桩基低应变分析
低应变法检桩

低应变法检桩低应变法(Low strain method)是一种常用于桩基检测的无损检测方法。
该方法基于桩与周围土体之间的互作用,并通过测量桩体表面产生的应变来评估桩的质量和完整性。
下面将介绍低应变法的原理、设备以及在桩基工程中的应用。
1. 原理:低应变法是基于桩体与周围土体之间的相互应变影响的原理。
当施加一个小幅度的交变载荷时,桩体表面出现微小的应变变化。
这些变化将沿着桩体传播到土体中,并通过受土体约束的地表上产生的应变信号进行检测和分析。
通过分析这些信号的特征,可以评估桩的质量和完整性。
2. 设备:低应变法的主要设备包括振动器、传感器和数据采集系统。
振动器用于施加小幅度的交变载荷到桩体上,通常通过压电元件或振动器激励器来实现。
传感器用于测量桩体表面产生的应变信号,常用的传感器有应变计和纤维光栅传感器。
数据采集系统用于记录和分析传感器捕获到的数据,通常由计算机软件和硬件组成。
3. 应用:低应变法在桩基工程中有广泛的应用。
它可以用于评估桩的质量、完整性和嵌入深度。
以下是低应变法在桩基工程中的几个常见应用:a. 桩基质量评估:通过监测桩体表面的应变信号,可以评估桩的质量和完整性。
当桩体有缺陷或损坏时,应变信号会显示出特定的图案,可用于判断桩的质量状况。
b. 桩身变形识别:低应变法还可以用于监测桩身在荷载作用下的变形情况。
通过比较不同荷载条件下的应变信号,可以确定桩体的变形特征,并评估其变形性能。
c. 桩基嵌入深度确定:利用低应变法可以确定桩体的嵌入深度。
通过测量桩体表面的应变信号,可以确定桩体与土体之间的互作用区域,并进一步确定桩体的嵌入深度。
d. 桩基施工质量监控:低应变法还可以用于监控桩基施工质量。
在桩基施工过程中,通过实时监测桩体的应变信号,可以及时发现施工质量问题,并采取相应的措施进行调整。
综上所述,低应变法是一种常用的桩基检测方法,通过测量桩体表面产生的应变信号来评估桩的质量和完整性。
它在桩基工程中可以广泛应用于桩基质量评估、桩身变形识别、桩基嵌入深度确定和桩基施工质量监控等方面。
低应变法 桩基长度 误差

低应变法桩基长度误差桩基长度的准确测量对于工程结构的设计和施工至关重要。
低应变法是一种常用于测量桩基长度的方法之一,其基本原理是通过检测桩基中的应变变化来推导桩基的长度。
然而,在实际应用中,由于多种因素的影响,低应变法测量桩基长度可能存在一定的误差。
本文将对低应变法在桩基长度测量中可能产生的误差进行分析。
一、低应变法桩基长度测量原理1.1 低应变法基本原理低应变法是通过在桩基中安装传感器,检测桩基中的微小应变变化,从而推导出桩基的长度。
在桩基受到外部力的作用下,桩基中会发生微小的应变,这种应变与桩基的长度变化呈正比关系。
1.2 传感器类型低应变法中常用的传感器包括应变片、光纤传感器、电阻应变计等。
这些传感器能够将微小的应变变化转换为电信号或光信号,通过测量这些信号的变化来推导桩基的长度。
二、低应变法桩基长度测量误差来源2.1 土壤性质的影响桩基周围土壤的性质对低应变法的测量结果有较大的影响。
土壤的变形特性、密实度、含水量等因素都可能引起应变的变化,从而导致桩基长度测量的误差。
2.2 外部环境因素外部环境因素如气温、湿度、风力等也会对低应变法的测量结果产生一定的干扰。
温度变化可能导致传感器材料的膨胀或收缩,湿度的变化可能影响土壤的含水量,都可能引起应变信号的变化。
2.3 传感器精度和安装误差传感器的精度和安装位置的准确性直接影响测量结果的准确性。
传感器的校准和安装需要专业的技术和仪器,若存在误差可能导致桩基长度测量的不准确。
2.4 土壤-桩基交互作用桩基与土壤之间的相互作用是导致误差的另一个重要原因。
土壤-桩基界面的摩擦、土压力的变化等因素都会对桩基的应变产生影响,从而影响长度测量的准确性。
三、误差控制和校正方法3.1 误差控制为了控制误差,首先需要选择合适精度的传感器,并在实际安装中注意传感器的准确位置和方向。
此外,对周围土壤的性质要有清晰的认识,通过实地调查和实测数据来减小土壤因素的干扰。
3.2 校正方法校正是对测量误差进行修正的关键步骤。
桩基低应变分析

桩基低应变分析GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-低应变反射波检测桩身缺陷性分析黄恒英黄燕陈文摘要低应变反射波法桩身完整性的检测,依据弹性波理论,视桩体为一维弹性杆件而建立起来的原理,应用在工程桩测试,但在测试技术上,有很多值得探讨的问题及完善方面。
本文主要从理论与工程实例结合分析,浅谈基桩完整性检测效果。
关键词低应变反射法基桩质量检测工程实例验证与分析一、前言低应变反射波法检测桩身完整性已应用多年,国内外许多专家对基桩完整性检测技术做了大量研究,并取得较为成熟的技术经验。
在实际工程桩测试中,根据测得的反射曲线信号,利用反射波能量初至,相位和频率特征,来判别桩身质量。
目前在检测中,会遇到测试效果不理想,导致难以识别桩底信号或桩身缺陷性质,容易对缺陷造成误判,漏判等现象。
如能准确地判断桩身质量排除工程隐患,可以确保工程质量。
本文主要是从理论结合工程实例,对基桩低应变完整性检测技术进行分析和判别。
二、低应变反射波法基本机理低应变反射波法适用于检测混凝土的桩身完整性判定、桩身缺陷的程度及位置。
假定桩为一根均匀各向同性的一维弹性件体,根据桩的轴向振动微分方程的建立和求解,设桩身混凝土的波速C及桩身缺陷的深度L`可按下列公式计算:C=2L/△T ①L`=1/2Cm△tx ②式中: L—测点下桩长(m);△T—速度波第一峰与桩底反射波峰间的时间差(ms);△tx—速度波第一峰与缺陷反射波峰的时间差(ms);Cm—桩身波速的平均值(m/s);根据波动理论,弹性波在桩身内轴向传播的基本规律由如下方程来表达:δR=F??δx③UR=-F?ux ④F=Z2-Z1/Z1-Z2 ⑤δR,δx分别为反射波,入射波应力;UR, ux分别为反射波,入射波的质点振动速度;F为反射系数;Z1和Z2为反射界面两侧介质的广义波阻抗(假设弹性波从Z1介质进入Z2介质)。
桩基低应变检测方法

桩基低应变检测方法
桩基低应变检测方法是一种常用的地基检测方法,它可以用来检测桩基的质量和稳定性。
在桩基施工过程中,低应变检测方法可以帮助工程师及时发现桩基的问题,从而采取相应的措施,保证工程的质量和安全。
桩基低应变检测方法主要是通过测量桩身的应变变化来判断桩基的质量和稳定性。
在测量过程中,需要使用应变计等专业设备,将其安装在桩身上,然后进行数据采集和分析。
通过分析数据,可以得出桩基的质量和稳定性情况,从而判断是否需要采取相应的措施。
桩基低应变检测方法具有以下优点:
1. 非破坏性检测:低应变检测方法不会对桩基造成任何损伤,可以保证桩基的完整性和稳定性。
2. 精度高:低应变检测方法可以精确地测量桩身的应变变化,从而得出桩基的质量和稳定性情况。
3. 操作简便:低应变检测方法操作简单,只需要安装应变计等专业设备,进行数据采集和分析即可。
4. 数据可靠:低应变检测方法可以得出准确可靠的数据,可以帮助工程师及时发现桩基的问题,从而采取相应的措施。
桩基低应变检测方法是一种非常重要的地基检测方法,可以帮助工
程师及时发现桩基的问题,从而保证工程的质量和安全。
在实际工程中,我们应该重视桩基低应变检测方法的应用,从而提高工程的质量和安全性。
桩基检测小应变结果

桩基检测小应变结果对于基桩的理论假设是建立在一维波动理论上来描述杆的波动问题的.这种理论假设只是在特定边界条件下的假设,在实际基桩测试过程中,由于复杂的地质条件、施工方法和技术,这种假设有时并不能得到完全满足,应在检测过程中予以注意。
虽然低应变冲击能量小,所激发桩周土阻力很小,但桩周土阻力对应力波传播的影响非常大。
不同地质条件,在基桩检测中均会对检测结果产生不同的影响和干扰。
根据反射波法理论,这种干扰的大小主要取决于基桩本身和围岩的波阻抗差异。
根据桩身和围岩波阻抗差异,对围岩与基桩的关系进行分析:(1)桩周及桩底为同一地层或波阻抗差异较小的交互地层时,满足一维波动理论的假设条件。
检测曲线异常则由基桩本身的缺陷所致。
(2)桩周地层为波阻抗差异较大的交互地层时,由于地层界面处波的反射可能引起曲线异常,所以,对检测曲线异常的解释就存在多解性,即可能是由于基桩本身的缺陷所致,也可能是由于基桩周围的地层变化所致。
此时应注意在排除地层产生异常的可能性后,进一步确定基桩本身是否存在缺陷.当基桩测试的波形出现异常时,要准确判断异常是由基桩的缺陷引起还是地层变化所引起。
单纯从波形上分析解释比较困难,可将同一场地、同一桩型被测桩的结果比较分析,即借助于有关的地质资料和检测波形进行综合分析研究,方可得到准确的判断结果。
(3)当桩尖坐落在土壤、沙层和黏土等波阻抗比较小的地层上时(摩擦桩),桩体混凝土和持力层的波阻抗差异较大,桩身波阻抗大于桩底波阻抗,此时桩底反射信号明显。
(4)当桩尖坐落在砂岩、石灰岩、变质岩等与混凝土波阻抗差异较小或接近的岩层中时,对嵌岩桩,当桩底嵌固良好时,桩底反射较明显。
(5)当桩尖坐落在花岗岩、玄武岩等与混凝土波阻抗差异较大的岩层中时,桩身波阻抗小于桩底波阻抗;对嵌岩桩,当桩底嵌固良好时,桩底反射较明显。
桩基低应变(反射波法)的基本原理

桩基低应变(反射波法)的基本原理桩基低应变反射波法是一种测量地基桩芯的有效方法。
它利用从
桩芯中反射出的声波,通过位移变化率测量桩内的应变,从而得到地
基的竖向变形的信息,是一种地基桩低应变监测的先进技术。
原理是利用声波法原理,在桩顶部内装入(或者放置在桩芯上方)触发器发射声波,声波从桩底反射并传导到接收器。
接收器采集到的
数据被传输到数据处理系统,根据声波时间变化来测量桩芯的应变值,监测桩芯在低应变条件下的变形情况。
如果声波时间变化显示了变化,表明地基桩已经发生了一部分变形,继而延伸至地表变形,当前的位
置的变形对地基桩的位移有重要的意义,是一种有效的桩基低应变监
测方法。
桩基完整性(低应变试验)试验方法

1 桩基完整性(低应变试验)1.1一般规定:(1)低应变反射波法适用围为:混凝土灌注桩、混凝土预制桩、预应力管桩及CFG 桩。
(2)对桩身截面多变且变化幅度较大灌注桩,应采用其他方法辅助验证低应变法检测的有效性。
(3)受检桩混凝土强度不应低于设计强度的70%,且不应低于15MPa 。
1.2检测原理:低应变法目前国普遍采用低应变反射波法,为狭义低应变法,其通过采用瞬态冲击的方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。
因此基桩必须符合一维波动理论要求,满足平截面假定和一维线弹性杆件模型要求,一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5。
1.3检测方法及工艺要求(1)检测前的准备工作a 受检基桩混凝土强度至少达到设计强度的70%,或期龄不少于14天时方可报检。
b 施工单位填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。
c 施工单位向检测单位提供基桩工程相关参数和资料。
d 检测前,施工单位做好以下准备工作:①剔除桩头,使桩顶标高为设计的桩顶标高。
②要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本相同。
③灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬的混凝土表面。
④桩顶表面平整干净且无积水。
⑤实心桩的第三方位置打磨出直径约10cm 的平面,平面保证水平,不要带斜坡;在距桩第三方2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm 的平面,打磨面应平顺光洁密实图2 不同桩径对应打磨点数及位置示意图0.8m<D≤1.25m D≤0.8m图2 不同桩径对应打磨点数及位置示意图⑥当桩头与垫层相连时,相当于桩头处存在很大的截面阻抗变化,会对测试信号产生影响。
因此,测试前应将桩头侧面与断层断开。
⑦准备黄油1~2包,作为测试耦合剂用。
⑧在基坑检测,应提前将基坑水抽干,并搭设好梯子,便于上下。
桩基低应变检测方案

桩基低应变检测方案1. 引言桩基作为土木工程中重要的基础构件,其质量和稳定性对工程的安全和耐久性有着重要的影响。
在桩基施工过程中,合理的检测方法和方案能够及时发现问题,保障工程质量。
本文将介绍一种桩基低应变检测方案,通过对桩基应变进行监测,及时发现并修复潜在的问题。
2. 桩基低应变检测方案的设计原则桩基低应变检测方案设计的基本原则如下:1.灵敏度高:能够检测到桩基的细微应变变化,保证对潜在问题进行及时发现。
2.准确性高:提供准确的应变值,用于准确评估桩基的质量和稳定性。
3.实时性强:能够实时监测桩基的应变变化,及时发现并解决问题。
4.可靠性强:方案应具备较高的可靠性,能够长期稳定地工作。
3. 桩基低应变检测方案的技术原理桩基低应变检测方案的技术原理主要包括以下几个方面:1.传感器的选择:选择合适的应变传感器,如电阻应变计、光纤传感器等。
该传感器能够将桩基的应变转化为电信号或光信号,并通过数据采集系统进行采集和处理。
2.数据采集系统:选用高精度和高采样率的数据采集系统,能够实时采集传感器输出的信号,并通过计算和分析得到桩基的应变值。
3.数据处理与分析:对采集到的数据进行处理和分析,得到桩基的应变变化情况,并结合设计要求进行评估。
4.实时监测与报警系统:通过建立实时监测系统,能够及时监测桩基的应变变化情况,并在出现异常情况时及时发出警报,以便采取相应的措施进行修复。
4. 桩基低应变检测方案的实施步骤桩基低应变检测方案的实施步骤如下:1.传感器安装:在桩基中选取合适的位置进行传感器的安装,确保传感器与桩基紧密接触,能够准确感知应变变化。
2.数据采集系统的搭建:选择合适的数据采集系统,根据传感器的输出信号进行连接和配置,确保能够高效地采集和处理数据。
3.数据处理与分析:利用专业的数据处理软件,对采集到的数据进行处理和分析,得到桩基的应变变化情况,并进行定量评估。
4.实时监测与报警系统的建立:建立实时监测系统,通过连续监测桩基的应变变化情况,及时发现潜在问题,并在需要时发出警报,通知相关人员采取相应的措施进行修复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低应变反射波检测桩身缺陷性分析黄恒英黄燕陈文摘要低应变反射波法桩身完整性的检测,依据弹性波理论,视桩体为一维弹性杆件而建立起来的原理,应用在工程桩测试,但在测试技术上,有很多值得探讨的问题及完善方面。
本文主要从理论与工程实例结合分析,浅谈基桩完整性检测效果。
关键词低应变反射法基桩质量检测工程实例验证与分析一、前言低应变反射波法检测桩身完整性已应用多年,国内外许多专家对基桩完整性检测技术做了大量研究,并取得较为成熟的技术经验。
在实际工程桩测试中,根据测得的反射曲线信号,利用反射波能量初至,相位和频率特征,来判别桩身质量。
目前在检测中,会遇到测试效果不理想,导致难以识别桩底信号或桩身缺陷性质,容易对缺陷造成误判,漏判等现象。
如能准确地判断桩身质量排除工程隐患,可以确保工程质量。
本文主要是从理论结合工程实例,对基桩低应变完整性检测技术进行分析和判别。
二、低应变反射波法基本机理低应变反射波法适用于检测混凝土的桩身完整性判定、桩身缺陷的程度及位置。
假定桩为一根均匀各向同性的一维弹性件体,根据桩的轴向振动微分方程的建立和求解,设桩身混凝土的波速C及桩身缺陷的深度L`可按下列公式计算:C=2L/△T ① L`=1/2C m△tx②式中:L—测点下桩长(m);△T—速度波第一峰与桩底反射波峰间的时间差(ms);△tx—速度波第一峰与缺陷反射波峰的时间差(ms);Cm—桩身波速的平均值(m/s);根据波动理论,弹性波在桩身内轴向传播的基本规律由如下方程来表达:δR=F•δx③UR=-F•ux ④F=Z2-Z1/Z1-Z2 ⑤δR,δx分别为反射波,入射波应力;UR, ux分别为反射波,入射波的质点振动速度;F为反射系数;Z1和Z2为反射界面两侧介质的广义波阻抗(假设弹性波从Z1介质进入Z2介质)。
从上述③、④、⑤式得出,可以看出反射波相位特征与桩身缺陷的关系(见表),以此可以判别桩身质量。
三、低应变反射波法对不同类型缺陷桩的判别特征通过上节理论推理和收集有关资料,结合一些典型桩实测情况,对各种缺陷桩的判别归纳如下几点:1、完整桩完整桩实测曲线波形反射很规则,波列清晰,桩底反射波较明显,易于读取反射波列到达时间,桩身混凝土平均波速较高。
2、缩颈桩缩颈桩的实测曲线、波形特征是在桩身缺陷处产生与激振脉冲相同位的第一时间到达t`反射时间较为明显,但整桩波速不会下降,与完整桩波较为一致。
3、扩径桩扩径桩由于在桩身有部分扩大的变截面,在实测曲线波形特征在扩径处产生与激振脉冲反相位的第一时间到达t`的反射波,整桩波速与完整桩较为一致。
4、离析桩混凝土离析桩实测曲线波形特征是在缺陷处产生与激振脉冲同相位的反射波形,与完整桩波速相比则略有所下降,一般比完整桩的波速低200—300m/s,如果严重离析的情况下,反射波峰值更剧烈,波速可能显得更低。
5、夹泥桩桩身夹泥主要是灌注时反扦抽管过高,或孔壁倒塌,造成桩身混凝土夹泥现象,实测曲线、波形特征是在缺陷处与离析桩一样,激振脉冲同相位的反射波形,与完整桩波速相比则有明显下降,一般比完整桩的波速低400—600m/s左右。
6、扩底桩、嵌岩石桩扩底桩与嵌岩桩的实测波形在曲线信号反射时,其反射波的方向是和激振脉冲方向相反,扩底桩和嵌岩桩的波形是一致的,但扩底桩的波形反映是从扩底位置开始算起,直到桩底反射波形出现为止。
而嵌岩桩的波形要看桩底嵌岩情况而定,如果嵌岩程度好,桩底的嵌石坚硬完整,其波速比混凝土的波速更为提高,那么嵌岩桩的桩底反射波形是激振脉冲方向是相反的,反之则同相。
7、全断桩全断桩实测曲线、波形与其它缺陷桩的波形是不一样,因为断桩所在位置,应力波无法往下传播,主要因在断裂处空气的波阻抗无穷大于混凝土波阻抗,而实测波形多次反射,反射时间间隔一致,并对反射信号就会自由震荡慢慢的衰减下去,故无法找出桩底反射。
以上是几种典型缺陷与完整桩的判断方法,必须要结合了解桩基成桩工艺,地质状况,桩的类型及形状等。
为了判断位置及性质更为准确、可靠,须更进一步加强多方面对比试验分析。
四、模拟与工程实例验证分析1、用低应变反射波法检测模拟桩某大院内设有几根不同缺陷的模拟桩,桩的施工工艺为干作业钻孔灌注桩,桩长为10.00m左右,桩径为420mm,桩身强度为18Mpa素混凝土。
地质勘察状况,有耕作土、粘土、亚粘土、轻亚粘土、中粗砂、园砾层等。
对几根模拟桩设置各种不同缺陷性质与反射波检测分析如下:1#桩缺陷设置为缩颈桩,当桩浇注离地面2.0m处,用塑料泡沫环填入桩身,环的高度50mm,使桩身砼直径减少1/3面积,另距桩底1.98m处填入20mm厚泥土相隔。
该桩经过静载试验后,再采用反射波法检。
从测试波形曲线分析,入射波后第一同相反射波在2.1m处与设埋位置为一致,第二反射即8.3m处,为底部反射,从实测结果分析和设埋缺陷形态与位置基本吻合、准确。
2#桩设置为全断裂桩,在桩身浇注至离地面3.06m处放上一块Φ380mm的油毛毡隔封,然后填入60mm厚的粘土,再放上Φ380mm的油毛毡覆盖上面,最后续浇注砼到地面。
该桩实测曲线波形,是多次反射,无法找到桩底位置,并且反射时间间隔相等,按混凝土抗压强度值18.0Mpa的波速反算,桩在约2.94m 处全断,与埋设位置基本相同。
2、低应变检测与钻芯法对比分析。
东兴某广场住宅楼,地层地貌为粘土,细砂土、强风化砂质岩及中风化砂质岩,地下水较为丰富。
该工程基础设计为人工挖孔桩。
由于人工挖孔桩施工时,流砂流水较为严重,施工难度较大。
现场部分桩基施工完毕后采用低应变反射波法检测和钻芯取样对比检测。
(1)完整性工程桩20#桩长为6.30m,实测曲线的反射波波形规则、波列清晰桩底反射波明显可辨,桩底反射波初至与入射波初至同相位,桩底反射时间为3.39ms,纵波波速为3716m/s。
现场钻心法检查,桩身砼芯呈柱状,连续完整,表面光滑,断口吻合,胶结好、骨料分布均匀,桩底无沉渣现象,底部与持力层界面清晰,对砼抽检抗压强度在34.9—48.9之间,属于完整桩。
钻芯检测结果与反射波检测结果一致。
(2)离析桩工程桩27#,桩长6.70m,实测曲线与完整桩不相同,入射波与反射波同相位,并在缺陷处波形非常明显反射,反射时间为1.41ms,按桩底反射到达时间为4.53ms,计算出该桩实测缺陷在2.1m处。
而该桩实测波速为与本工程完整桩平均波速3700m/s相比,已降底了700m/s左右,故认为该桩身存在严重离析。
现场钻芯取样,上部0—2.30m段砼芯样连续完整,呈柱状及短柱状,表面光滑,断口吻合,骨料分布较为均匀。
中部 2.40—5.80m段砼芯样较为松散,胶结较差或无胶结现象,取中部较为完整呈柱状体芯样,进行砼试块试压,其最大砼抗压强度为14.1Mpa。
钻芯结果与反射波检测法基本吻合。
(3)离析(断)桩工程桩31#,桩长6.40m。
该桩现场实测波反射较强,往后同样出现多次反射、其反射时间间隔相等,无法找出桩底反射位置。
按本工程的完整桩平均波速3700m/s反算,该桩身在1.8m—2.2m处全断。
现场钻芯取样,桩顶上部0.2m厚度无骨料,0.2—2.0m段芯样表面有蜂窝、麻面,水泥渗量少,胶结较差,2.0—6.15m段,砼芯破碎严重,部分砂、石分离无胶结,6.15m至桩底砼芯样连续,呈柱状表面光滑、断口吻合、胶结较好,桩底与持力层接触面清晰。
该桩钻芯结果与低应变反射波检测结果较为一致。
3、低应变反射波检测与开挖验证(1)局部离析桩南宁市青山某单位楼房,基础设计为人工挖孔桩、桩径为0.8m,桩长13.0—19.0m不等,该工程21#桩,桩长14.5m。
在低应变动测,波形曲线的桩底反射易判别。
但波形在1.4ms处的入射波相同有一个较强反射迹象,按该桩的桩底反射时间及波速3450m/s,计算出约在2.4m处存在混凝土离析.经实地开挖至2.2m 处左右,桩沿周边400—500mm高度,约占桩径载面积约2/5左右混凝土蜂窝孔洞,证明开挖结果和低应变反射波法检测结果相符。
(2)钻孔灌注桩的桩身横截面断裂南宁市五一路某基地职工集资楼,基础设计为钻孔灌注桩,用低应变反射波抽检1#桩时,波形曲线无桩底反射,并波形曲线有强烈的多次反射,第一次桩间反射时间为 2.30ms,按本工程完整桩平均波速3500m/s计算,桩身在4.0m左右为断裂位置。
根据施工记录,该桩在施工过程中灌注设备出现故障,停留一段时间后再续灌,由于出现故障后未及时处理,造成断桩。
经现场开挖至4.0m处,桩身夹有较厚泥浆,混凝土上、下段不能连接。
开挖结果与低应变反射波法检测结果完全一致。
五、低应变反射波测试应注意的几点技术。
桩身缺陷性质及位置的判别,与其它因素有关。
比如成桩工艺、桩长桩径桩周土、桩身砼养护龄期等,都会影响波形反射计算与确定,本文论述中,针对检测中常遇到部分桩存在问题的分析。
但就测试本身来说,要想获得较准确的分析结果,除了有一套完好仪器设备以外,现场测试人员素质,测试技术也是至关重要,现场测试工作准备不应小看,比如桩头浮浆清理平整至坚硬砼面,对桩应进行多次复测。
特别是下面几点:1、传感器的安装。
将加速度或速度传感器安装在平整,坚实的混凝土面上。
尽量用少量耦合剂,使传感器与桩面保持良好的接触,以便更有效地接收到桩的反射信号。
2、测试前仪器设备的调试。
在传感器安装后,根据工程桩的施工情况,对仪器进行设置测试有关参数,反复几次击振信号,观察仪器,接收是否正常。
3、激振源选择。
激振应有足够能量,使桩能够直接产生信号反映。
如果激振的能量过大,容易使桩周土阻力被激发,产生土阻力反射波。
实践发现,对大直径及长桩用低频激振锤,短桩宜用小锤激振。
六、结束语本文根据理论对部分模拟桩及工程实例进行对比分析,不同成桩工艺、地质形式等要进行大量对比试验论证,特别是予应力砼管桩的检测,除了横截面的缺陷易于判别外,目前对纵向破裂问题尚无法判断,待今后大家共同探讨研究,使将来基桩质量检测更加完善。