最新一次函数的概念过关练习题资料

合集下载

一次函数基础训练题

一次函数基础训练题

一次函数基础训练题一、一次函数的定义与表达式1. 题目下列函数中,是一次函数的是()A. y = (1)/(x)+1B. y = x^2+1C. y = 2x 1D. y=√(x)+1解析一次函数的一般形式为y = kx + b(k,b为常数,k≠0)。

选项A,y=(1)/(x)+1是反比例函数与常数函数的和,不是一次函数,因为反比例函数y = (1)/(x)不符合一次函数形式。

选项B,y = x^2+1是二次函数,因为自变量x的次数是2,不符合一次函数自变量次数为1的要求。

选项C,y = 2x 1符合一次函数y = kx + b的形式,其中k = 2,b=-1。

选项D,y=√(x)+1,自变量x在根号下,不是一次函数。

所以答案是C。

2. 题目已知一次函数y=(m 1)x+3,求m的取值范围。

解析因为一次函数的一般形式为y = kx + b(k≠0),在函数y=(m 1)x+3中,k = m 1。

要使函数为一次函数,则m 1≠0,解得m≠1。

二、一次函数的图象与性质1. 题目一次函数y = 2x+1的图象经过哪几个象限?解析对于一次函数y = kx + b(k,b为常数,k≠0),当k>0,b>0时,图象经过一、二、三象限。

在函数y = 2x+1中,k = 2>0,b = 1>0,所以图象经过一、二、三象限。

2. 题目已知一次函数y=-3x + b的图象经过点(1, -1),求b的值,并判断函数图象的单调性。

解析因为函数y=-3x + b的图象经过点(1,-1),将x = 1,y=-1代入函数可得:-1=-3×1 + b-1=-3 + b移项可得b=-1 + 3=2。

对于一次函数y = kx + b,这里k=-3<0,所以函数y=-3x + 2的图象是单调递减的,即y随x的增大而减小。

三、一次函数的应用1. 题目某汽车油箱中原有油100升,汽车每行驶50千米耗油9升,求油箱剩余油量y(升)与汽车行驶路程x(千米)之间的函数关系式。

一次函数概念及习题

一次函数概念及习题

一次函数 一、函数1.定义(1)在变化过程中有两个变量;(2)一个变量的数值随着另一个变量的数值的变化而发生变化;(3)自变量的每一个确定值,函数有且只有一个值与之对应,即单值对应。

2.自变量的取值范围(1)整式时,自变量取全体实数; (2)分式时,自变量使分母不为零;(3)有偶次根式时,自变量必须使被开方数是非负数; (4)实际问题中,要使实际问题有意义;(5)在有些函数关系式中,自变量的取值范围应是其公共解。

二、一次函数(——正比例函数)1.定义(1)函数为一次函数⇔其解析式可化为y kx b =+(,k b 为常数,0k ≠)的形式。

(2)一次函数y kx b =+结构特征:0k ≠;自变量x 次数为1;常数b 可为任意实数。

(3)一般情况下,一次函数中自变量的取值范围是全体实数。

(4)若0k =,则y b =(b 为常数),这样的函数叫做常函数,它不是一次函数; 若0b =,则y=kx (k 为常数),这样的函数叫做正比例函数。

2.图像一次函数的图像是一条直线,确定两点,便能确定其图像。

3.性质(1)增减性:0k >时,y 随着x 的增大而增大;0k <时,y 随着x 的增大而减小。

(2)图像位置:直线y kx b =+过两个象限或三个象限,由,k b 的符号共同决定。

例题1. 求出下列函数中自变量x 的取值范围(1)112y x =+ (2)y = (3)y = (4)521y x -=-2.已知23(2)3my m x -=-+,当m 为何值时,y 是x 的一次函数?3. 已知一次函数(2)(1)y m x m =++-,若y 随x 的增大而减小,且该函数图象与x 轴的交点在原点右侧,求m 的取值范围。

4. 若正比例函数y =(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则求m 的取值范围。

一次函数的概念练习题

一次函数的概念练习题

一次函数的概念练习题一、选择题1. 下列哪个函数是一次函数?()A. y = 2x^2 + 1B. y = 3x 5C. y = √x + 2D. y = 4/x2. 一次函数y = 3x + 2的斜率是()A. 3B. 3C. 2D. 23. 一次函数y = kx + b中,当k > 0时,函数的图像经过()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 一次函数y = x + 4的截距是()A. 4B. 4C. 0D. 1二、填空题1. 一次函数的一般形式是_________。

2. 一次函数y = 5x 3的斜率为_________,截距为_________。

3. 当x = 0时,一次函数y = 2x + 1的值为_________。

4. 已知一次函数的图像经过点(2, 3)和(4, 7),则该函数的表达式为_________。

三、解答题1. 判断下列各小题中,哪些是一次函数,并说明理由:(1)y = 4(2)y = 2x 3x + 1(3)y = 1/x + 22. 已知一次函数的图像经过点(1, 2)和(1, 4),求该一次函数的表达式。

3. 一次函数y = kx + b的图像经过点(0, 3)和(2, 7),求k和b 的值。

4. 设一次函数y = kx + b的图像与x轴和y轴的交点分别为A和B,若|OA| = 3,|OB| = 4,求该一次函数的表达式。

四、判断题1. 一次函数的图像是一条直线,这条直线可以与坐标轴相交。

()2. 一次函数的斜率表示函数图像的倾斜程度,斜率越大,图像越陡峭。

()3. 所有的一次函数图像都会经过原点(0, 0)。

()4. 如果两个一次函数的斜率相同,那么它们的图像一定是平行的。

()五、匹配题将下列一次函数与其对应的图像特点进行匹配:A. y = 2x + 1B. y = x 2C. y = 3xD. y = 3x + 41. 图像经过第一、二、三象限2. 图像经过第二、三、四象限3. 图像经过第一、三象限,且与y轴相交于正半轴4. 图像经过第一、四象限,且与x轴相交于负半轴六、作图题1. 在坐标纸上画出一次函数y = 2x 3的图像。

20.1一次函数的概念(4种题型基础练+提升练)(原卷版)

20.1一次函数的概念(4种题型基础练+提升练)(原卷版)

20.1一次函数的概念(4种题型基础练+提升练)
题型一:识别一次函数
题型二:根据一次函数的定义求参数
题型三:求一次函数自变量或函数值
一、单选题
1.(2023下·上海·八年级专题练习)已知点()1,2A 在一次函数3y x m =-的图象上,则m 等于( )A .3
-B .2-C .0D .1
二、填空题
题型四:列一次函数解析式并求值
一、填空题
二、解答题
一、单选题
二、填空题
三、解答题
(1)求A,C坐标;
(2)若点Q(a,2a﹣6)位于第一象限内,问点
若能,请求出此时a的值,若不能,请说明理由.
(1)当△ABC是以BC为底的等腰三角形时,求点A的坐标;
(2)当△ABC的面积为4时,求点A的坐标;
(3)在直线l上是否存在点A,使∠BAC=90°?若存在,求出点A的坐标;若不存在请说明理由.。

中考数学复习之一次函数的图像与性质,考点过关与基础练习题

中考数学复习之一次函数的图像与性质,考点过关与基础练习题

14. 一次函数的图像与性质➢ 知识过关一次函数的概念:形如)0(为常数,b k b kx y ≠+=的函数,叫做一次函数. 一次函数的图像 k >0 k <0y 随着x 增大而增大 y 随x 的增大而减小(1)设出一次函数解析式的一般形式;(2)设x 、y 的对应值代入解析式,得到含有待定系数的_______;(3)求待定系数的值;(4)将所有待定系数的值代入所设的函数解析式中.➢ 考点分类考点1 正比例函数、一次函数的概念例1已知函数y =(m ﹣10)x +1﹣2m .(1)m 为何值时,这个函数是一次函数;(2)m 为何值时,这个函数是正比例函数.例2 一次函数的图像及性质例2(1)已知正比例函数x m y )1(+=,y 随x 的增大而减小,则m 的取值范围是( )A. m<-1B.m>-1C.1-≥mD.1-≤m(2) 关于直线l :)0(≠+=k k kx y ,下列说法不正确的是( )A. 点(0,b)在 l 上,B. l 经过定点(-1,0)C. 当k >0时,y 随x 的增大而增大D. l 经过第一、二、三象限考点3 一函数的交点问题例3 如图,一次函数y =−12x +4的图象与x 轴、y 轴分别交于点A ,B .将△AOB 沿直线CD 对折,点A 恰好与点B 重合,直线CD 与x 轴交于点C ,与AB 交于点D .(1)求点C 的坐标;(2)求四边形BOCD 的面积.➢ 真题演练1.直线y 1=mx +n 2+1和y 2=﹣mx ﹣n 的图象可能是( )A .B .C .D .2.根据图象,可得关于x 的不等式kx >﹣x +3的解集是( )A .x <2B .x >2C .x <1D .x >13.如图,一次函数y =x +4的图象与x 轴,y 轴分别交于点A ,B ,点C (﹣2,0)是x 轴上一点,点E ,F 分别为直线y =x +4和y 轴上的两个动点,当△CEF 周长最小时,点E ,F 的坐标分别为( )A .E (−52,32),F (0,2)B .E (﹣2,2),F (0,2)C .E (−52,32),F (0,23) D .E (﹣2,2),F (0,23)4.在同一平面直角坐标系中,直线y =﹣x +4与y =2x +m 相交于点P (3,n ),则关于x ,y的方程组{x +y −4=0,2x −y +m =0的解为( ) A .{x =−1,y =5 B .{x =3,y =1 C .{x =1,y =3 D .{x =9,y =−55.如图,在平面直角坐标系中,直线l 1:y =x +4与直线l 2:y =mx +n 交于点A (﹣1,b ),则关于x ,y 的方程组{x −y +4=0mx −y +n =0的解为( )A .{x =3y =1B .{x =−1y =3C .{x =3y =−1D .{x =−1y =−36.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为 .7.如图,一次函数y =kx +b 与正比例函数y =2x 的图象交于点A ,且与x 轴交于点B ,则一次函数y =2x 与y =kx +b 的图象交点坐标为 .8.如图,一次函数y =x +2的图象与x 轴、y 轴分别交于A 、B 两点,以OB 为边在y 轴的左侧作等边△OBC ,将△OBC 沿x 轴向右平移,使点C 的对应点C ′恰好落在直线AB 上,则点C ′的坐标为 .9.如图,直线AB 的表达式为y =−34x +6,交x 轴,y 轴分别与B ,A 两点,点D 坐标为(﹣4,0),点C 在线段AB 上,CD 交y 轴于点E .(1)求点A ,B 的坐标;(2)若CD =CB ,求点C 的坐标;(3)若△ACE 与△DOE 的面积相等,在直线AB 上有点P ,满足△DOC 与△DPC 的面积相等,求点P 坐标.➢ 课后练习1.若m <﹣2,则一次函数y =(m +1)x +1﹣m 的图象可能是( )A .B .C .D .2.若式子√k −1+(k ﹣1)0有意义,则一次函数y =(1﹣k )x +k ﹣1的图象可能是( )A .B .C .D .3.对于实数a ,b ,定义符号min {a ,b },其意义为:当a ≥b 时,min {a ,b }=b ;当a <b 时,min {a ,b }=a .例如:min ={2,﹣1}=﹣1,若关于x 的函数y =min {2x ﹣1,﹣x +3},则该函数的最大值为( )A .23B .1C .43D .534.桂林作为国际旅游名城,每年吸引着大量游客前来观光.现有一批游客分别乘坐甲乙两辆旅游大巴同时从旅行社前往某个旅游景点.行驶过程中甲大巴因故停留一段时间后继续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程s(km )随时间t (h )变化的图象(全程)如图所示.依据图中信息,下列说法错误的是( )A .甲大巴比乙大巴先到达景点B .甲大巴中途停留了0.5hC .甲大巴停留后用1.5h 追上乙大巴D .甲大巴停留前的平均速度是60km /h5.在直角坐标系中,已知点A (32,m ),点B (√72,n )是直线y =kx +b (k <0)上的两点,则m ,n 的大小关系是( )A .m <nB .m >nC .m ≥nD .m ≤n6.在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图象可能是( )A .B .C .D .7.甲乙两车分别从A 、B 两地同时出发,甲车从A 地匀速驶向B 地,乙车从B 地匀速驶向A 地.两车之间的距离(单位:km )与两车行驶的时间x (单位:h )之间的关系如图所示,已知甲车的速度比乙车快20km /h .下列说法错误的是( )A .甲乙两地相距360kmB .甲车的速度为100km /hC .点E 的横坐标为185D .当甲车到B 地时,甲乙两车相距280km8.如图,在平面直角坐标系xOy 中,直线y =﹣x +2与坐标轴交于A ,B 两点,OC ⊥AB 于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45°,得到线段AP ',连接CP ',则线段CP '的最小值为 .9.如图,一次函数y =kx +8与x 轴交于点A (8,0),点C 在直线AB 上且横坐标为6.点D 为x 轴上一点,BD =CD ,若点M 是x 轴上的动点,在直线AB 上找在一点N (点N 与点C 不重合),使△AMN 与△ACD 全等,点N 的坐标为 .10.已知一次函数y =ax +5和y =﹣x +b 的图象相交于点P (1,2),则方程{ax −y =−5y +x =b的解是 .11.直线l 1:y =x ﹣1与直线l 2:y =﹣2x +n 相交于点P (3,2),则关于x 的不等式x ﹣1≥﹣2x +n 的解集为 .12.在如图所示的平面直角坐标系中,点P 是直线y =x 上的动点,A (1,0),B (2,0)是x 轴上的两点,当P A +PB 取最小值时,S △ABP = .13.如图,一次函数y =x +6与坐标轴分别交于 A 、B 两点,点P 、C 分别是线段AB ,OB 上的点,且∠OPC =45°,PC =PO ,则点P 的坐标为 .14如图1,在平面直角坐标系中,直线l :y =x +6与x 轴、y 轴分别交于A 、B 两点,直线l 2与x 轴、y 轴分别交于点C 、D 两点,两直线交于点E ,且OA =OB =OC =2•OD .(1)求点E 的坐标;(2)如图2,在直线l 2上E 点的右侧有一点M ,过M 作y 轴的平行线交直线l 1于点N ,当△EMN 的面积为274时,求此时点M 的坐标.15.如图,在平面直角坐标系中,A ,B ,C 为坐标轴上的三个点,且OA =OB =OC =4,过点A 的直线AD 交直线BC 于点D ,交y 轴于点E ,△ABD 的面积为8.(1)求点D 的坐标;(2)求直线AD 的表达式;(3)过点C 作CF ⊥AD ,交直线AB 于点F ,求△EF A 的面积.➢冲击A+如图1,正方形ABCD的对角线AC,BD相交于点O,E是边BC上一点,连接DE交AC 于点F,连接BF.(1)求证:△CBF≌△CDF;(2)如图2,过点F作DE的垂线,交BC的延长线于点G,交OB于点N.①求证:FB=FG;②若tan∠BDE=12,ON=1,求CG的长.。

一次函数专题训练题

一次函数专题训练题

一次函数专题训练题以下是一些关于一次函数的专题训练题,希望能帮助学生更加深入地理解和掌握一次函数的知识。

1.已知函数f(x) = ax + b中,a为正数,b为负数。

当x = 2时,f(x) = 5,求a和b的值。

解:根据已知条件,我们有f(2)=5,代入函数表达式,得到5=a(2)+b。

我们可以进一步整理方程,得到2a+b=52.已知函数g(x)=3x-1,求函数g(x)的自变量x为多少时,函数值等于10。

解:根据已知条件,我们要求g(x)=10,代入函数表达式,得到10=3x-1、我们可以进一步整理方程,得到3x=11,解得x=11/33.已知函数h(x)=-4x+7,求函数h(x)的自变量x为多少时,函数值等于0。

解:根据已知条件,我们要求h(x)=0,代入函数表达式,得到0=-4x+7、我们可以进一步整理方程,得到4x=7,解得x=7/44.已知函数p(x)=2x+3,求函数p(x)的自变量x为多少时,函数值等于-1解:根据已知条件,我们要求p(x)=-1,代入函数表达式,得到-1=2x+3、我们可以进一步整理方程,得到2x=-4,解得x=-25.已知函数q(x)=5-6x,求函数q(x)的自变量x为多少时,函数值等于-8解:根据已知条件,我们要求q(x)=-8,代入函数表达式,得到-8=5-6x。

我们可以进一步整理方程,得到6x=13,解得x=13/66.已知函数r(x)=-3x+2,求函数r(x)的自变量x为多少时,函数值等于-5解:根据已知条件,我们要求r(x)=-5,代入函数表达式,得到-5=-3x+2、我们可以进一步整理方程,得到-3x=-7,解得x=-7/-3=7/37.已知函数s(x) = kx + 4,当x = 7时,函数值为15,求k的值。

解:根据已知条件,我们有s(7)=15,代入函数表达式,得到15=k(7)+4、我们可以进一步整理方程,得到7k=11,解得k=11/78.已知函数t(x)=6x-5,当函数t(x)的自变量x为多少时,函数值为0?解:根据已知条件,我们要求t(x)=0,代入函数表达式,得到0=6x-5、我们可以进一步整理方程,得到6x=5,解得x=5/69.已知函数u(x)=-2x+k,当函数u(x)的自变量x为多少时,函数值等于k?解:根据已知条件,我们要求u(x)=k,代入函数表达式,得到k=-2x+k。

一次函数经典例题20题

一次函数经典例题20题

一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。

本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。

一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。

在这个函数中,x 的次数为 1,因此称为一次函数。

其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。

二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。

在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。

当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。

2.截距截距是指函数图像与坐标轴的交点。

在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。

当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。

3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。

当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。

三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。

解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。

2.已知函数 y=-x+7,求当 x=5 时的函数值。

解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。

3.已知函数 y=3x-2,求函数的斜率。

解:函数的斜率是 3。

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题(绝对经典全面)一次函数知识点及分类练题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()。

A。

0 B。

-1 C。

±1 D。

12.若函数是一次函数,则m的值为()。

A。

0 B。

-1 C。

1 D。

23.下列函数:①y=x,②y=2x-1,③y=3,④y=-x中,是一次函数的有()。

A。

4个 B。

3个 C。

2个 D。

1个4.已知函数y=(k-1)x+k2-1,当k=1时,它是一次函数,当k≠1时,它是正比例函数。

二、一次函数的性质5.已知一次函数。

若x的增大而增大,则y的取值范围是()。

A。

(负无穷,正无穷) B。

(0,正无穷) C。

(负无穷,0) D。

(0,正实数)6.已知一次函数的图象经过第二、三、四象限,则y的取值范围在数轴上表示为()。

A。

(0,正无穷) B。

(负无穷,0) C。

(负无穷,正无穷) D。

(0,正实数)7.已知(-1,y1),(1.8,y2),(2,y3)是直线y=-3x+m (m为常数)上的三个点,则y1,y2,y3的大小关系是()。

A。

y3>y1>y2 B。

y1>y3>y2 C。

y1>y2>y3 D。

y3>y2>y18.下列图象中,哪个是一次函数的大致图象()。

A。

9.在一次函数y=kx+2中,XXX随x的增大而增大,则k>0,它的图象不经过第三象限。

10.若点P(-3,y1),Q(2,y2)在一次函数的图象上,则y1与y2的大小关系是()。

三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()。

A.(-1,1)B.(-1,-1)C.(-3,0)D.(1,-1)12.一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为y=k(x+4)+5.13.一次函数能过平移后变为y=-5x+6,其平移过程是将原函数向上平移6个单位。

14.将一次函数y=-2x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=-2x+2.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与正比例函数练习题
一.填空题.
1.有下列函数:①
x 8
y ; ② y ; ③ y = 8x2x(1 -8x);
3 x
④ y = x 6 ;
⑤ y =3 _4x ; ⑥y —、3x2 -5 ;其中是正比例函数的有,是一次函数
的有(填代号即可).
2. ⑴把等式3y-6x=2化为y =kx • b的形式为_________ .
⑵已知函数y=(m—2)x・5—m,如果它是一次函数,则m ; 若此函数为正比例
函数,贝U m .
3. (1)已知函数;m-3x m是一次函数,则m= .
(2)若函数y =(k,2)x • (k2-4)是正比例函数,贝U k= .
4. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形的场地,设长增加x(m),宽增
加y(m),则y与x的函数关系式是___________ ,自变量的取值范围是___________ ,且y是x的________ 函数.
5. 根据图中的程序,当输入x=-3时,输出结果y = .
二.选择题•
1. 下列函数:①y「3x :②y「「刁:③y二莖」:④y J.其中一次函数有( )
3 x
A.①②
B. ③④
C. ①③
D. ②④
2. 一次函数y二kx,3中,当x=2时,y的值为5,则k的值为( )
3. 已知两个变量x和y,它们之间的3组对应值如下表所示:则y与x之间的函数关系式可
精品文档
A.1
B.-1
C.5
D.-5
能是( )
A. y = x
B.y = 2x 1
C. y = x2 x 1
D. 3 y 一
x
4.下列说法中不正确的是( 精品文

)
X-1
01
¥113
A. 一次函数不一定是正比例函数;
B. 不是一次函数就一定不是正比例函数
C.正比例函数是特殊的一次函数;
D. 不是正比例函数就不是一次函数
三•解答题.
1.等腰三角形的周长为40 cm,底边长为y cm ,腰长为x cm.写出y与x的函数关系式,并写出函数自变
量的取值范围
2.现有400本图书借给学生阅读,每人10本,求余下的书数y (本)和学生人数x (人)之间的函数关系
式,并求自变量x的取值范围.
3.(1)已知y = m2 -4x2 - m-2x-3是一次函数,求m的值。

⑵当k为何值时,函数y=2x k 5是一次函数?
2 (3)当m为何值时,函数y=(m,1)x m -3是一次函数?。

相关文档
最新文档