2017北京中考数学二模26阅读理解专题
北京市通州区2017年中考数学二模试卷(含解析)

2017年北京市通州区中考数学二模试卷一、选择题(共10小题,每小题3分,满分30分)1.大运河森林公园位于北京市通州区的北运河两侧,占地面积约为10700亩,公园沿水系长达8公里,分别建有潞河桃柳、月岛闻莺、明镜移舟等六大景区和长虹花雨、半山人家、皇木古渡等十八处景点.将10700用科学记数法表示应为()A.1.07×104B.10.7×103C.1.07×105D.0.107×1052.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.a B.b C.c D.d3.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.4.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=∠2=36°,则∠3的度数为()A.60° B.90° C.108°D.150°5.如图多边形ABCDE的内角和是()A.360°B.540°C.720°D.900°6.下列图形中,正方体展开后得到的图形不可能是()A.B.C.D.7.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A.S1<S2B.S1>S2C.S1=S2 D.S1≥S28.甲、乙、丙三车从A城出发匀速前往B城.在整个行程中,汽车离开A城的距离s与时刻t的对应关系如图所示.那么8:00时,距A城最远的汽车是()A.甲车 B.乙车 C.丙车 D.甲车和乙车9.如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(2+1,2+1)10.甲,乙,丙三种作物,分别在山脚,山腰和山顶三个试验田进行试验,每个试验田播种二十粒种子,农业专家将每个试验田成活的种子个数统计如条形统计图,如图所示,下面有四个推断:①甲种作物受环境影响最小;②乙种作物平均成活率最高;③丙种作物最适合播种在山腰;④如果每种作物只能在一个地方播种,那么山脚,山腰和山顶分别播种甲,乙,丙三种作物能使得成活率最高.其中合理的是()A.①③ B.①④ C.②③ D.②④二、填空题(本题共18分,每小题3分)11.分解因式:a3﹣4a= .12.若把代数式x2﹣4x﹣5化成(x﹣m)2+k的形式,其中m,k为常数,则m+k= .13.2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,那么小正方形的面积可以表示为.14.某班学生分组做抛掷同一型号的一枚图钉的实验,大量重复实验的结果统计如下表:(顶尖朝上频率精确到 0.001)累计实验次数100 200 300 400 500顶尖朝上次数55 109 161 211 269顶尖朝上频率0.550 0.545 0.536 0.528 0.538根据表格中的信息,估计掷一枚这样的图钉落地后顶尖朝上的概率为.15.如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为.16.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:()﹣2+(π+)0﹣|2﹣|+3tan30°.18.已知3a2+2a+1=0,求代数式2a(1﹣3a)+(3a+1)(3a﹣1)的值.19.解方程组:.20.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.21.在平面直角坐标系xOy中,直线y=2x+1与双曲线y=的一个交点为A(m,﹣3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y=的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.22.如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.(1)求证:CD=BE;(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.24.如图,AB是⊙O的直径,PC切⊙O于点C,AB的延长线与PC交于点P,PC的延长线与AD交于点D,AC平分∠DAB.(1)求证:AD⊥PC;(2)连接BC,如果∠ABC=60°,BC=2,求线段PC的长.25.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012﹣2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是亿元(结果精确到1亿元),并补全条形统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布如图所示,请你补全扇形统计图,并估计7﹣17岁年龄段有亿网民通过互联网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可).26.有这样一个问题:探究函数y=﹣x的图象与性质.小东根据学习函数的经验,对函数y=﹣x的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数y=﹣x的自变量x的取值范围是;(2)下表是y与x的几组对应值,求m的值;x …﹣4 ﹣3 ﹣2﹣﹣1﹣ 1 2 3 4 …y …﹣﹣m …(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2,),结合函数的图象,写出该函数的其它性质(一条即可).(5)根据函数图象估算方程﹣x=2的根为.(精确到0.1)27.已知:二次函数y=2x2+4x+m﹣1,与x轴的公共点为A,B.(1)如果A与B重合,求m的值;(2)横、纵坐标都是整数的点叫做整点;①当m=1时,求线段AB上整点的个数;②若设抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n,当1<n<8时,结合函数的图象,求m的取值范围.28.在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB 上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证:PA=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.29.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A 到图形G的距离跨度为R=D﹣d.(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A(1,0)的距离跨度;B(﹣,)的距离跨度;C(﹣3,﹣2)的距离跨度;②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是.(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标x E的取值范围.2017年北京市通州区中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.大运河森林公园位于北京市通州区的北运河两侧,占地面积约为10700亩,公园沿水系长达8公里,分别建有潞河桃柳、月岛闻莺、明镜移舟等六大景区和长虹花雨、半山人家、皇木古渡等十八处景点.将10700用科学记数法表示应为()A.1.07×104B.10.7×103C.1.07×105D.0.107×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将10700用科学记数法表示为:1.07×104.故选:A.2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.a B.b C.c D.d【考点】2A:实数大小比较;29:实数与数轴.【分析】哪个数在数轴上的对应点离原点越近,则哪个数的绝对值越小,据此判断出这四个数中,绝对值最小的是哪个即可.【解答】解:∵数b表示的点离原点最近,∴这四个数中,绝对值最小的是b.故选:B.3.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.4.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=∠2=36°,则∠3的度数为()A.60° B.90° C.108°D.150°【考点】JA:平行线的性质.【分析】根据平行线的性质和三角形的内角和即可得到结论.【解答】解:∵直线l4∥l1,∴∠4=∠1=36°,∵∠2=36°,∴∠3=180°﹣∠4﹣∠2=108°,故选C.5.如图多边形ABCDE的内角和是()A.360°B.540°C.720°D.900°【考点】L3:多边形内角与外角.【分析】根据多边形的内角和,可得答案.【解答】解:多边形ABCDE的内角和是(5﹣2)×180°=540°,故选:B.6.下列图形中,正方体展开后得到的图形不可能是()A.B.C.D.【考点】I6:几何体的展开图.【分析】根据正方体的特征,或者熟记正方体的11种展开图求解.【解答】解:根据分析可得:A、B、C这三个图属于正方体展开图,能够折成一个正方体;而D图不是正方体展开图.故选:D.7.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A.S1<S2B.S1>S2C.S1=S2 D.S1≥S2【考点】VD:折线统计图;W7:方差.【分析】各数据与平均值的离散程度越大,稳定性就越小;反之,各数据与其平均值的离散程度越小,稳定性就越好.【解答】解:根据图形可得,小明、小华两名射箭运动员在某次测试中各射箭10次所得的成绩中,小明的成绩与平均成绩离散程度小,而小华的成绩与平均成绩离散程度大,故S1<S2故选:A.8.甲、乙、丙三车从A城出发匀速前往B城.在整个行程中,汽车离开A城的距离s与时刻t的对应关系如图所示.那么8:00时,距A城最远的汽车是()A.甲车 B.乙车 C.丙车 D.甲车和乙车【考点】E6:函数的图象.【分析】根据图象解答即可.【解答】解:8:00时,距A城最远的汽车是乙车,故选B9.如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(2+1,2+1)【考点】Q3:坐标与图形变化﹣平移.【分析】根据题意画出图形,利用平移的特征结合图形即可求解.【解答】解:如图,由题意,可得O1M=O1N=1.∵将点O1平移2个单位长度到点O2,∴O1O2=2,O1P=O2P=2,∴PM=3,∴点A的坐标是(3,﹣1).故选A.10.甲,乙,丙三种作物,分别在山脚,山腰和山顶三个试验田进行试验,每个试验田播种二十粒种子,农业专家将每个试验田成活的种子个数统计如条形统计图,如图所示,下面有四个推断:①甲种作物受环境影响最小;②乙种作物平均成活率最高;③丙种作物最适合播种在山腰;④如果每种作物只能在一个地方播种,那么山脚,山腰和山顶分别播种甲,乙,丙三种作物能使得成活率最高.其中合理的是()A.①③ B.①④ C.②③ D.②④【考点】VC:条形统计图.【分析】根据条形统计图中提供的数据进行计算,即可得到农作物的成活数量以及三种作物平均成活率,根据农作物的成活数量判断播种的位置即可.【解答】解:由图可得,乙种作物受环境影响最小,故①错误;甲种作物平均成活率为15,乙种作物平均成活率为16,丙种作物平均成活率约为15.67,故乙种作物平均成活率最高,故②正确;丙种作物最适合播种在山脚,故③错误;如果每种作物只能在一个地方播种,那么山脚,山腰和山顶分别播种甲,乙,丙三种作物能使得成活率最高,故④正确.故选:D.二、填空题(本题共18分,每小题3分)11.分解因式:a3﹣4a= a(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)12.若把代数式x2﹣4x﹣5化成(x﹣m)2+k的形式,其中m,k为常数,则m+k= ﹣7 .【考点】AE:配方法的应用.【分析】根据配方法的步骤先把x2﹣4x﹣5的形式,求出m,k的值,再代入进行计算即可.【解答】解:x2﹣4x﹣5=(x﹣2)2﹣9,所以m=2,k=﹣9,所以m+k=2﹣9=﹣7.故答案是:﹣7.13.2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,那么小正方形的面积可以表示为c2﹣2ab .【考点】KR:勾股定理的证明.【分析】小正方形的面积=大正方形的面积﹣4个直角三角形的面积.【解答】解:依题意得:小正方形的面积=c2﹣4×ab=c2﹣2ab.故答案是:c2﹣2ab.14.某班学生分组做抛掷同一型号的一枚图钉的实验,大量重复实验的结果统计如下表:(顶尖朝上频率精确到 0.001)累计实验次数100 200 300 400 500顶尖朝上次数55 109 161 211 269顶尖朝上频率0.550 0.545 0.536 0.528 0.538根据表格中的信息,估计掷一枚这样的图钉落地后顶尖朝上的概率为0.530 .【考点】X8:利用频率估计概率.【分析】根据用频率估计概率解答即可.【解答】解:观察发现,随着实验次数的增多,顶尖朝上的频率逐渐稳定到常数0.530,故掷一枚这样的图钉落地后顶尖朝上的概率为0.530.故答案为:0.530.15.如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为 1.5 .【考点】KA:全等三角形的性质;LB:矩形的性质.【分析】先根据条件判定四边形ABCD是矩形,再根据矩形的性质可得OD=BD=AC=1.5,【解答】解:如图,连接AD,∵Rt△ABC≌Rt△DCB,∴∠ABC=∠BCD=90°,且AB=CD,∴AB∥CD,∴四边形ABCD是矩形,∴OD=BD=AC=1.5,故答案为:1.516.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是圆的半径相等.【考点】N2:作图—基本作图.【分析】利用圆的半径相等可判断CD=AB.【解答】解:小亮的作图依据为圆的半径相等.故答案为圆的半径相等.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:()﹣2+(π+)0﹣|2﹣|+3tan30°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=4+1﹣2++=3+2.18.已知3a2+2a+1=0,求代数式2a(1﹣3a)+(3a+1)(3a﹣1)的值.【考点】4J:整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵3a2+2a+1=0,∴原式=2a﹣6a2+9a2﹣1=3a2+2a﹣1=﹣1﹣1=﹣2.19.解方程组:.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=﹣3,则方程组的解为.20.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.【考点】J9:平行线的判定.【分析】先根据等边对等角,得出∠B=∠CEB,再根据等量代换,即可得出∠A=∠CEB,进而判定CE∥AD.【解答】证明:∵CB=CE,∴∠B=∠CEB,又∵∠A=∠B,∴∠A=∠CEB,∴CE∥AD.21.在平面直角坐标系xOy中,直线y=2x+1与双曲线y=的一个交点为A(m,﹣3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y=的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据点A的纵坐标利用一次函数图象上点的坐标特征,可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出双曲线的表达式;(2)依照题意画出函数图象,根据两函数图象的上下位置关系,即可找出n的取值范围.【解答】解:(1)当y=2x+1=﹣3时,x=﹣2,∴点A的坐标为(﹣2,﹣3),将点A(﹣2,﹣3)代入y=中,﹣3=,解得:k=6,∴双曲线的表达式为y=.(2)依照题意,画出图形,如图所示.观察函数图象,可知:当﹣2<x<0时,直线y=2x+1在双曲线y=的上方,∴当点B位于点C上方时,n的取值范围为﹣2<x<0.22.如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.(1)求证:CD=BE;(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.【考点】L8:菱形的性质.【分析】(1)连接BD.只要证明四边形CDBE是平行四边形即可解决问题;(2)求出菱形的对角线即可解决问题;【解答】(1)证明:连接BD.∵四边形ABCD是菱形,∴BD⊥AC,CD∥AB,∵CE⊥AC,∴CE∥BD,∴四边形BECE为平行四边形,∴CD=BE.(2)求菱形ABCD面积的思路:只要求出对角线AC、BD即可.BD可以利用四边形CDBE是平行四边形求得,AC 在Rt△ACE中,AC=EC求得.S=•AC•BD.23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.【考点】B7:分式方程的应用.【分析】设自行车的速度为x千米/小时,则汽车的速度为3x千米/小时,根据时间=路程÷速度结合骑车和乘骑车两种交通方式所需时间之间的关系,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设自行车的速度为x千米/小时,则汽车的速度为3x千米/小时,根据题意得:﹣=,解得:x=15,经检验,x=15是原分式方程的解.答:自行车的速度是15千米/小时.24.如图,AB是⊙O的直径,PC切⊙O于点C,AB的延长线与PC交于点P,PC的延长线与AD交于点D,AC平分∠DAB.(1)求证:AD⊥PC;(2)连接BC,如果∠ABC=60°,BC=2,求线段PC的长.【考点】MC:切线的性质.【分析】(1)连接OC,根据角平分线的定义得到∠DAC=∠BAC,根据等腰三角形的性质得到∠OAC=∠ACO,推出AD∥OC,于是得到结论;(2)根据已知条件得到△BOC是等边三角形,解直角三角形即可得到结论.【解答】解:(1)连接OC,∵AC平分∠DAB,∴∠DAC=∠BAC,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∵PC切⊙O于点C,∴OC⊥PC,∴AD⊥PC;(2)∵∠ABC=60°,OC=OB,∴△BOC是等边三角形,∴OC=2,∴∠COP=60°,∵PC切⊙O于点C,∴∠OCP=90°,∴PC=2.25.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012﹣2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是1610 亿元(结果精确到1亿元),并补全条形统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布如图所示,请你补全扇形统计图,并估计7﹣17岁年龄段有 1.6 亿网民通过互联网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可).【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据条形统计图和折线统计图可以求得2015年互联网教育市场规模,然后即可把条形统计图补充完整;(2)根据扇形统计图可以求得7﹣17岁年龄段所占的比例,从而可以将扇形统计图补充完整,根据5亿网民使用互联网进行学习,可以求得7﹣17岁年龄段的人数;(3)根据要求说的只要合理即可.【解答】解:(1)由题意可得,2015年互联网教育市场规模是:1220×(1+32%)=1610.4≈1610亿,故答案为:1610,补全的条形统计图如下图1所示,(2)由扇形统计图可得,7﹣17岁年龄段使用互联网学习所占的比例为:1﹣56%﹣3%﹣9%=32%,补全的扇形统计图如下图2所示,7﹣17岁年龄段使用互联网学习人数为:5×32%=1.6亿,故答案为:1.6;(3)互联网与我们的生活学习越来越密切,我们运用互联网可以获得很多有用的信息,在今后的生活学习中我们要更好的运用互联网,使我们的生活更加丰富多彩.26.有这样一个问题:探究函数y=﹣x的图象与性质.小东根据学习函数的经验,对函数y=﹣x的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数y=﹣x的自变量x的取值范围是x≠0 ;(2)下表是y与x的几组对应值,求m的值;x …﹣4 ﹣3 ﹣2﹣﹣1﹣ 1 2 3 4 …y …﹣﹣m …(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2,),结合函数的图象,写出该函数的其它性质(一条即可)当x>0时,y随x的增大而减小.(5)根据函数图象估算方程﹣x=2的根为x1=﹣3.8,x2=﹣1.8 .(精确到0.1)【考点】HB:图象法求一元二次方程的近似根;G4:反比例函数的性质;H2:二次函数的图象;H3:二次函数的性质.【分析】(1)根据分母不为零分式有意义,可得答案;(2)根据自变量与函数值得对应关系,可得答案;(3)根据描点法画函数图象,可得答案;(4)根据图象的变化趋势,可得答案;(5)根据图象,可得答案.【解答】解:(1)函数y=﹣x的自变量x的取值范围是:x≠0,故答案为:x≠0;(2)把x=4代入y=﹣x得,y=﹣×4=﹣,∴m=﹣,(3)如图所示,(4)当x>0时,y随x的增大而减小;故答案为当x>0时,y随x的增大而减小;(5)由图象,得x1=﹣3.8,x2=﹣1.8.故答案为:x1=﹣3.8,x2=﹣1.8.27.已知:二次函数y=2x2+4x+m﹣1,与x轴的公共点为A,B.(1)如果A与B重合,求m的值;(2)横、纵坐标都是整数的点叫做整点;①当m=1时,求线段AB上整点的个数;②若设抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n,当1<n<8时,结合函数的图象,求m的取值范围.【考点】HA:抛物线与x轴的交点;H5:二次函数图象上点的坐标特征.【分析】(1)当A、B重合时,抛物线与x轴只有一个交点,此时△=0,从可求出m的值.(2)①m=1代入抛物线解析式,然后求出该抛物线与x轴的两个交点的坐标,从而可求出线段AB上的整点;②根据二次函数表达式可以用带m表达出两根之差,根据1<两根之差<8,即可解题.【解答】解:(1)∵A与B重合,∴二次函数y=2x2+4x+m﹣1的图象与x轴只有一个公共点,∴方程2x2+4x+m﹣1=0有两个相等的实数根,∴△=42﹣4×2(m﹣1)=24﹣8m=0,解得:m=3.∴如果A与B重合,m的值为3.(2)①当m=1时,原二次函数为y=2x2+4x+m﹣1=2x2+4x,令y=2x2+4x=0,则x1=0,x2=﹣2,∴线段AB上的整点有(﹣2,0)、(﹣1,0)和(0,0).故当m=1时,线段AB上整点的个数有3个.②由点A,B之间的部分与线段AB所围成的区域内(包括边界)可用以下不等式表示(3)如图,y=2x2+4x+m﹣1=0时,二次函数求根公式可得x;∴两个根之差为==;∵整点的个数为n,当1<n<8时,1<<8;解得:﹣29<m.28.在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB 上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证:PA=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.【考点】KY:三角形综合题.【分析】(1)根据等腰直角三角形的性质得到∠ABP=45°,根据勾股定理得到AB==,推出四边形ABEP是矩形,得到四边形ABEP是正方形,于是得到结论;(2)根据等腰直角三角形的性质得到∠ADB=90°,∠DAB=∠DBA=45°,求得∠PBN=45°过P作PM⊥AB于点M,过P作PN⊥BC于点N,于是得到PM=PN,∠BPN=45°根据全等三角形的性质即可得到结论;(3)根据等腰直角三角形的性质得到∠ABD=45°,得到∠PBN=45°,∠ABC=90°,过P作PM⊥AB于点M,过P作PN⊥BC于点N,得到四边形BMPN是矩形,推出四边形BMPN是正方形,得到PM=PN,根据全等三角形的性质即可得到结论.【解答】解:(1)∵AD=DB=1,∠ADB=90°,∴∠ABP=45°,AB==,∵PE⊥AP,AB⊥BC,∴PA∥EC,∴PA⊥AB,∴四边形ABEP是矩形,∵∠ABP=45°,∴PA=AB,∴四边形ABEP是正方形,∴PE=AB=(2)∵△ABC和△ADB是等腰直角三角形,∴∠ADB=90°,∠DAB=∠DBA=45°,∴∠PBN=45°∴PE⊥AP,∠DAP=∠BPE=90°﹣∠DPA,∵∠PAM=45°﹣∠DAP,∠PEN=45°﹣∠BPE,∴∠PAM=∠PEN,过P作PM⊥AB于点M,过P作PN⊥BC于点N,则PM=PN,∠BPN=45°,在△APM和△EPN中,,∴△APM≌△EPN,∴PA=PE;(3)∵△ABC和△ADB是等腰直角三角形,∴∠ABD=45°,∴∠PBN=45°,∠ABC=90°,过P作PM⊥AB于点M,过P作PN⊥BC于点N,则四边形BMPN是矩形,∵∠NBP=45°,∴四边形BMPN是正方形,∴PM=PN,∵AB⊥BC,∴∠BAN=∠APN,∵AP⊥PE,∴∠APN=∠E,∴∠BAP=∠E,在△AMP与△ENP中,,∴△AMP≌△ENP,∴AP=PE.29.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A 到图形G的距离跨度为R=D﹣d.(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A(1,0)的距离跨度 2 ;B(﹣,)的距离跨度 2 ;C(﹣3,﹣2)的距离跨度 4 ;②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是圆.(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标x E的取值范围﹣1≤x E≤2 .。
2017北京中考二模分类练26题探究函数的图象和性质

北京中考分类练26题 探究函数的图象和性质2017海淀二模 26.已知y 是x 的函数,该函数的图象经过A (1,6),B (3,2)两点. (1)请写出一个符合要求的函数表达式;(2)若该函数的图象还经过点C (4,3),自变量x 的取值范围是0x ≥,该函数无最小值.①如图,在给定的坐标系xOy 中,画出一.个.符合条件的函数的图象;②根据①中画出的函数图象,写出6x =对应的函数值y 约为; (3)写出(2)中函数的一条性质(题目中已给出的除外).2017东城二模26. 佳佳想探究一元三次方程32220x x x +--=的解的情况. 根据以往的学习经验,他想到了方程与函数的关系:一次函数(0)y kx b k =+≠的图象与x 轴交点的横坐标即为一次方程0(0)kx b k +=≠的解;二次函数2(0)y ax bx c a =++≠的图象与x 轴交点的横坐标即为一元二次方程20(0)ax bx c a ++=≠的解. 如:二次函数223y x x =--的图象与x 轴的交点为(1,0)-和(3,0),交点的横坐标-1和3即为方程2230x x --=的解. 根据以上方程与函数的关系,如果我们知道函数3222y x x x =+--的图象与x 轴交点的横坐标,即可知道方程32220x x x +--=的解.佳佳为了解函数3222y x x x =+--的图象,通过描点法画出函数的图象:(1)直接写出m 的值,并画出函数图象;(2)根据表格和图象可知,方程的解有_____个,分别为__________________;(3)借助函数的图象,直接写出不等式3222x x x +>+的解集.2017朝阳二模26. 下面是小东的探究学习过程,请补充完整:(1)探究函数22222x x y x +-=-(x <1)的图象与性质. 小东根据学习函数的经验,对函数22222x x y x +-=-(x <1)的图象与性质进行了探究. ①下表是y 与x 的几组对应值.求m 的值;②如下图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;③进一步探究发现,该函数图象的最高点的坐标是(0,1),结合函数的图象,写出该函数的其他性质(一条即可): _____;(2)小东在(1)的基础上继续探究:他将函数22222x x y x +-=-(x <1)的图象向上平移1个单位长度,再向右平移1个单位长度后得到函数22724x x y x +-=-(x <2)的图象,请写出函数22724x x y x +-=-(x <2)的一条性质:_____.2017石景山二模26.已知y 是x 的函数,下表是y 与x 的几组对应值.小明根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据 描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①1x =-对应的函数值y 约为 ;②该函数的一条性质: .2017昌平二模26.有这样一个问题:探究函数2)2(1-=x y的图象与性质,小静根据学习函数的经验,对函数2)2(1-=x y 的图象与性质进行了探究,下面是小静的探究过程,请补充完整: (1)函数2)2(1-=x y 的自变量x 的取值范围是__________;(2)下表是y 与x 的几组对应值.(3)如图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(4)结合函数图象,写出一条该函数图象的性质:______________________________.2017房山二模26.某班“数学兴趣小组”对函数xx y 1+=的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x 的取值范围是; (2)下表是y 与x 的几组对应数值:在平面直角坐标系中,描出了以表中各对对应值为坐标的点. 根据描出的点, 画出该函数的图象;(3)进一步探究发现:该函数在第一象限内的最低点的坐标是(1,2观察函数图象,写出该函数的另一条性质;(4)请你利用配方法证明:当x >0时,xx y 1+=的最小值为2.(提示:当x >0时,()2x x =,211⎪⎭⎫⎝⎛=x x ) 2017通州二模26.有这样一个问题:探究函数x x y 2122-=的图象与性质. 小东根据学习函数的经验,对函数x x y 2122-=的图象与性质进行了探究. 下面是小东的探究过程,请补充完整,并解决相关问题: (1)函数x x y 2122-=的自变量x 的取值范围是 ; (2)下表是y 与x 的几组对应值,求m 的值;x … -4-3-2 23--1 32- 32 1 234 … y…817 183123 3659 25629 625 23 21- 1823- m …(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(-2,23),结合函数的图象,写出该函数的其它性质(一条即可) . (5)根据函数图象估算方程22122=-x x 的根为 . (精确到0.1)。
2017北京中考数学试卷

选择题在平面直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, -2)B. (-3, 2)C. (3, 2)(正确答案)D. (2, 3)下列计算正确的是:A. 3a + 2b = 5abB. a2 · a3 = a6C. (a2)3 = a6(正确答案)D. a6 ÷ a3 = a1已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为:A. 8B. 11C. 13(正确答案)D. 11或13函数y = -2x + 1与y轴的交点是:A. (1, 0)B. (0, 1)(正确答案)C. (-1, 0)D. (0, -1)下列四边形中,不一定是平行四边形的是:A. 两组对边分别平行的四边形B. 两组对边分别相等的四边形C. 对角线互相平分的四边形D. 一组对边平行且相等的梯形(正确答案)若关于x的一元二次方程x2 - 2x + m = 0有两个相等的实数根,则m的值为:A. -1B. 0C. 1(正确答案)D. 2下列函数中,y随x的增大而减小的是:A. y = 2xB. y = x2 (x > 0)C. y = 1/x (x > 0)D. y = -3x + 1(正确答案)已知圆的半径为r,圆心到直线l的距离为d,若直线l与圆相切,则:A. d > rB. d < rC. d = r(正确答案)D. d与r的关系不确定下列不等式组中,解集为x > 2的是:A. { x > 1, x > 3 }B. { x > 2, x < 4 }C. { x ≥ 2, x ≠ 3 }D. { x > 1, x ≥ 2 }(正确答案,因为当x同时满足x > 1和x ≥ 2时,解集为x > 2)。
北京市海淀区2017年中考二模数学试题及答案

A BA' B' (A')(B')★★★★★765FED海淀区九年级第二学期期末练习数学2017.6学校班级####号考生须知1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级和##.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题〔本题共30分,每小题3分〕下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项填涂在答题卡相应的位置.1.如图,用圆规比较两条线段A B''和AB的长短,其中正确的是A.A B AB''>B.A B AB''=C.A B AB''<D.不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是A B C D3.下列计算正确的是A.23a a a-=B.()236a a=C.22a a-=-⨯D.632a aa=÷4.如图,ABCD中,AD=5,AB=3,∠BAD的平分线AE交BC于E点,则EC的长为A.4B.3C.2D.15.共享单车提供了便捷、环保的出行方式.小白同学在植物园打开某共享单车APP,如图,""为小白同学的位置,"★"为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是A.F6B.E6C.D5D.F76.在单词happy中随机选择一个字母,选到字母为p的概率是正面看A DA .15B .25C .35D .457.如图,OA 为⊙O 的半径,弦BC ⊥OA 于P 点.若OA =5,AP =2,则弦BC 的长为 A .10B .8 C .6D .48.在下列函数中,其图象与x 轴没有交点的是 A .2y x =B .31y x =-+ C .2y x =D .1y x=9.如图,在等边三角形三个顶点和中心处的每个"○"中各填有一个式子,若图中任意三个"○"中的式子之和均相等,则a 的值为 A .3B .2 C .1D .010.利用量角器可以制作"锐角正弦值速查卡".制作方法如下:如图,设OA =1,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA 为直径作⊙M .利用"锐角正弦值速查卡"可以读出相应锐角正弦的近似值.例如:sin600.87︒≈,sin 450.71︒=.下列角度中正弦值最接近0.94的是 A .70°B .50°C .40°D .30° 二、填空题〔本题共18分,每小题3分〕 11.若分式12x -有意义,则x 的取值范围是.12.如图,在平面直角坐标系xOy 中,A 〔3,4〕为⊙O 上一点,B 为⊙O 内一点,请写出一个符合要求的点B 的坐标. 13.计算:111mm m+--=.14.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km 的几组对应值如下表:若每向上攀登1 km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为 2.5km 时,登山队所在位置的气温约为℃.15.下图是测量玻璃管内径的示意图,点D 正对"10mm"刻度线,点A 正对"30mm"刻度线,DE ∥AB .若量得AB 的长为6mm,则内径DE 的长为mm .16.在一次飞镖比赛中,甲、乙两位选手各扔10次飞镖,下图记录了他们的比赛结果.你认为两人中技术更好的是,你的理由是.三、解答题〔本题共72分,第17~26题每小题5分,第27题7分,第28题7分,第29题8分〕1722tan 60-°113-+⎛⎫ ⎪⎝⎭. 18.解不等式组:()3221213x x xx +-≥+>-⎧⎪⎨⎪⎩,.19.如图,在四边形ABCD 中,AB =AD ,CB =CD .请你添加一条线把它分成两个全等三角形,并给出证明. 20.若关于x 的方程412m xx-=的根是2,求()2428m m --+的值.21.如图,在平面直角坐标系xOy 中,过点A 〔2,0〕的直线l :3y mx =-与y 轴交于点B . 〔1〕求直线l 的表达式; 〔2〕若点C 是直线l 与双曲线ny x=的一个公共点, AB =2AC ,直接写出n 的值.22.为了让市民享受到更多的优惠,某市针对乘坐地铁的人群进行了调查. 〔1〕为获得乘坐地铁人群的月均花费信息,下列调查方式中比较合理的是; A .对某小区的住户进行问卷调查 B .对某班的全体同学进行问卷调查C .在市里的不同地铁站,对进出地铁的人进行问卷调查甲乙DCA BDB E CA F〔2〕调查小组随机调查了该市1000人上一年乘坐地铁的月均花费〔单位:元〕,绘制了频数分布直方图,如图所示.① 根据图##息,估计平均每人乘坐地铁的月均花费的范围是元; A .20—60 B .60—120 C .120—180②为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.根据图##息,乘坐地铁的月均花费达到元的人可以享受折扣.23.如图,在△ABC 中,∠BAC =90°,线段AC 的垂直平分线交AC 于D 点,交BC 于E 点,过点A作BC 的平行线交直线ED 于F 点,连接AE ,CF .〔1〕求证:四边形AECF 是菱形;〔2〕若AB =10,∠ACB =30°,求菱形AECF 的面积. 24.阅读下列材料:2016年,市坚持创新、协调、绿色、开放、共享的发展理念,围绕首都城市战略定位,加快建设国际一流的和谐宜居之都,在教育、科技等方面保持平稳健康发展,实现了"十三五"良好开局.在教育方面,全市共有58所普通高校和81个科研机构培养研究生,全年研究生招生9.7万人,在校研究生29.2万人.全市91所普通高校全年招收本专科学生15.5万人,在校生58.8万人.全市成人本专科招生6.1万人,在校生17.2万人.在科技方面,2016年全年研究与试验发展〔R&D 〕经费支出1479.8亿元,比2015年增长了6.9%,全市研究与试验发展〔R&D 〕活动人员36.2万人,比上年增长1.1万人.2013年,2014年,2015年全年研究与试验发展〔R&D 〕经费支出分别为1185.0亿元,1268.8亿元,1384.0亿元,分别比前一年度增长11.4%,7.1%,9.1%.〔以上数据来源于市统计局〕根据以上材料解答下列问题:〔1〕请用统计图或统计表将市2016年研究生、普通高校本专科学生、成人本专科学生的招生人数和在校生人数表示出来;〔2〕2015年市研究与试验发展〔R&D 〕活动人员为万人;〔3〕根据材料中的信息,预估2017年市全年研究与试验发展〔R&D 〕经费支出约亿元,你的预估理由是.25.如图,AB 是⊙O 的直径,BC 为弦,D 为AC 的中点,AC ,BD 相交于E 点,过点A 作⊙O 的切线交BD 的延长线于P 点. 〔1〕求证:∠P AC =2∠CBE ;〔2〕若PD =m ,∠CBE =α,请写出求线段CE 长的思路.26.已知y 是x 的函数,该函数的图象经过A 〔1,6〕,B 〔3,2〕两点. 〔1〕请写出一个符合要求的函数表达式;〔2〕若该函数的图象还经过点C 〔4,3〕,自变量x 的取值范围是0x ≥,该函数无最小值.①如图,在给定的坐标系xOy 中,画出一个..符合条件的函数的图象; ②根据①中画出的函数图象,写出6x =对应的函数值y 约为; 〔3〕写出〔2〕中函数的一条性质〔题目中已给出的除外〕.27.抛物线2224y x mx m =-+-与x 轴交于A ,B 两点〔A 点在B 点的左侧〕,与y 轴交于点C ,抛物线的对称轴为x =1. 〔1〕求抛物线的表达式;〔2〕若CD ∥x 轴,点D 在点C 的左侧,12CD AB =,求点D 的坐标; 〔3〕在〔2〕的条件下,将抛物线在直线x =t 右侧的部分沿直线x =t 翻折后的图形记为G ,若图形G 与线段CD 有公共点,请直接写出t 的取值范围.28.在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点.〔1〕如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数; 〔2〕若M 为线段BD 上的动点〔点M 与点D 不重合〕,过点C 作CN ⊥AM 于N 点,射线EN ,AB 交于P 点. ①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法: 想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ . ……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .〔一种方法即可〕EFB D CA29.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到两坐标轴的距离之和等于点Q 到两坐标轴的距离之和,则称P ,Q 两点为同族点.下图中的P ,Q 两点即为同族点.〔1〕已知点A 的坐标为〔3-,1〕,①在点R 〔0,4〕,S 〔2,2〕,T 〔2,3-〕中,为点A 的同族点的是; ②若点B 在x 轴上,且A ,B 两点为同族点,则点B 的坐标为; 〔2〕直线l :3y x =-,与x 轴交于点C ,与y 轴交于点D ,①M 为线段CD 上一点,若在直线x n =上存在点N ,使得M ,N 两点为同族点,求n 的取值范围;②M 为直线l 上的一个动点,若以〔m ,0〕为圆心为半径的圆上存在点N ,使得M ,N 两点为同族点,直接写出m 的取值范围.海淀九年级第二学期期末练习数学答案2017.6一、选择题〔本题共30分,每小题3分〕二、填空题〔本题共18分,每小题3分〕 11.2x ≠12.答案不唯一,例如〔0,0〕13.114.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题〔本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分〕 17.原式=23---------------------------------------------------------------------------4分图1 图2=5 --------------------------------------------------------------------------5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ----------------------------------------------------------------- 1分解得2x ≥; -----------------------------------------------------------------2分由不等式①,得1233x x +>-,------------------------------------------------------ 3分解得4x <;-------------------------------------------------------------------4分∴ 原不等式组的解集是24x ≤<.--------------------------------------- 5分19.连接AC ,则△ABC ≌△ADC .----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,----------------------------4分 ∴△ABC ≌△ADC .----------------------------5分 20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=.------------------------------------------------------------------------------1分∴4m =.------------------------------------------------------------------------------2分∴()2428m m --+()244248=--⨯+ --------------------------------------------------------------- 4分0=.-------------------------------------------------------------------------------- 5分21.解:〔1〕∵直线3l y mx =-:过点A 〔2,0〕,∴023m =-. ------------------------------------------------------------------------------ 1分 ∴32m =. ------------------------------------------------------------------------------ 2分 ∴直线l 的表达式为332y x =-.-----------------------------------------------------3分 〔2〕n =32-或92.------------------------------------------------------------------------- 5分22.〔1〕C ; ------------------------------------------------------------------------------- 2分 〔2〕① B ; ------------------------------------------------------------------------------- 4分 ② 100. ---------------------------------------------------------------------------------------------- 5分DCBA∴F A =FC ,EA =EC ,----------------------------------------------------------------1分 ∵AF ∥BC , ∴∠1=∠2. ∵AE =CE , ∴∠2=∠3. ∴ ∠1=∠3. ∵EF ⊥AC ,∴∠ADF =∠ADE =90°. ∵ ∠1+∠4=90°,∠3+∠5=90°. ∴∠4=∠5.∴AF =AE .----------------------------------------------------------------2分 ∴AF =FC =CE =EA .∴四边形AECF 是菱形.----------------------------------------------------------------3分 〔2〕解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE , ∴四边形ABEF 为平行四边形.∵AB =10,∴FE =AB =10.-----------------------------------------------------------------------------------4分 ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形--------------------------------------------5分24.〔1〕市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计表〔单位:万人〕市2016年研究生、普通高校本专科学生、成人本专科学生 招生人数和在校生人数统计图〔单位:万人〕---------------------------------- 2分〔2〕35.1;-------------------------------------------------------------------------------------------------- 3分〔3〕答案不唯一,预估理由与预估结果相符即可.--------------------- 5分54321F E DCBA∴∠CBA =2∠CBE .------------------------------------ 1分 ∵AB 是⊙O 的直径, ∴∠ACB =90°,∴∠1+∠CBA =90°.∴∠1+2∠CBE =90°. ∵AP 是⊙O 的切线,∴∠P AB =∠1+∠P AC =90°.----------------------------- 2分∴∠P AC =2∠CBE .--------------------------------------3分〔2〕思路:①连接AD ,由D 是AC 的中点,∠2=∠CBE ,由∠ACB =∠P AB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE , 得PE =2PD =2m ,∠5=12∠P AC =∠CBE =α-------- 4分③在Rt △P AD 中,由PD =m ,∠5=α,可求P A 的长; ④在Rt △P AB 中,由P A 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长.------------------- 5分 26.〔1〕答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等;--------------2分 〔2〕答案不唯一,符合题意即可;-----------------------------------------------------------------4分 〔3〕所写的性质与图象相符即可.--------------------------------------------------- 5分 27.〔1〕解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--.------------------------------------------------- 2分 〔2〕解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A 〔1-,0〕,B 〔3,0〕. -------------------- 3分 ∴4AB =. 当0x =时,3y =-,∴抛物线与y 轴的交点为C 〔0,3-〕. ------------------------- 4分 ∵12CD AB =, ∴CD =2.∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为〔2-,3-〕. -----------------------------------5分〔3〕11t -≤≤.------------------------------------------------------------------------------------ 7分 28.〔1〕证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°, ∴∠BAC =2∠BAD =40°. --------------------------------------1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点, ∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ----------------------------------------2分〔2〕①画出一种即可. ----------------------------------------------------------3分 ②证明:想法1:连接DE .∵AB=AC ,AD 为BC 边上的高, ∴D 为BC 中点.∵E 为AC 中点, ∴ED ∥AB ,∴∠1=∠APE .--------------------------------- 4分∵∠ADC =90°,E 为AC 中点,∴12AE DE CE AC ===. 同理可证12AE NE CE AC ===.∴AE =NE =CE =DE .∴A ,N ,D ,C 在以点E 为圆心,AC 为直径的圆上. -----5分 ∴∠1=2∠MAD .------------------------------------------ 6分∴∠APE =2∠MAD .------------------------------------------- 7分想法2:设∠MAD =α,∠DAC =β,∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点,∴12AE NE AC ==.∴∠ANE =∠NAC =∠MAD +∠DAC =α+β.--------------------- 4分∴∠NEC =∠ANE +∠NAC =2α+2β.------------------------ 5分 ∵AB =AC ,AD ⊥BC , ∴∠BAC =2∠DAC =2β.E DC B APMN FE B D CA11 / 11∴∠APE =∠PEC -∠BAC =2α.--------------------------------- 6分 ∴∠APE =2∠MAD .--------------------------------------------- 7分想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,连接AQ ,∴∠1=∠2. ∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD .∴∠BAD -∠1=∠CAD -∠2,即∠3=∠4. ----------------------------------------- 4分 ∴∠3+∠NAQ =∠4+∠NAQ , 即∠P AQ =∠EAN . ∵CN ⊥AM , ∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠EAN .---------------------------------------------------- 5分 ∴∠P AQ =∠ANE . ∵∠AQP =∠AQP ,∴△P AQ ∽△ANQ .-------------------------------------------- 6分 ∴∠APE =∠NAQ =2∠MAD .-------------------------------- 7分29.〔1〕①R ,S ;----------------------------------------------------------- 2分②〔4-,0〕或〔4,0〕;------------------------------------------------------------------------ 4分 〔2〕①由题意,直线3y x =-与x 轴交于C 〔3,0〕,与y 轴交于D 〔0,3-〕. 点M 在线段CD 上,设其坐标为〔x ,y 〕,则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上. ∵点E 的坐标为〔3-,0〕,点N 在直线x n =上,∴33n -≤≤.----------------------------------------------------------------------- 6分 ②m ≤1-或m ≥1.-------------------------------------------------------------- 8分x4321QN MPAB CDE。
北京市各区2017届中考数学二模试题分类整理书写作图依据无答案

书写作图依据(2017昌平二模)15.如图,已知钝角△ABC,老师按照如下步骤尺规作图:步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.小明说:图中的BH⊥AD且平分AD.小丽说:图中AC平分∠BAD.小强说:图中点C为BH的中点.他们的说法中正确的是___________.他的依据是_____________________.(2017房山二模)15.阅读下面材料:在数学课上,老师提出如下问题:小芸的作图步骤如下:老师说:“小芸的作图步骤正确,且可以得到DF=AC”.请回答:得到DF=AC的依据是_________________________________________________.(2017通州二模)16.阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是_________________________________________________.AB CDH(2017朝阳二模)16.阅读下面材料:数学课上,老师提出如下问题:小强的作法如下:老师表扬了小强的作法是对的.请回答:小强这样作图的主要依据是 .(2017东城二模)20.如图,在Rt △ABC 中,∠C =90°. 以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP交边BC 于点D . 若CD =4,AB =15,求△ABD 的面积.尺规作图:经过直线外一点作这条直线的平行线.已知:直线l 和直线l 外一点A .求作:直线l 的平行线,使它经过点A .如图,(1)过点A 作直线m 交直线l 于点B ;(2)以点A 为圆心,AB 长为半径作弧,交直线m 于点C ; (3)在直线l 上取点D (不与点B 重合),连接CD ; (4)作线段CD 的垂直平分线n ,交线段CD 于点E ; (5)作直线AE . 所以直线AE 即为所求.(2017丰台二模)16.阅读下面材料:如图,AB 是半圆的直径,点C 在半圆外,老师要求小明用无刻度的直尺画出△ABC 的三条高. 小明的作法如下:(1)连接AD ,BE ,它们相交于点P ; (2)连接CP 并延长,交AB 于点F .所以,线段AD ,BE ,CF 就是所求的△ABC 的三条高.请回答,小明的作图依据是 .B AC DEE D C ABF P(2017石景山二模)15.下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.请回答:得到△ABC 是等腰三角形的依据是:①___________________________________________________________________: ②___________________________________________________________________.(2017平谷二模)16.数学课上,王老师布置如下任务:如图1,△ABC 中,BC>AB>AC ,在BC 边上取一点P ,使∠APC=2∠ABC .小路的作法如下,如图2:①作AB 边的垂直平分线,交BC 于点P ; ②连结AP .所以,∠APC =2∠ABC .小路的作图依据是 .(2017顺义二模)16.阅读下面材料: 在数学课上,老师提出如下问题:老师说:“小丽的作法正确.”请回答:小丽的作图依据是________________________________________.(2017怀柔二模)16. 下面是一道确定点P 位置的尺规作图题的作图过程.图1B图2B请回答:该作图的依据是 .。
北京市2017年6月平谷区中考二模数学及答案

平谷区2016—2017学年度初三毕业会考暨中考统练(二)数学试卷一、选择题(共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个 1.据中国铁路总公司的数据,自2011年3月开行以来,连接中国和欧洲大陆的中欧班列,已经成为国际物流陆路运输的骨干通道.X8086次列车从成都到波兰,全程9 800多公里,运行14天左右,比传统的海运线路压缩近一个月的时间.将9 800用科学记数法表示应为A.9.8×103B.9.8×104C.0.98×104D.98.0×1022.用直角三角板,作△ABC的高,下列作法正确的是A.B.C.D.3.下面所给几何体的俯视图是A.B.C.D.4.不等式组33324xxx⎧⎪⎨-⎪⎩<+≥2,的解集,在数轴上表示正确的是A.B.C.D.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为6,则圆心O到弦CD的距离OE长为A.6 B.5 C.D.36.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是A.甲B.乙C.丙D.丁7.如图,某校数学兴趣小组利用标杆BE测量学校旗杆CD的高度,标杆BE高1.5m,测得AB=2m,BC=14m,则旗杆CD高度是A.9m B.10.5m C.12m D.16m8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(4,2),点B的坐标为(-2,-2),则点C的坐标为A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)9.快递公司2014年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2016年的快递业务量达到3.92亿件.若设该地区这两年快递业务量的年平均增长率为x,则下列方程正确的是A.921(92.32=-x-x B.2.3)1(22=)C.921(92.32=+x+x D.2)).31(22=10.如图,正方形ABCD中,动点P的运动路线为AB→BC,动点Q的运动路线为对角线BD,点P,Q以同样的速度分别从A,B两点同时出发匀速前进,当一个点到达终点停止运动时,另一个点也随之停止.设点P的运动路程为x,PQ的长为y,则下列能大致表示y与x的函数关系的图象为A.B.C.D.二、填空题(本题共18分,每小题3分)11.分解因式:228___________________.m-=12.中国数学史上有许多著名的数学家,很多理论都是由他们的名字命名的.如图1就是著名的―赵爽弦图‖,它是由公元错误!未找到引用源。
北京市北京市西城区2017年中考数学二模试卷 及参考答案

A . ①② B . ①④ C . ②④ D . ③④ 二、填空题
10. 如图,长方体中所有与棱AB平行的棱是________.
11. 关于x的方程x2﹣4x+k=0有两个相等的实数根,则实数k的值为________. 12. 如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BED的度数是________度.
所以λ= = . (1) 如图2,
点A(1,0), ①点B(2,1),E(﹣1,2), 则△AOB的纵横比λ1= △AOE的纵横比λ2=; ②点F在第四象限,若△AOF的纵横比为1,写出一个符合条件的点F的坐标; ③点M是双曲线y= 上一个动点,若△AOM的纵横比为1,求点M的坐标; (2) 如图3,
①求证:AC垂直平分BD; ①点M在BC的延长线上,点N在线段CO上,且ND=NM,连接BN,判断△MND的形状,并加以证明; (2) 如图2,点M在BC的延长线上,点N在线段AO上,且ND=NM,补全图2,求证:NA=MC.
28. 在平面直角坐标系xOy中,△ABC的顶点坐标分别是A(x1 , y1),B(x2 , y2),C(x3 , y3),对于△ABC的
形的是(写出一个你认为正确选项的序号即可);
(A)BC=AD (B)∠BAD=∠BCD (C)AO=CO (2) 将(1)中的命题用文字语言表述为: ①命题1; ②画出图形,并写出命题1的证明过程; (3) 小东进一步探究发现: 若一个四边形ABCD的三个顶点A,B,C的位置如图所示,且这个四边形满足CD=AB,∠D=∠B,但四边形ABCD不 是平行四边形,画出符合题意的四边形ABCD,进而小东发现:命题2“一组对边相等,一组对角相等的四边形是平行四边 形”是一个假命题.
20. 如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.
2017学年北京市房山中考二模数学试题及答案

2016-2017学年北京市房山中考二模数学试卷(带解析)满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共10小题)1.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,可以搜索到与之相关的结果的条数约为61700000,将61700000用科学记数法表示为()A.617×105B.6.17×106C.6.17×107D.0.617×1082.实数a,b,c,d在数轴上对应点的位置如图所示,这四个数中,倒数最大的是()A.bB.d C.a D.c3.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.小明掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,那么向上一面的点数大于4的概率为()A.B.C.D.5.如果一个正多边形的每个外角为72°,那么这个正多边形的边数为()A.5B.6C.7D.86.如图,AB是⊙O的直径,C、D两点在⊙O上,如果∠C=40°,那么∠ABD的度数为()A.40°B.90°C.80°D.50°7.国家气象局监测2015年某日24小时PM2.5的值,其中6个时刻的数值如下表,则这组数据的中位数和平均数分别是()A.331;332.5B.329;332.5C.331;332D.333;3328.直线与双曲线(k≠0)在同一坐标系中的大致图象是()A.B.C.D.9.在科技迅猛发展的今天,移动电话成为了人们生活中非常普及的通讯工具,选择经济实惠的计费方式成为了人们所关心的具有实际意义的问题.下表是两种移动电话的计费方式,若小明的爸爸每月打电话的时间在300分钟,请问选择哪种方式省钱()A.方式一B.方式二C.两种方式一样D.无法确定10.如图,正方形ABCD的顶点,,顶点C、D位于第一象限,直线将正方形ABCD分成两部分,记位于直线左侧阴影部分的面积为S,当t由小变大时S关于t的函数图象大致是()A.B.C.D.第II卷(非选择题)本试卷第二部分共有19道试题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1【2017东城二模】
26. 佳佳想探究一元三次方程32220x x x +--=的解的情况. 根据以往的学习经验,他想到了方
程与函数的关系:一次函数(0)y kx b k =+≠的图象与x 轴交点的横坐标即为一次方程
0(0)kx b k +=≠的解;二次函数2(0)y ax bx c a =++≠的图象与x 轴交点的横坐标即为一
元二次方程20(0)ax bx c a ++=≠的解. 如:二次函数223y x x =--的图象与x 轴的交点为(1,0)-和(3,0),交点的横坐标-1和3即为方程2230x x --=的解.
根据以上方程与函数的关系,如果我们知道函数3222y x x x =+--的图象与x 轴交点的横坐标,即可知道方程32220x x x +--=的解.
佳佳为了解函数3
2
22y x x x =+--的图象,通过描点法画出函数的图象:
(1)直接写出m 的值,并画出函数图象;
(2)根据表格和图象可知,方程的解有_____个,分别为__________________;
(3)借助函数的图象,直接写出不等式3222x x x +>+的解集.
2【2017西城二模】
26.学习了《平行四边形》一章以后,小东根据学习平行四边形的经验,对平行四边形的判定问题进行了再次探究.
以下是小东的探究过程,请补充完整:
(1)在四边形ABCD中,对角线AC与BD相交于点O.若AB∥CD,补充下列条件中能判断四边形ABCD是平行四边形的是;(写出一个你认为正确选项的序号即可);
(A)BC=AD(B)∠BAD=∠BCD(C)AO=CO,
(2)将(1)中的命题用文字语言表述为:
①命题1;
②画出图形,并写出命题1的证明过程;
(3)小东进一步探究发现:
若一个四边形ABCD的三个顶点A,B,C的位置如图所示,且这个四边形满足CD=AB,
∠B=∠D,但四边形ABCD不是平行四边形,画出符合题意的四边形ABCD,进而不东发
现:命题2“一组对边相等,一组对角相等的四边形是平行四边形”是一个假命题.
3【2017海淀二模】
26.已知y是x的函数,该函数的图象经过A(1,6),B(3,2)两点.
(1)请写出一个符合要求的函数表达式;
x≥,该函数无最小值.(2)若该函数的图象还经过点C(4,3),自变量x的取值范围是0
①如图,在给定的坐标系xOy中,画出一个
..符合条件的函数的图象;
x 对应的函数值y约为;
②根据①中画出的函数图象,写出6
(3)写出(2)中函数的一条性质(题目中已给出的除外).
4【2017朝阳二模】
6【2017石景山二模】
26.已知y 是x 的函数,下表是y 与x 的几组对应值.
性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy 中,描出了以上表中
各对对应值为坐标的点.根据 描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①1x =-对应的函数值y 约为 ; ②该函数的一条性质:
7【2017房山二模】
26.某班“数学兴趣小组”对函数x
x y 1
+=的图象和性质进行了探究,探究过程如下,请补充完整: (1)自变量x 的取值范围是; (2)下表是y 与x 的几组对应数值:
在平
面直角坐
标系中,描出了以表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象; (3)进一步探究发现:该函数在第一象限内的最低点的坐标是(1,2).观察函数图象,写出该函数的另一条性质;
(4)请你利用配方法证明:当x >0时,x
x y 1
+=(提示:当x >0时,()2x x =
,2
11⎪⎭
⎫ ⎝
⎛=x x )
8【2017通州二模】
26.有这样一个问题:探究函数x x y 2
1
22-=
的图象与性质.小东根据学习函数的经验,对函数x x y 2
1
22-=
的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题: (1)函数x x y 2
1
22-=的自变量x 的取值范围是 ;
(2)下表是y 与x 的几组对应值,求m 的值;
(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的
点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第二象限内的最低点的坐
标是(-2,
2
3),结合函数的图象,写出该函数的其它性质(一条即可)
(5)根据函数图象估算方程22
1
22=-x x 的根
为 .(精确到0.1)
9【2017门头沟二模】
10【2017昌平二模】
26.有这样一个问题:探究函数2
)2(1
-=
x y 的图象与性质,小静根据学习函数的经验,对函数
2
)
2(1
-=
x y 的图象与性质进行了探究,下面是小静的探究过程,请补充完整: (1)函数2)2(1
-=x y 的自变量x 的取值范围是__________;
(2)下表是y 与
表中的m=(3)如图,在平面直角坐标系xOy 中,描出以上表中各对对
应值为坐标的点,根据描出的点画出该函数的图象; (4)结合函数图象,写出一条该函数图象的性质:
______________________________.
11【2017顺义二模】 26.阅读下列材料:
实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.
小明根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y 是时间x 的函数,其中y 表示血液中酒精含量(毫克/百毫升),x 表示饮酒后的时间(小时).
下表记录了6小时内11个时间点血液中酒精含量y (毫克/百毫升)随饮酒后的时间x (小时)(x >0)的变化情况:
下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应
值为坐标的点,根据描出的点,画出血液中酒精含量y 随时间x 变化的函数图象;
(2)观察表中数据及图象可发现此函数图象在直线x =
2
3
两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式.
(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于
20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20∶00在家喝完250毫升低度白酒,第二天早上6∶30能否驾车去上班?请说明理由.
12【2017平谷二模】
26.小敏通过学习,知道了“在直角三角形中,30°的锐角所对的直角边等于斜边的一半”,她猜想这个命题的逆命题为“在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”.为了证明这个命题的正确性,她画出了如图所示的图形.她又结合图形把这个命题理解为“在直角三角形ABC 中,∠ACB=90°,直角边BC 的长等于斜边AB 长的一半时,BC 所对的锐角∠A 的度数等于30°”.请你根据小敏的图形和理解,补全已知..和求证..,并完成证明. 已知:在Rt △ABC 中,∠
ACB=90°,____________________________. 求证:_____________________________________ .
A
小敏把自己的猜想与数学小组的同学们进行了交流,经过充分交流、研讨,得出了以下两种想法: 想法一:取AB 中点D ,连结CD ,利用直角三角形斜边中线的性质使问题得到解决; 想法二:沿AC 翻折△ABC ,得△ADC ,构造特殊的三角形,使问题得到解决. 请选择其中一种想法,帮助小敏完成解答过程.
13【2017怀柔二模】
26. 某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查,每降价1元,每星期可多卖出20件,在确保盈利的前提下,解答下列问题:
(1)若设每件降价x (x 为整数)元,每星期售出商品的利润为y 元,请写出x 与y 之间的函数关系式,并求出自变量x 的取值范围; (2)请画出上述函数的大致图象.
(3)当降价多少元时,每星期的利润最大?最大利润是多少?
小丽解答过程如下: 解:(1)根据题意,可列出表达式:
y=(60-x)(300+20x)-40(300+20x),
即y=-20x2+100x+6000.
∵降价要确保盈利,∴40<60-x ≤60.解得0≤x <20.
(2)上述表达式的图象是抛物线的一部分,函数的大致图象如图1: (3)∵a=-20<0,
∴当x=2b a -=2.5时,y 有最大值,y=2
44ac b a
-=6125. 所以,当降价2.5元时,每星期的利润 最大,最大利润为6125.
老师看了小丽的解题过程,说小马第(1)问的表达式是正确的,但自变量x 的取值范围不准确.(2)(3)问的答案,也都存在问题.请你就老师说的问题,进行探究,写出你认为(1)(2)(3)中正确的答案,或说明错误原因.
14【2017燕山二模】15【2017大兴二模】。