数学:1.1.2《余弦定理》课件(新人教A版必修5)
合集下载
天津市塘沽区紫云中学2014年高中数学 1.1.2 正弦定理与余弦定理习题课课件 新人教A版必修5

本 课 栏 目 开 关
习题课
(3)已知两边和它们的夹角,解三角形. 此种情况的基本解法是先用余弦定理求第三边,再用正 弦定理或余弦定理求另一角,最后用三角形内角和定理 求第三个角. (4)已知三角形的三边,解三角形. 此种情况的基本解法是先用余弦定理求出一个角,再用 正弦定理或余弦定理求出另一个角,最后用三角形内角 和定理,求出第三个角. 要解三角形,必须已知三角形的一边的长.若已知条件 中一条边的长也不给出,三角形可以是任意的,因此无 法求解.
练一练· 当堂检测、目标达成落实处
习题课
本 课 栏 目 开 关
1.在△ABC 中,若 2cos Bsin A=sin C,则△ABC 的形状一 定是 A.等腰直角三角形 ( C ) B.直角三角形
C.等腰三角形 D.等边三角形 解析 ∵2cos Bsin A=sin C=sin(A+B),
∴sin Acos B-cos Asin B=0, 即 sin(A-B)=0,∴A=B.
1 ah (1)S= 2 a
(ha 表示 a 边上的高); 1 1 1 acsin B bcsin A (2)S= absin C= 2 = 2 ; 2 1 (3)S= r(a+b+c)(r 为三角形内切圆半径). 2
研一研· 题型解法、解题更高效
习题课
题型一
本 课 栏 目 开 关
利用正、余弦定理证明三角恒等式 2 2 2 tan A a +c -b 例 1 在△ABC 中,求证: = . tan B b2+c2-a2
小结 这是一道向量与正、余弦定理的综合题,解题的关键
本 课 栏 目 开 关
是化去向量的· 题型解法、解题更高效
习题课
本 课 栏 目 开 关
跟踪训练 3 在△ABC 中,内角 A、B、C 的对边分别为 a、 3 2 b、c,已知 b =ac 且 cos B= . 4 1 1 (1)求 + 的值; tan A tan C → → 3 (2)设BA· BC= ,求 a+c 的值. 2 3 解 (1)由 cos B= , 4
人教A版必修5第1章《正弦定理和余弦定理》ppt导学课件

2 2 2 2 2 2 2 2 2 2 2 2
根据勾股定理知△ABC 是直角三角形. 4、 已知 a,b,c 分别为△ABC 三个内角 A,B,C 的对边,acosC+ 3asinC-b-c =0. (1)求 A; (2)若 a=2,△ABC 的面积为 3,求 b, c. 【解析】本题考查正弦定理.(1)利用正 弦定理边化角结合两角和差公式化简求 解; (2)利用三角形面积公式及余弦定理 求解. 【答案】 (1)由 acosC+ 3asinC-b-c= 0 及正弦定理得
.
【解析】本题考查正弦定理 . 在三角形中【解析】本题考查正弦定理.由正弦定理, 需要考虑大边对大角,三个内角的和不能得 sin B= 2, 2 0 超过 180 .利用正弦定理求得∠B,根据大 ∵a>b,∴∠A>∠B. 边对大角,故∠B =30°,勾股定理求得 ∴∠B 只有一解.∴∠B=45°. c. 【答案】45°.
人教(A)数学 · 必修5 对点助学PPT
【知识目标】
1、理解正弦定理和余弦定理公 式的推导过程;
正弦定理和余弦定理
【学习目标】
1、会根据正弦定理和余弦定理 解三角形(知三求一) ; 2、会利用正弦定理和余弦定理 进行边角的相互转化2 3, b=6,
B=60°或 120°.
a
sin A
=
= =2R sin B sin C
b
c
(R 为△ABC 的外接圆半径).
统一为“边”之间的关系式或“角” 【答案】由正弦定理 a = b sin A sin B 之间的关系式. 3 1 1 可得 = ,∴sin B= , sin 60° sin B 2
【对点巩固】
故∠B=30°或 150°.由 a>b,
根据勾股定理知△ABC 是直角三角形. 4、 已知 a,b,c 分别为△ABC 三个内角 A,B,C 的对边,acosC+ 3asinC-b-c =0. (1)求 A; (2)若 a=2,△ABC 的面积为 3,求 b, c. 【解析】本题考查正弦定理.(1)利用正 弦定理边化角结合两角和差公式化简求 解; (2)利用三角形面积公式及余弦定理 求解. 【答案】 (1)由 acosC+ 3asinC-b-c= 0 及正弦定理得
.
【解析】本题考查正弦定理 . 在三角形中【解析】本题考查正弦定理.由正弦定理, 需要考虑大边对大角,三个内角的和不能得 sin B= 2, 2 0 超过 180 .利用正弦定理求得∠B,根据大 ∵a>b,∴∠A>∠B. 边对大角,故∠B =30°,勾股定理求得 ∴∠B 只有一解.∴∠B=45°. c. 【答案】45°.
人教(A)数学 · 必修5 对点助学PPT
【知识目标】
1、理解正弦定理和余弦定理公 式的推导过程;
正弦定理和余弦定理
【学习目标】
1、会根据正弦定理和余弦定理 解三角形(知三求一) ; 2、会利用正弦定理和余弦定理 进行边角的相互转化2 3, b=6,
B=60°或 120°.
a
sin A
=
= =2R sin B sin C
b
c
(R 为△ABC 的外接圆半径).
统一为“边”之间的关系式或“角” 【答案】由正弦定理 a = b sin A sin B 之间的关系式. 3 1 1 可得 = ,∴sin B= , sin 60° sin B 2
【对点巩固】
故∠B=30°或 150°.由 a>b,
人教版高中数学余弦定理(说课)(共20张PPT)教育课件

人教版A版高中数学必修5
1.1.2余弦定理
第一章《解三角形》第二节课
玉林高中 饶蔼
人教版A版高中数学必修5
一.教材分析 二.学情分析 三.教学方法 四.教学过程
量化
激发
产生
掌握
提高
思维 能力
知识与技能:
通过探究 学会 掌握 两种表示 运用
过程与方法:
培养 特殊到一般 提升 解决几何问题
情感态度价值观:
有些人经常做一些计划,有的计划几乎 不去做 或者做 了坚持 不了多 久。其 实成功 的关键 是做很 坚持。 上帝没 有在我 们出生 的时候 给我们 什么额 外的装 备,也 许你对 未来充 满迷惑 ,也许 你觉得 是在雾 里看花 ,但是 只要我 们不停 的去做 ,去实 践,总 是可以 走到一 个鲜花 盛开的 地方, 也许在 那个时 候,你 就能感 受到什 么叫柳 暗花明 。走向 成功的 过程就 好像你 的起点 是南极 ,而成 功路径 的重点 在北极 。那么 无论你 往哪个 方向走 ,只要 中途的 方向不 变,最 终都会 到达北 极,那 就在于 坚持。
知两边与夹角
例2:在△ABC中,已知a =134.6 cm,b=87.8 cm,c =161.7 cm,解三角形(角度精确到1°,边长精确到1 cm).
知三边
练习1:在△ABC中,已知b=12.9 cm,c=15.4 cm,A=42.3°, 解三角形(角度精确到1°,边长精确到1 cm)
练习2:在△ABC中,已知a=7 cm,b=10 cm, c=6 cm , 解三角形(角度精确到1°,边长精确到1 cm)
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。 理财的时候需要做的一方面提高收入, 令一方 面是节 省开支 。这就 是所谓 的开源 节流。 时间管 理也是 如此, 一方面 要提高 效率, 另一方 面是要 节省时 间。主 要做法 有:1、 同时做 两件事 情(备 注:请 认真选 择哪些 事情可 以同时 做), 比如跑 步的时 候边听 有声书 ;2、 压缩休 息时间 提升睡 眠效率 ,比如 晚睡半 小时早 起半小 时(6~7个小 时即可 );3、 充分利 用零碎 时间学 习,比 如做公 交车、 等车、 上厕所 等。
1.1.2余弦定理
第一章《解三角形》第二节课
玉林高中 饶蔼
人教版A版高中数学必修5
一.教材分析 二.学情分析 三.教学方法 四.教学过程
量化
激发
产生
掌握
提高
思维 能力
知识与技能:
通过探究 学会 掌握 两种表示 运用
过程与方法:
培养 特殊到一般 提升 解决几何问题
情感态度价值观:
有些人经常做一些计划,有的计划几乎 不去做 或者做 了坚持 不了多 久。其 实成功 的关键 是做很 坚持。 上帝没 有在我 们出生 的时候 给我们 什么额 外的装 备,也 许你对 未来充 满迷惑 ,也许 你觉得 是在雾 里看花 ,但是 只要我 们不停 的去做 ,去实 践,总 是可以 走到一 个鲜花 盛开的 地方, 也许在 那个时 候,你 就能感 受到什 么叫柳 暗花明 。走向 成功的 过程就 好像你 的起点 是南极 ,而成 功路径 的重点 在北极 。那么 无论你 往哪个 方向走 ,只要 中途的 方向不 变,最 终都会 到达北 极,那 就在于 坚持。
知两边与夹角
例2:在△ABC中,已知a =134.6 cm,b=87.8 cm,c =161.7 cm,解三角形(角度精确到1°,边长精确到1 cm).
知三边
练习1:在△ABC中,已知b=12.9 cm,c=15.4 cm,A=42.3°, 解三角形(角度精确到1°,边长精确到1 cm)
练习2:在△ABC中,已知a=7 cm,b=10 cm, c=6 cm , 解三角形(角度精确到1°,边长精确到1 cm)
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。 理财的时候需要做的一方面提高收入, 令一方 面是节 省开支 。这就 是所谓 的开源 节流。 时间管 理也是 如此, 一方面 要提高 效率, 另一方 面是要 节省时 间。主 要做法 有:1、 同时做 两件事 情(备 注:请 认真选 择哪些 事情可 以同时 做), 比如跑 步的时 候边听 有声书 ;2、 压缩休 息时间 提升睡 眠效率 ,比如 晚睡半 小时早 起半小 时(6~7个小 时即可 );3、 充分利 用零碎 时间学 习,比 如做公 交车、 等车、 上厕所 等。
#高中数学必修五:1.1.2-1《余弦定理》(人教A版必修5)

∠B=120o,求 AC
A
B
120°
解:由余弦定理得
A 2 C A 2 B B 2 C 2 A B B cC B os C
3222232co1s2o0 19
AC 19
答:岛屿A与岛屿C的距离为 19 km.
例1、在△ABC中,已知a= 6 ,b=2,c= 3 ,1
解三角形。
cosA<0,A为钝角,△ABC为钝角三角形。 练习2:在锐角△ABC中,边长a=1,b=2,
求边长c的取值范围。
解:∵coCsa2b2c2 0
a2c2b2
coBs
0
2bc
2ac
3c 5
∴
余弦定理:
推论:
a2b2c22bcco As
cos
b2 A
c2 a2 2bc
b2a2c22acco BscosBc2 a2 b2
例2、已知△ABC的三边为 7 、2、1,
求它的最大内角。
解:设三角形的三边分别为a= 7 ,b=2,c=1
则最大内角为∠A
由余弦定理得coAs b2 c2 a2
2bc
22 12
2
7
221
120
练习1:在△ABC中,已知a=12,b=8,c=6, 判断△ABC的形状。
a2b2c2
设
C a B ,C b A ,A c B
由向量减法的三角形法则得
c ab
c 2 cc (a b )(a b )
﹚
aa 2a b b2b22a ab bcoCs
a2b22ac bo C s
c2a2 b 22 acbo Cs
探 究: 若△ABC为任意三角形,已知角C,
人教版高中数学必修五正弦定理和余弦定理课件

解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是
数学:1.1.2《余弦定理》课件(新人教版A必修5)

1.1.2余弦定理
鹿邑三高 史琳
2021/4/6
1
复习回顾
正弦定理: a b c 2R
sinA sinB sinC
变型: a 2 R sA i,b n 2 R sB i,c n 2 R sC in
a :b :c sA i:s n B i:s n C in
可以解决两类有关三角形的问题?
(1)已知两角和任一边。 (2)已知两边和一边的对角。
|a+b| 及a+b与a的夹角.
解:在AOB中,
∵ |a – b|2 = |a|2+|b| 2 – 2|a||b|cos120°
=61, B
C
∴ |a – b|=√61.
b 120° O aA
2021/4/6
19
例 4:已知向量a、b夹角为120°, B
C
且|a| =5,|b|=4,求|a – b| 、 b 120°
coB s a2c2b2 2ac
coC sa2 b2 c2 2ab
应用:已知三条边求角度.
2021/4/6
9
思考3:
余弦定理及其推论的基本作用是什么?
①已知三角形的任意两边及它们的夹角就 可以求出第三边; ②已知三角形的三条边就可以求出其它角.
正弦定理可解决的几类问题: (1)已知两角和任,一 解边 三角;形 (2)已知两边和其中一角 边,解 对三角形 .
技术人员先在地面上选一适当的位置A,量出A到山
脚B、C的距离,再利用经纬仪测出A对山脚BC(即
线段BC的张角),最后通过计算求出山脚的长度BC。
已测的:AB=1千米,
AC=
3 2
千米
角A=60O
求山脚BC的长度.
解:B2 C |A|2B |A|2 C 2 |A|A B|C cA os
鹿邑三高 史琳
2021/4/6
1
复习回顾
正弦定理: a b c 2R
sinA sinB sinC
变型: a 2 R sA i,b n 2 R sB i,c n 2 R sC in
a :b :c sA i:s n B i:s n C in
可以解决两类有关三角形的问题?
(1)已知两角和任一边。 (2)已知两边和一边的对角。
|a+b| 及a+b与a的夹角.
解:在AOB中,
∵ |a – b|2 = |a|2+|b| 2 – 2|a||b|cos120°
=61, B
C
∴ |a – b|=√61.
b 120° O aA
2021/4/6
19
例 4:已知向量a、b夹角为120°, B
C
且|a| =5,|b|=4,求|a – b| 、 b 120°
coB s a2c2b2 2ac
coC sa2 b2 c2 2ab
应用:已知三条边求角度.
2021/4/6
9
思考3:
余弦定理及其推论的基本作用是什么?
①已知三角形的任意两边及它们的夹角就 可以求出第三边; ②已知三角形的三条边就可以求出其它角.
正弦定理可解决的几类问题: (1)已知两角和任,一 解边 三角;形 (2)已知两边和其中一角 边,解 对三角形 .
技术人员先在地面上选一适当的位置A,量出A到山
脚B、C的距离,再利用经纬仪测出A对山脚BC(即
线段BC的张角),最后通过计算求出山脚的长度BC。
已测的:AB=1千米,
AC=
3 2
千米
角A=60O
求山脚BC的长度.
解:B2 C |A|2B |A|2 C 2 |A|A B|C cA os
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5

第一章 §1.1 正弦定理和余弦定理
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:
教材P. 8练习第1题. 在△ABC中,已知下列条件,解三角
形(角度精确到1 , 边长精确到0.1cm):
(1) a=2.7cm,b=3.6cm,C=82.2 ; (2) b=12.9cm,c=15.4cm,A=42.3 .
o o
o
课堂小结
1. 余弦定理是任何三角形边角之间存在 的共同规律,勾股定理是余弦定理的特 例; 2. 余弦定理的应用范围: ①已知三边求三角; ②已知两边及它们的夹角,求第三边.
2 2 2
你还有其它方法证明余弦定理吗?
两点间距离公式,三角形方法.
思考2:
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
2 2 2
这个式子中有几个量?从方程的角 度看已知其中三个量,可以求出第四个 量,能否由三边求出一角?
推论:
b c a cos A 2bc
2 2
2
a c b cos B 2ac
2 2 2 2
2
a b c cos C 2ab
2
思考3:
余弦定理及其推论的基本作用是什么?
思考3:
余弦定理及其推论的基本作用是什么?
①已知三角形的任意两边及它们的夹角就
可以求出第三边;
②已知三角形的三条边就可以求出其它角.
课后作业
1. 阅读必修5教材P.5到P.7; 2. 教材P.11习题1.1A组第3题.
A C B
情境设置
问题2:
如何从已知两边和它们的夹角求 三角形的另一边?
情境设置
问题2:
如何从已知两边和它们的夹角求 三角形的另一边?
即:如图,在△ABC中, 设BC=a, AC=b, AB=c. 已知a, b和∠C,求边c? b C A
c a
B
探索探究
联系已经学过的知识和方法,可用 什么途径来解决这个问题?
A
c a
B
C
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍.
余弦定理:
三角形中任何一边的平方等于其他 两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍. 即:
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
2 2 2
思考1:
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
2 2 2
你还有其它方法证明余弦定理吗?
思考1:
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
即:如图,在△ABC中, 设BC=a, AC=b, AB=c. 已知a, b和∠C,求边c? b C
A
c a
B
探索探究
联系已经学过的知识和方法,可用 什么途径来解决这个问题?
用向量来研究这问题.
A
即:如图,在△ABC中, 设BC=a, AC=b, AB=c. 已知a, b和∠C,求边c? b
C B
1.1.2《余弦定理》
教学目标
• 1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理 的向量方法,并会运用余弦定理解决两类基本的解三角形问题 。 • 2.过程与方法:利用向量的数量积推出余弦定理及其推论,并 通过实践演算掌握运用余弦定理解决两类基本的解三角形问题 , • 3.情态与价值:培养学生在方程思想指导下处理解三角形问 题的运算能力;通过三角函数、余弦定理、向量的数量积等知 识间的关系,来理解事物之间的普遍联系与辩证统一。 • (二)教学重、难点 • 重点:余弦定理的发现和证明过程及其基本应用; • 难点:勾股定理在余弦定理的发现和证明过程中的作用
思考4:
勾股定理指出了直角三角形中三边 平方之间的关系,余弦定理则指出了一 般三角形中三边平方之间的关系,如何 看这两个定理之间的关系?
思考4:
勾股定理指出了直角三角形中三边 平方之间的关系,余弦定理则指出了一 般三角形中三边平方之间的关系,如何 看这两个定理之间的关系?
余弦定理是勾股定理的推广, 勾股定理是余弦定理的特例.
讲解范例: 例1. 在△ABC中,已知 a 2 3 ,
c 6 2 , B 60 , 求b及A.
o
思考5:
在解三角形的过程中,求某一个角 时既可用正弦定理也可用余弦定理,两 种方法有什么利弊呢?
讲解范例:
例2. 在△ABC中,已知a=134.6cm, b=87.8cm,c=161.7cm,解三角形 (角度精确到1').
复习引入
运用正弦定理能解怎样的三角形?
A
C
B
复习引入
运用正弦意两边与其中一边 的对角.
A C B
情境设置
问题1:
如果已知三角形的两边及其夹角, 根据三角形全等的判定方法,这个三 角形是大小、形状完全确定的三角形. 从量化的角度来看,如何从已知的两 边和它们的夹角求三角形的另一边和 两个角?