按要求填涂的,答卷无效。
2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,只需将答题卡交回。
一、单项选择题:本题共 8小题,每小题 5分,共 40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1{|0},{N |||2}2x M x Q x x x −=≤=∈≤+,则M Q ∩=( ) A .{1,0,1}− B .[0,1] C .(2,1]− D .{0,1}2.设复数12iz i−=(i 为虚数单位),则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.设a ,R b ∈,则“0a b <<”是11a b>的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数()3sin 1x xf x x =+的部分图象大致为( )A. B. C. D.5.已知对数函数log a y x =(0a >且1a ≠)是减函数,若3m a =,3a n =,log 3a p =,则m ,n ,p 的大小关系是( ) A .m n p >> B .n m p >> C .n p m >> D .p n m >> 6.已知()()sin cos ,tan tan 3x y x y x y −=+−=,则()tan x y −=( ) A .1B .1−C .3D .3−()2ln f x ax x x =−+12,x x 12f x f x +A .(,−∞B .(,−∞C .(,3)−∞−D .(,3]−∞−二、多项选择题:本题共 3小题,每小题 6分,共 18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得 6分,部分选对的得部分分,有选错的得 0分.9.设ω为正实数,已知函数()4sin 3f x x πω =+,则下列结论正确的是( ) A .当1ω=时,函数()f x 的图象的一条对称轴为5π6x =B .已知()14f x =−,()24f x =,且12x x −的最小值为π2,则2ω=C .当2ω=时,函数()f x 的图象向左平移π12个单位长度后,得到函数()4cos 2g x x =D .若()f x 在区间ππ,62 − 上单调递增,则ω的取值范围是10,310.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( ) A .()f x 的图象关于点()2,1对称 B .()f x 是以8为周期的周期函数 C .20241(42)2024k f k =−=∑D .存在函数()h x ,使得对x R ∀∈,都有()()||h g x x =11.已知定义在[)0,+∞上的函数()f x 满足当[]0,2x ∈时,()2,0142,12x x f x x x ≤≤ =−<≤ ,当2x >时,满足()()2R f x mf x m =−∈,(m 为常数),则下列叙述中正确的为( )A .当12m =时,()31f = B .当[4,6]x ∈时,()f x 的解析式为()222(4),452(6),56m x x f x m x x −≤≤=−−<≤ C .当1m >时,()24x m mf x ≥在[)0,+∞上恒成立 D .当01m <<时,函数()f x 的图象与直线1*2N n ym n −∈,在[]0,2n 上的交点个数为21n −三、填空题:本题共 3小题,每小题 5分,共 15分.12.已知函数)2()3log f x x =−,正数,a b 满足()(31)0f a f b +−=,则3b aab+的最小值为 . 13.药物的半衰期指的是血液中药物浓度降低到一半所需时间.在特定剂量范围内,t (单位,h )内药物在血液中浓度由1p (单位,g /mL µ)降低到2p (单位,g /mL µ),则药物的半衰期120.693ln ln tT p p ⋅=−.已知某时刻测得药物甲、乙在血液中浓度分别为36g /mL µ和54g /mL µ,经过一段时间后再次测得两种药物在血液中浓度都为24g /mL µ,设药物甲、乙的半衰期分别为1T ,2T ,则12T T = .14.若a ,b 为正实数,且21()2x f x e ax bx =−−在R x ∈上递增______.四、解答题:本题共 5小题,共 77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+−为奇函数.已知函数()1212xf x −=+.(1)证明:函数()f x 的图象关于点()1,1对称;(2)判断函数()f x 的单调性(不用证明),若()()2522f a f a −+−>,求实数a 的取值范围.16.(15分)记ABC 的内角Α,B ,C 的对边分别为a ,b ,c ,已知sin 2sin 0c B b C −=. (1)求角B ;(2)设AB 的中点为D ,若CD b =,且1a c −=,求ABC 的面积.17.(15分)已知函数()()log (0x a f x a a a =−>且1)a ≠. (1)求函数()f x 的定义域;(2)当2a =时,关于x 的不等式()()2log 21xf x x m −+≤+恒成立,求实数m 的最小值.18.(17分)已知函数32()3f x x mx m =−+. (1)当1m =时,求()f x 在点(0,(0))f 处的切线方程; (2)讨论()f x 的单调性;(3)若()f x 有三个不相等的零点123,,x x x ,且()f x 在点()(),i i x f x 处切线的斜率为()1,2,3i k i =,求m 的取值范围及123111k k k ++的值.19.(17分)定义:如果函数()y f x =与()y g x =的图象上分别存在点M 和点N 关于x 轴对称,则称函数()y f x =和()y g x =具有“伙伴”关系. (1)设函数()()2nn f x x n n N +=≥∈且,()1g x x =−,①证明()n y f x =和()y g x =在1,12上具有“伙伴”关系; ②若()n y f x =和()y g x =在1,12上的关于x 轴的对称点M 和N 的横坐标为n x ,判断并证明数列23,,,n x x x 的增减性.(2)若函数()e 1x F x =−和()()sin 10m xG x m x=+<在区间()0,π上具有“伙伴”关系,求m 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈中学启黄初三届上学期期末三校联考数 学 试 题命题人:初三数学备课组一、填空题(每空3分,共24分.)1.21()2-=___________,|3.14|π-=___________,22=_____________.2.分解因式2x y y -=_____________.3.化简2441(2)11x x x x x -+÷-+=--__________.4.计算13(0)3xxy x >结果为______________. 5.某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打__________折出售此商品. 6.如图,Rt △ABC 的边AB 在直线L 上,AC =1, AB=2,∠ACB =90°,将Rt△ABC 绕点B 在平面内按顺时针方向旋转,使BC 边落在直线L 上,得到△A 1BC 1; 再将△A 1BC 1绕点C 1在平面内按顺时针方向旋转,使边A 1C 1落在直线L 上,得到△A 2B 1C 1,则点A 所经过的两条弧112,AA A A 的长度之和为_____________.二、单项选择题(本大题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的) 7.下列运算正确的是( ) A .2a 3+5a 2=7a 5B .3223-=C .235()()x x x -⋅-=- D .22111()()339m n m n n m ---=-8.反比例函数ky x=和一次函数y kx k =-在同一直角坐标系中的图像大致是( )C A 1 B 1lA 2 C 1BA9.已知分式2133x x -+的值等于零,则x 的值为( )A .1B .±1C .-1D .1210.如图,平行四边形ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则ABCD 的面积是( )A .30B .36C .54D .7211.在边长为a 的正方形内有4个等圆,每相邻两个互相外切,它们中每一个至少与正方形的一边相切,那么此等圆的半径可能是( ) A .4a B .212a - C .212a + D .21124a a -或 三、解答下列各题:12.(本题6分)如图,已知矩形ABCD 中,E 、F 是AB 上两点,且AF=DE ,求证:△DEB =∠CF A .13.(本题6分)某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)DCBA MDCBAEF14.(本题7分)有时可以看到这样的转盘游戏:如图,你只要出1元钱就可以随意地转动转盘,转盘停止时指针落在哪个区域,你就按照这个区域所示的数字相应地顺时针跳过几格,然后按照下图所示的说明确定你的奖金是多少. 例如,当指针指向“2”区域的时候,你就向前跳过两个格到“5”,按奖金说明,“5”所示的奖金为0.2元,你就可得0.2元. 请问这个游戏公平吗?能否用你所学的知识揭示其中的秘密?四、多项选择题(本题满分12分,在每个小题所给的四个选项中,至少有一项是符合题目要求的,全对得4分,对而不全的酌情扣分;有对有错,全错或不答的均得零分). 15. 观察市统计局公布的“十五”时期某市农村居民年人均收入每年比上年增长率的统计图,下列说法中不正确的是( ) A .2003年农村居民年人均收入低于2002年B .农村居民年人均收入每年比上年增长率低于9%的有2年C .农村居民年人均收入最多的是2004年D .农村居民年人均收入每年比上年的增长率有大有小,但农村居民年人均收入在持续增加 16.如图,在直角梯形ABCD 中,AB ⊥BC ,AD =1,BC =3,CD =4,EF 为梯形的中位线,DH为梯形的高,则下列结论中正确的是( ) A .∠BCD =60°B .四边形EHCF 为菱形ABHCE FDC .12BEH CFH S S ∆∆=D .以AB 为直径的圆与CD 相切于点F17.如图,已知AB 、AC 分别为⊙O 的直径和弦,D 为BC 的中点,DE 垂直于AC 的延长线于E ,连结BC ,若DE =6cm, CE =2cm ,下列结论一定正确的有( ) A .DE 是⊙O 的切线 B .直径AB 长为20cm C .弦AC 长为15cmD .C 为AD 的中点五、解答下列各题18.(本题8分)梯形ABCD 中,AB ∥DC ,AD =BC ,以AD 为直径的⊙O 交AB 于E ,⊙O 的切线EF 交BC 于F ,求证: (1)EF ⊥BC ; (2)BF ·BC =BE ·AE .BACEOD19.(本题7分)甲、乙两队在比赛时,路程y(米)与时间x(分钟)的函数图像如图所示,根据函数图像填空和解答问题:(1)最先到达终点的是____________队,比另一队领先__________分钟到达.(2)在比赛过程中,乙队在_____分钟和_____分钟时两次加速.(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、乙两队谁先到达终点?请说明理由.20.(本题9分)某种贺卡原售价每张1元,甲商店这种贺卡七折优惠,而在乙商店这种贺卡除了八折优惠外,购买30张以上(含30张)免费送5张. 设一次买这种贺卡x张(x是正整数且30≤x≤50),若选择在甲商店购买需用y1元,若选择在乙商店购买需用y2元.(1)假定你代购买45张这种贺卡,请确定应在哪一个商店买花钱较少;(2)请分别写出y1(元)与x(张)、y2(元)与x(张)之间的函数关系式;(3)在x的取值范围内,试讨论在哪一个商店买花钱较少.C ,且与x轴21.(本题12分)在直角坐标系XOY中,二次函数图像的顶点坐标为(4,3)的两个交点间的距离为6.(1)求二次函数解析式;(2)在x 轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由.yxOA BC22.(本题14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D. 点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB 向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)当x=__________时,PQ⊥AC,x=__________时,PQ⊥AB.(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式为__________.(3)当0<x<2时,求证:AD平分△PQD的面积;(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).数学参考答案1.14,3.14π-, 22.y (x +1)(x -1) 3.1 4.5.57,(750500500)710100x x ⨯-⨯≥≥6.136π 7.D8.C9.A10.D11.D 12.证:ABE DCF ∆≅∆13.设三、四月份平均每月增长的百分率为x ,则260(110%)(1)96x -+= ∴33.3%x ≈14.这个游戏不公平,我们可以用列举法求每种情况的概率.因为转盘是6等分的,因此指针指向每个数字的机会均等,但最后跳到的数字只有1、3、5. 因此,本问题中,最终得到“1”“3”“5”奖的概率各为13,而最终得到“2”“4”“6”奖的概率全部为0. “1”“3”“5”奖都是低于1的低额奖金,“4”“6”奖金额数高,但根本无法得到,因此这是一个骗局. 15.ABC16.ABC17.AB18.(1)先证:△DEF =△A =△B ,△△DEF +△BEF =90°, ∴△BEF +△B =90°,∴EF ⊥BC(2)证△ADE ∽△BEF ,∴AD AE BEBF=∵AD=BC ,∴BC AE BEBF=, ∴BF ·BC=BE ·AE19.(1)乙,0.6(2)1和3(3)设AB 所在直线的解析式为y=kx+b ,则100175175********k b k y x k b b +==∴∴=-+==-⎧⎧⎨⎨⎩⎩当y =800米时,800=175x -75, △x =5,△甲、乙两队同时到达终点.20.解:(1)当在甲商店购买45张贺卡时,用31.5元(0.7×45);当在乙商店购买45张贺卡时,用32元[0.8×(45-5)].∵31.5<32,∴应选择在甲商店买贺卡花钱较少.(2)根据题意,y 1(元)与x (元)之间的函数关系式为y 1=0.7x (30≤x ≤50); y 2(元)与x (张)之间的函数关系式为y 2=24(30≤x ≤34)或y 2=0.8(x -5)即y 2=0.8x -4(35≤x ≤50).(3)根据题意,①当30≤x <35时,显然y 1<y 2;②当35≤x ≤50时,令y 1>y 2;得0.70.84,3550.x x x >-⎧⎨⎩≤≤ 解得:35≤x <40. 令y 1=y 2,得0.70.84,3550.x x x =-⎧⎨⎩≤≤ 解得:x =40. 令y 1<y 2,得0.70.84,3550.x x x <-⎧⎨⎩≤≤ 解得:40<x ≤50.答:当30≤x <35时,选择在甲商店买贺卡花钱较少;当35≤x <40时,选择在乙商店买贺卡花钱较少;当x =40时,甲乙商店任选一个;当40<x ≤50时,选择在甲商店买贺卡花钱较少.21.(1)所求解析式为383732999y x x =-+(2)在x 轴上方的抛物线上存在点Q ,使得以点Q 、A 、B 为顶点的三角形与△ABC 相似,因为△ABC 为等腰三角形,△当AB=BQ ,△AB =6, ∴BQ=6,过点O 作CD ⊥x 轴于D ,则AD =3,CD =3,△△BAC =△ABC =30°,△△ACB =120°,△△ABQ =120°,过点Q 作QE ⊥x 轴于E ,则△QBE =60°,△QE =BQ sin60°=36332⨯=,△BE =3, △E (10, 0), (10,33)Q .当x =10时,33(101)(107)93399y =--=⨯⨯= △点Q 在抛物线上,由抛物线的对称性,还存在一点(2,33)Q '-,使△AB Q ′△△CAB 故存在点(10,33)Q 或(2,33)-. 22.(1)416,55解:当Q 在AB 上时,显然PQ 不垂直于AC . 当Q 在AC 上时,由题意得,BP=x ,CQ =2x ,PC =4-x ,△AB=BC=CA =4 △△C =60°;若PQ ⊥AC ,则有△QPC =30°,△PC =2CQ ,△4-x =2×2x , △45x =,当45x =(Q 在AC 上)时,PQ ⊥AC ,如图:△当PQ △AB 时,BP=x ,BQ =12x ,AC+AQ=2x ,△AC =4,△AQ =2x -4,△12442x x -+= △165x =,故165x =时PQ △AB .(2)3232y x x =-+ 解:如图△,当0<x <2时,P 在BD 上,Q 在AC 上,过点Q 作QH △BC 于H , △△C =60°,QC =2x ,△QH=QC ×sin60°=3x ,△AB=AC ,AD △BC ,△122BD CD BC ===△DP=2-x ,△1132(2)33222y PD QH x x x x ==-=-+ (3)当0<x <2时,在Rt△QHC 中,QC =2x ,△C =60°, △HC=x ,△BP=HC ,△BD=CD , △DP=DH△AD △BC ,QH △BC △AD △QH , △OP=OQ △PDODQO S S ∆∆= △AD 平分△PQD 的面积(4)显然,不存在x 的值,使得以PQ 为直径的圆与AC 相离. 当41655x =或时,以PQ 为直径的圆与AC相切. 当441616045555x x x <<<<或或≤≤时,以PQ 为直径的圆与AC 相交.②①。