工程热力学实验讲义
工程热力学讲义第五章

t ,c t ,max
Wnet ,max Q1
Wnet ,max t ,c Q1 0.364 1000 364 kJ P 432 kJ
or
W0 432 t 0.432 t ,c Q1 1000
违反第二定律,所以不可能
18
热效率
T1=1500K;T2=300K; p1=28.0MPa;p2=0.1MPa 1.不是卡诺循环
' c
c可大于,小于,或等于1
c ' 1
11
三.概括性卡诺循环 1. 循环组成 1 定温吸热 →2 3 定温放热 →4 2 同(n)类可逆→3 4 同(n)类可逆→1
理论上Th→Tl温度连续变化的储热器可满足。工质在4→1中把热 量放给储热器,在2→3中又从储热器中收回。
q2 面积1mn2 TL s12 q1 面积34op3 Th s34 TL s12 TL wnet q1 q2 q2 1 1 tC t 1 Th s 34 Th q1 q1 q1
设为制冷循环
Tc 400 c 1.33 T0 Tc 700 400
t tc
不可能
Q2 4000 0.4 wnet 10000
c 可能但不可逆
27
注意:1)任何循环(可逆,不可逆;正向,反向) 第一定律都适用。故判断过程方向时仅有 第一定律是不够的; 2)热量、功的“+‖、“-”均基于系统,故取系 统 不同可有正负差别; Q Q 0 中, 不是工质微元熵变 Tr Tr 3)克氏积分
q1i
Thi
全部循环求和 lim (
i 1
q2i
Tli
)
工程热力学实验指导书讲解

实验一 空气定压比热容测定一、实验目的1.增强热物性实验研究方面的感性认识,促进理论联系实际,了解气体比热容测定的基本原理和构思。
2.学习本实验中所涉及的各种参数的测量方法,掌握由实验数据计算出比热容数值和比热容关系式的方法。
3.学会实验中所用各种仪表的正确使用方法。
二、实验原理由热力学可知,气体定压比热容的定义式为()p p hc T∂=∂ (1) 在没有对外界作功的气体定压流动过程中,p dQ dh M=, 此时气体的定压比热容可表示为p p TQM c )(1∂∂=(2) 当气体在此定压过程中由温度t 1被加热至t 2时,气体在此温度范围内的平均定压比热容可由下式确定)(1221t t M Q c p t t pm-=(kJ/kg ℃) (3)式中,M —气体的质量流量,kg/s;Q p —气体在定压流动过程中吸收的热量,kJ/s 。
大气是含有水蒸汽的湿空气。
当湿空气由温度t 1被加热至t 2时,其中的水蒸汽也要吸收热量,这部分热量要根据湿空气的相对湿度来确定。
如果计算干空气的比热容,必须从加热给湿空气的热量中扣除这部分热量,剩余的才是干空气的吸热量。
低压气体的比热容通常用温度的多项式表示,例如空气比热容的实验关系式为3162741087268.41002402.41076019.102319.1T T T c p ---⨯-⨯+⨯-=(kJ/kgK)式中T 为绝对温度,单位为K 。
该式可用于250~600K 范围的空气,平均偏差为0.03%,最大偏差为0.28%。
在距室温不远的温度范围内,空气的定压比热容与温度的关系可近似认为是线性的,即可近似的表示为Bt A c p += (4)由t 1加热到t 2的平均定压比热容则为m t t t t pm Bt A tt B A dt t t Bt A c+=++=-+=⎰221122121(5) 这说明,此时气体的平均比热容等于平均温度t m = ( t 1 + t 2 ) / 2时的定压比热容。
【工程热力学精品讲义】第7章

喷管 cf p 扩压管 p cf
2) cf dcf vdp
cf
1 2
cf2
的能量来源
是压降,是焓㶲(即技术功)转换成机械能。
14
二、几何条件
dcf cf
~
dA
A
力学条件 过程方程
dp Ma2 dcf
p
cf
dp dv
pv
Ma2 dcf dv cf v
连续性方程 dA dcf dv A cf v
.
9
滞止参数的求取 ★理想气体:
▲定比热容
▲变比热容
T0
T1
cf21 2cp
p0
p1
T0 T1
1
v0
RgT0 p0
h0 T0 pr0 T1 pr1
p0
p1
pr 0 pr1
★水蒸气: h0
h1
1 2
cf21
s0 s1
其他状态参数
p0 t0
h0 h1
10 s1
4.声速方程
? 声音的速度330m/s
速度达Ma = 7,若飞机在–20℃ 的高空飞行,其 t0 = 334 ℃。
加上与空气的摩擦温度将极高,如美国航天飞机设计承受最
高温1650℃,实际经受温度1350~1400℃
12
7–2 促使流速改变的条件
一、力学条件
dcf cf
~
dp
p
流动可逆绝热 δq dh vdp 0
气流焓㶲 dex,H dh T0ds dh vdp
c
p
s
v2 p v s
等熵过程中
dp dv 0
pv
p
v
s
p v
工程热力学实验讲义

第一章 工程热力学§1-1 空气绝热指数的测定实验一、实验目的通过测量绝热膨胀和定容加热过程中空气的压力变化,计算空气绝热指数。
理解绝热膨胀过程和定容加热过程以及平衡态的概念。
二、实验原理气体的绝热指数定义为气体的定压比热容与定容比热容之比,以K 表示,即p vc k c =。
本实验利用定量空气在绝热膨胀过程和定容加热过程中的变化规律来测定空气的绝热指数K 。
实验过程的P-V 图如图1所示。
图中AB 为绝热膨胀过程;BC 为定容加热过程。
图1 等容和绝热过程AB 为绝热过程,1122k kp v p v = (1) BC 为定容过程,23v v = (2)假设状态A 和C 温度相同,则23T T =。
根据理想气体的状态方程,对于状态A 、C 可得:1133p v p v = (3)将(3)式两边K 次方得:()()1133kkp v p v = (4)由(1)、(4)两式得,1132kp p p p ⎛⎫=⎪⎝⎭,再两边取对数,得: 1213ln ln p p k p p ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭(5)因此,只要测出A 、B 、C 三状态下的压力123,,p p p 且将其代入(5)式,即可求得空气的绝热指数k 。
三、实验装置空气绝热指数测定仪由刚性容器,充气阀、排气阀和U 型差压计组成,如图2所示。
空气绝热指数测定仪以绝热膨胀和定容加热两个基本热力过程为工作原理,测出空气绝热指数。
整个仪器简单明了,操作简便,有利于培养学生运用热力学基本和公式从事实验设计和数据处理的工作能力,从而起到巩固和深化课堂教学内容的实际效果。
图2 空气绝热指数测定装置示意图1-有机玻璃容器;2-进气及测压三通;3 U 型压力计;4 -气囊;5-放气阀门。
四、实验步骤实验对装置的气密性要求较高。
因此,在实验开始时,应检查其气密性。
通过充气阀对刚性容器充气,使U 型压差计的水柱h ∆达到2200mmH O 左右,记下h ∆值,5分钟后再观察h ∆值,看是否发生变化。
最新[工学]-第十四章-工程热力学教学讲义PPT课件
![最新[工学]-第十四章-工程热力学教学讲义PPT课件](https://img.taocdn.com/s3/m/dd432502c1c708a1284a44ff.png)
§14-1 概 述
应用:化学反应的过程 chemical reaction
√ 动力装置煤、油、天然气的燃烧
水处理 化工过程
目的:
热力学基本定律用于化学过程, 研究这些过程能量的转换、平衡、 方向性、化学平衡
有化学反应过程的特点
1、独立变量数
无化学反应:简单可压缩系统,2 有化学反应:独立变量数>2
Q0 p''
Qp
Qp0'
Q
0 p
CO
Q
o p'
Q p 0 '' 3 9 3 5 2 2 k J/k m o lCC O 2 Q p 0 ' 2 8 2 9 9 3 k J/k m o lC O 2Q
o p
''
CO2
燃烧热值(发热量、热值)
Heating value of the fuel
1kmol燃料完全燃烧时的热效应的绝对值 Complete 放热为负 H f
热效应与反应热Heat of reaction
反应热:系统与外界交换的热量,过程量
容积变化功
热效应: T
状态量
1 kmol
盖斯定律
Hess Law
盖斯定律(1840年)
当反应前后物质的
C Qp2 D
种类给定时,化学反
应的热效应,与中间 Qp1
Qp3
过程无关,只与过程 A 初始和终了状态有关。 Qp4
B
Qp5
Qp1 Qp2 Qp3 Qp4 Qp5
E
某些测不出(或不易 测)的热效应可由易
测的热效应代替。
标准态
盖斯2OQQ p0''Q p0 p 0 测 不11 准0同52 Q时9k p0产J/k 生Qm p0o '' lC QO p0'
清华大学工程热力学讲义_4-1

卡诺定理小结
1、在两个不同 T 的恒温热源间工作的一切 可逆热机 tR = tC 2、多热源间工作的一切可逆热机 tR多 < 同温限间工作卡诺机 tC 3、不可逆热机tIR < 同热源间工作可逆热机tR tIR < tR= tC
∴ 在给定的温度界限间工作的一切热机,
tC最高
热机极限
Q2R多 = T2(sc-sa) tR多 1
T2
_
6
5 s
T1
概括性卡诺热机 Ericsson cycle
如果吸热和放热的多变指数相同
∴ ab = cd = ef
完全回热
T2 T1
T a n d
T1
b n
tR概括 1
tC
e T2
c
f s
这个结论提供了一个提高热效率的途径
Q E 21000m 1800m 11.7
mkg水降低5C放热:
Q cmt 21000m[ J ]
第二类永动机???
水面
耗功 发电机
蒸汽
制冷系统
水
单热源热机
perpetual-motion machine
1874-1898, J.W.Kelly, hydropneumaticpulsating-vacu-engine, collected millions of dollars. 1918, the U.S. Patent Office decreed that it would on longer consider any perpetual-motion machine applications. 中国上世纪八十年代,王洪成,水变油
克劳修斯表述
工程热力学(讲义)

1 课程学习1.1 热力学基本定律1.1.1 热力学基本概念及定义第一节热力系热力系:由界面包围着的作为研究对象的物体的总和。
按热力系与外界进行物质交换的情况可将热力系分为:闭口系(或闭系)--与外界无物质交换,为控制质量(c.m.);开口系(或开系)--与外界之间有物质交换,把研究对象规划在一定的空间范围内,称控制容积(c.v.)。
按热力系与外界进行能量交换的情况将热力系分为:简单热力系--与外界只交换热量及一种形式的准静功;绝热系--与外界无热交换;孤立系--与外界既无能量交换又无物质交换。
按热力系内部状况将热力系分为:单元系--只包含一种化学成分的物质;多元系--包含两种以上化学成分的物质;均匀系--热力系各部分具有相同的性质;均匀系--热力系各部分具有不同的性质。
工程热力学中讨论的热力系:简单可压缩系--热力系与外界只有准静功的交换,且由压缩流体构成。
第二节热力系的描述热力系的状态、平衡状态及状态参数*热力系的状态:热力系在某一瞬间所呈现的宏观物理状况。
在热力学中我们一般取设备中的流体工质作为研究对象,这时热力系的状态即是指气体所呈现的物理状况。
*平衡状态:在没有外界影响的条件下系统的各部分在长时间内不发生任何变化的状态。
处于平衡状态的热力系各处的温度、压力等参数是均匀一致的。
而温差是驱动热流的不平衡势,温差的消失是系统建立平衡的必要条件。
对于一个状态可以自由变化的热力系而言,如果系统内或系统与外界之间的一切不平衡势都不存在,则热力系的一切可见宏观变化均将停止,此时热力系所处的状态即是平衡状态。
各种不平衡势的消失是系统建立起平衡状态的必要条件。
*状态参数:用来描述热力系平衡态的物理量。
处于平衡态的热力系其状态参数具有确定的值,而非平衡热力系的状态参数是不确定的。
状态参数的特性描述热力系状态的物理量可分为两类:强度量和尺度量(1)强度量与系统中所含物质无关,在热力系中任一点具有确定的数值的物理量。
工程热力学实验课件

安全注意事项
1、加压最高——一般不超过 、加压最高 一般不超过8MPa 一般不超过 2、降压不要过快 、 3、玻璃仪器易碎品注意保护 、 4、注意用电安全 、
三、观测要点—— 观测要点
低于临界温度的状态变化及相变现象 实验数据记录 实验数据记录 临界乳光现象 四、绘制等温曲线 按表2的数据仿图三绘制出 1. 按表 的数据仿图三绘制出 p-v 图上分别 画出20℃ 画出 ℃,27℃,31.2℃和50℃四条等温线。 ℃ ℃ ℃四条等温线。 2. 将实验测得的等温线与图三所示的标准等 温线进行比较。 温线进行比较。并分析其差异原因。
3
RT a p= − 2 v −b v
2
PV − (bp − RT )V + aV − ab = 0
a=? b=? 对CO2, Pc=? Tc=? 范德瓦尔公式三种解与CO2的p-v图—— 范德瓦尔公式三种解与 图
2)范德瓦尔方程式的分析 范德瓦尔方程式的分析 3 2 pv − (bp + RT )v + av − ab = 0 当t ≥ 31.1°C 时 , 方程式与实验结果基本相符 当t < 31.1°C 时 , 方程式与实验结果不吻合 C点为临界点,pc, tc, 点为临界点, 点为临界点 vc分别为临界压力,临 分别为临界压力, 界温度, 界温度,临界比容
五、实验注意问题
1、水温、先测量低温等温线20℃后逐渐升温读水 、水温、先测量低温等温线 ℃ 以玻璃柱上为准。 温,以玻璃柱上为准。 2、压力怎么样加? 、压力怎么样加? 3、压力怎么样读?(是表压还是绝对压力) ?(是表压还是绝对压力 、压力怎么样读?(是表压还是绝对压力) 体积如何读? 体积如何读? 4、温度设置技巧。 、温度设置技巧。 5、观察临界状态:①汽液模糊现象②乳光现象。 、观察临界状态: 汽液模糊现象②乳光现象。 6、 50℃的的压力 ~比容 变化中会有相转变吗? 比容v变化中会有相转变吗 、 ℃的的压力p 比容 变化中会有相转变吗? 7、 20℃、 27℃的CO2的状态(注意实验纪录) 的状态(注意实验纪录) 、 ℃ ℃ 热蒸汽态; 饱和状态; ① 过热蒸汽态; ② 干饱和状态; 饱和态( 液共存) ③ 湿饱和态(气、液共存) ④ 饱和液态 ; ⑤ 未饱和液体状态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 工程热力学§1-1 空气绝热指数的测定实验一、实验目的通过测量绝热膨胀和定容加热过程中空气的压力变化,计算空气绝热指数。
理解绝热膨胀过程和定容加热过程以及平衡态的概念。
二、实验原理气体的绝热指数定义为气体的定压比热容与定容比热容之比,以K 表示,即p vc k c =。
本实验利用定量空气在绝热膨胀过程和定容加热过程中的变化规律来测定空气的绝热指数K 。
实验过程的P-V 图如图1所示。
图中AB 为绝热膨胀过程;BC 为定容加热过程。
图1 等容和绝热过程AB 为绝热过程,1122k kp v p v = (1) BC 为定容过程,23v v = (2)假设状态A 和C 温度相同,则23T T =。
根据理想气体的状态方程,对于状态A 、C 可得:1133p v p v = (3)将(3)式两边K 次方得:()()1133kkp v p v = (4)由(1)、(4)两式得,1132kp p p p ⎛⎫=⎪⎝⎭,再两边取对数,得: 1213ln ln p p k p p ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭(5)因此,只要测出A 、B 、C 三状态下的压力123,,p p p 且将其代入(5)式,即可求得空气的绝热指数k 。
三、实验装置空气绝热指数测定仪由刚性容器,充气阀、排气阀和U 型差压计组成,如图2所示。
空气绝热指数测定仪以绝热膨胀和定容加热两个基本热力过程为工作原理,测出空气绝热指数。
整个仪器简单明了,操作简便,有利于培养学生运用热力学基本和公式从事实验设计和数据处理的工作能力,从而起到巩固和深化课堂教学内容的实际效果。
图2 空气绝热指数测定装置示意图1-有机玻璃容器;2-进气及测压三通;3 U 型压力计;4 -气囊;5-放气阀门。
四、实验步骤实验对装置的气密性要求较高。
因此,在实验开始时,应检查其气密性。
通过充气阀对刚性容器充气,使U 型压差计的水柱h ∆达到2200mmH O 左右,记下h ∆值,5分钟后再观察h ∆值,看是否发生变化。
若不变化,说明气密性满足要求;若变化,说明装置漏气。
若漏气,检查管路连接处,排除漏气。
若不能排除,则报告老师做进一步处理。
此步骤一定要认真,否则将给实验结果带来较大的误差。
气密性检查完毕后可开始实验。
分以下几步进行:首先使大容器内的气体达到状态A 点。
关闭放气阀,利用充气阀(即橡皮球)进行充气。
使U 型差压计的两侧有一个比较大的差值。
等待一段时间,U 型差压计的读数不再变化以后,记录下这时U 型差压计的读数1h ,则11a p p h =+,a p 为大气压力。
然后进行放气使大容器内的气体由A 点达到状态B 点。
这是一个绝热过程,因此放气的过程一定要快,使放气过程中容器内气体和外界的热交换可以忽略。
转动排气阀进行放气,并迅速关闭排气阀。
这时U 型差压计内读数在剧烈震荡不易读数,等U 型差压计读数刚趋于稳定时立刻读出2h 值,22a p p h =+。
继续等待U 型差压计的读数变化。
等到读数稳定后,读取3h 值,33a p p h =+。
稳定过程需要几分钟。
利用k_check.exe 软件检查所测的实验数据,根据软件给出的结果总结操作中应该注意的问题。
重复上述步骤,多做几遍,进行数据处理。
六、思考问题:1. 放气操作时应注意什么?原因是什么?2. 把实验结果与标准值做比较,并分析造成误差的原因是什么。
3. 实验操作中的一个难点是读2h 值,试分析2h 的误差对结果的影响附:k_check 软件使用方法:k_check 软件是本实验室编制的一个检查实验数据的小程序。
程序运行后,根据提示首先输入大气压值a p ,然后依次输入1h ,2h ,3h 值,程序就会给出计算出的绝热指数K 。
如果有几组数据需要检查,继续输入下一组1h ,2h ,3h 值即可。
§1-2 饱和蒸汽压力和温度关系实验一、实验目的通过观察饱和蒸汽压力和温度变化的关系,加深对饱和状态的理解,从而建立液体温度达到对应液面压力的饱和温度时,沸腾便会发生的基本概念通过对实验数据的整理,掌握饱和蒸汽p-t关系图表的编制方法观察小容积的泡态沸腾现象二、实验设备本实验使用可视性饱和蒸汽压力和温度关系实验仪。
实验装置主要由加热密封容器(产生饱和蒸汽)、电接点压力表、调压器(0~220V)、电压表、水银温度计(0~200℃)、测温管(管底注入少量机油,用来传递和均匀温度)和透明玻璃窗等组成(参见图1)。
采用电接点压力表的目的,在于使用中能限制压力的意外升高,起到安全保护作用。
图 11 –电接点压力表2 –保温棉3 –密封容器4 –观察窗5 –电加热器6 –机壳7 –调压器8 –温度计9 –测温管10 –蒸馏水三、实验原理考察水在定压下加热时水的状态的变化过程。
随着热量的加入,水的温度不断升高。
当温度上升到某温度值t时水开始沸腾。
此沸腾温度称为该压力下的饱和温度。
同样,此时的压力称为饱和压力。
继续加热,水中不断产生水蒸汽,随着加热过程的进行,水蒸汽不断增加,直至全部变为蒸汽,而达到干饱和蒸汽状态。
对干饱和蒸汽继续加热,由蒸汽的温度由饱和温度逐渐升高。
水在汽化过程中,呈现出五种状态,即未饱和水、饱和水、湿饱和蒸汽、干饱和蒸汽、过热蒸汽。
在汽化阶段,处于汽液两相平衡共存的状态,它的特点是定温定压,即一定的压力对应着一定的饱和温度,或一定的温度对应着一定的饱和压力。
四、实验方法和步骤熟悉实验装置的工作原理、性能和使用方法将调压器指针置于零位,然后接通电源。
将电接点压力表的上限压力指针拨到稍高于最高试验压力(如:0.7MPa)的位置。
将调压器输出电压调至170V,待蒸汽压力升至接近于第一个待测定的压力值时,将电压降至20-50V左右(参考值)。
由于热惯性,压力将会继续上升,待工况稳定(压力和温度基本保持不变)时,记录下蒸汽的压力和温度。
重复上述实验,在0~0.6Pa(表压)范围内,取5个压力值,顺序分别进行测试。
实验点应尽可能分布均匀。
实验完毕后,将调压器指针旋回零位,并断开电源。
记录实验环境的温度和大气压力B。
注意事项:本装置允许使用压力为0.8MPa(表压),不可超压操作。
五、数据记录和处理记录与计算数据记录表绘制p - t 关系曲线将实验结果在p - t坐标系中标出,清除特殊偏离点,绘制曲线。
整理经验公式将实验点绘制在双对数坐标中,实验曲线将基本呈一直线,所以饱和水蒸汽压力和温度的关系可近似整理成下列经验公式:4100p=t⨯思考问题1.调节调压器时应注意什么问题?2.把实验结果与标准值做比较,并分析造成误差的原因§1-3 气体定压比热的测定气体定压比热的测定是工程热力学的基本实验之一。
实验中涉及温度、压力、热量(电功)、流量等基本量的测量;计算中用到比热及混合气体(湿空气)方面的基本知识。
本实验的目的是增加热物性实验研究方面的感性认识,促进理论联系实际,以利于培养同学分析问题和解决问题的能力。
一、 实验目的了解气体比热测定装置的基本原理和构思熟悉本实验中的测温、测压、测热、测流量的方法 掌握由基本数据计算出比热值和求得比热公式的方法 分析本实验产生误差的原因及减小误差的可能途径二、 实验装置比热(pm C)。
气体的流量由节流阀控制,气体出口温度由输入电热器的功率来调节。
本比热仪可测300℃以下气体的定压比热。
三、实验步骤接通电源及测量仪表,选择所需的出口温度计插入混流网的凹槽中。
摘下流量计上的温度计,开动风机,调节节流阀,使流量保持在额定值附近。
测出流量计出口空气的干球温度(o t )和湿球温度(w t )。
图 11 – 比热仪主体2 – 温度计3 – 流量计4 – 风机将温度计插回流量计,调节流量,使它保持在额定值附近。
逐渐提高电热器功率,使出口温度升至预计温度 [可以根据下式预先估计所需电功率:τtW ∆≈12。
式中,W 为电热器输入电功率(瓦);t ∆为进出口温度差(℃);τ为每流过10升空气所需时间(秒)]。
待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏,即可视为稳定),读出下列数据:每10升气体通过流量计所需时间(τ,秒);比热仪进口温度(1t ,℃)-即流量计的出口出口温度;出口温度(2t ,℃);当时相应的大气压力(B ,毫米汞柱)和流量计出口处的表压(h ∆,毫米水柱);电热器的输入功率(W ,瓦)。
根据流量计出口空气的干球温度和湿球温度,从湿空气的干湿图查出含湿量(d ,克/公斤干空气),并根据下式计算出水蒸汽的容积成分:图 21 – 多层杜瓦瓶2 – 电热器3 – 均流网4 – 绝缘垫5 – 旋流片6 – 混流网7 – 出口温度计冷空气热空气6221622ddr w +=根据电热器消耗的电功率,可算得电热器单位时间放出的热量:Q W ∙= KJ/秒干空气流量(质量流量)为:()()()15.27327.291000/1056.735/106.1314+⨯⨯⨯∆+-==∙∙o w o t h B r T R V P G τθθθ()()()15.2736.131106447.43+∆+-⨯⨯=-o w t h B r τ 公斤/秒水蒸汽流量为:()15.27306.471000/1056.735/106.134+⨯⨯⨯∆+==∙∙o w o w w w t h B r T R V P G τ()()15.2736.13108889.23+∆+⨯⨯=-o w t h B r τ 公斤/秒水蒸汽吸收的热量为:()⎰+=∙∙210001167.04404.0t t ww dtt G Q()()[]21221200005835.04404.0t t t t G w -+-= KJ/秒干空气的定压比热为: ()()121221t t G Q Q t t G Q C wt t pm--=-=∙∙∙∙∙θθθ KJ/(公斤﹒℃)五、四、数据记录注意事项切勿在无气流通过的情况下使电热器投入工作,以免引起局部过热而损坏比热仪主体。
输入电热器的电压不得超过220伏。
气体出口最高温度不得超过300℃。
加热和冷却要缓慢进行,防止温度计和比热仪主体因温度骤升骤除而破裂。
停止实验时,应先切断电热器,让风机继续运行十五分钟左右(温度较低时可适当缩短)。
§1-4 二氧化碳临界状态观测及P-V-T 关系测定实验 一、实验目的及内容了解CO2临界状态的观测方法,增加对临界状态概念的感性认识加深对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解 掌握CO2的PVT 关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧学会活塞式压力计、恒温器等热工仪器的正确使用方法测定CO2的 p-v -t 关系。