15.1.2分式的基本性质通分

合集下载

15.1.2分式的基本性质(2)

15.1.2分式的基本性质(2)

式时,应先将 各分母分解因 式,再找出最 简公分母。
课堂练习
y x 1 , 2, 1.三个分式 的最简公分母是( 2 x 3 y 4 xy

A. 4 xy
B. 3 y
2
C. 12xy
2
2 2 12 x y D.
1 x , 2.分式 2 的最简公分母是_________. x x 2( x 1)
3.分母中所有字母的最高次幂。
例.通分:
3 ab (1) 2 与 2 2a b ab c
2 a 2 b 2
c
最简 公分母
例.通分:
解:最简公分母是 2a 2b 2c
3 ab (1) 2 与 2 2a b ab c
3 3bc 3 bc 2 2 2 2 2a b 2a b bc 2a b c 2 a b (a b) 2a 2a 2ab 2 2 2 2 ab c ab c 2a 2a b c
(1)将各个分式的分母分解因式;(2)取 各分母系数的最小公倍数(3)凡是出现的 所有字母或因式都要取;(4)相同字母 (或含字母的式子)的幂取指数最大的; (5)将上述所得系数的最小公倍数与各字 母(或因式)的最高次幂全都乘起来,就
得到了最简公分母
通过本课时的学习,需要我们掌握 1.分式的基本性质. 2.通分和约分是根据分式的基本性质的“等值”变形.
3
x x x6 x 7x 49 x
2
2 2
2
4 x 3 先进行分解因式,再约分
问题情景
1.分数的通分:
7 1 (1) 与 12 8
什么叫做分数的通分?
问题情景
1. 通分:
7 1 (1) 与 12 8

最新人教版八年级数学上册《15.1.2 分式的基本性质》优质教学课件

最新人教版八年级数学上册《15.1.2 分式的基本性质》优质教学课件

x 1
4 x3
解:(3)最简公分母是 12x 3 .
x 1 (x 1) 6 x
6 x(x 1)


,
2
2
3
2 x
2 x 6 x
12 x
4
4 ( 4 x 2) 16 x 2


,
2
3
3x
3 x ( 4 x ) 12 x
x 1 (x 1)( 3) (
(2)所乘(或除以)的必须是同一个整式;
(3)所乘(或除以)的整式应该不等于零.
探究新知
素养考点 1
分式的基本性质的应用
例 下列等式成立吗?右边是怎样从左边得到的?
解: (1)成立.
(2) 成立.
因为
因为
所以
所以
巩固练习
下列变形是否正确?如果正确,说出是如何变形的?如
果不正确,说明理由.
x
1

(1)
分式的分子与分母乘(或除以)同一个不等于0的整
式,分式的值不变.
探究新知
追问1 如何用式子表示分式的基本性质?
A
A C A
A C

,

(C 0)
.
B
B C B
B C
其中A,B,C 是整式.
探究新知
追问2 应用分式的基本性质时需要注意什么?
(1)分子、分母应同时做乘、除法中的同一种运算;
,
B. 3a 2b3 与 3a 2b 2c 通分后为 2 3
3a b c 3a 2 b 3 c
1
C. m +n 与
1
m–n
的最简公分母为m2-n2

数学八年级上册《15.1.2分式的基本性质分式的基本性质应用:约分、通分》教案32

数学八年级上册《15.1.2分式的基本性质分式的基本性质应用:约分、通分》教案32

分式的基天性质应用:约分通分学习目标:1.经过类比分数的约分,依据分式的基天性质掌握分式约分的方法和步骤,理解最简分式的观点.2.经过类比分数的通分,依据分式的基天性质掌握分式通分的方法和步骤,理解最简公分母的观点。

3.培育学生转变思想和解决实质问题的水平及逆向思想水平。

要点:约分时确立最大公因式,通分时确立最简公分母。

难点:灵巧使用分式的基天性质推行分式的变形,分式通分时最简公分母确实定.教课过程一.复习回首分式的基天性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为:C, C.(C0)C C此中A,B,C是整式。

分数是怎样约分的?1、约分:约去分子与分母的最大公因数,化为最简分数。

15 3 5 521= 3 7 7察看以下化简过程,你能发现什么?a 2bc a 2bc ab abab aba c这个过程其实是将分式中分子与分母的公因式约去。

把分式分子、分母的公因式约去,这类变形叫分式的约分 .分式约分的依照是什么? 答:分式的基天性质小结把一个分式的分子和分母的公因式约去 ,叫做分式的约分。

1.约分的依照是:分式的基天性质2.约分的基本方法是:先找出分式的分子、分母公因式 ,再约去公因式 .3.约分的结果是:整式或最简分式P131 例3:约分25a 2bc 3 (1)2c15ab 剖析:为约分要先找出分子和分母的公因式。

解:25a 2bc 35abc 5ac 2=-5ac2(1)2c5abc 3b15ab 3b找公因式方法{(1)约去系数的最大条约数。

(2)约去分子分母同样因式的最低次幂。

(2)x 29 26x9x剖析:为约分要先找出分子和分母的公因式。

(2)x 29 (x3)(x3)26x9(x3)2x3 3约分时,分子或分母假如多项式 ,能分解则一定先推行因式分解.再找出分子和分母的公因式推行约分。

例:约分6x 2 12xy 6y 2(3)3x 3y解:6x 212xy6y 26(x 2 2xyy 2) (3)=3x 3y3x3y(2)6x y()3x y(2x y)在化简分式时,小颖和小明的做法出现了分歧:小颖:5xy5x20x2y20x2小明:5xy5xy120x2y4x5xy4x关于分数来说完全约分后的分数叫什么?你对他们俩的解法有何见解?谈谈看!一般约分要完全,使分子、分母没有公因式.完全约分后的分式叫最简分式.P132练习(3)x2约分:(1)2bc(2)(xy)y xy ac22(xy(x y)自主学习:1、阅读课本P131~132页,思虑以下问题:1)什么叫分式的通分?2)怎样确立最简公分母?135=-2通分:;;246解:最简公分母为:121166333955210226124431266212分数的通分:把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。

8年级-15.1.2-分式的基本性质-通分

8年级-15.1.2-分式的基本性质-通分

B.12x2yz D.24x2yz
【解析】选B.6,4的最小公倍数是12,相同字母x,y的最 高次幂分别为2,1,z只在一个分母中出现.综上,两个分式 的最简公分母是12x2yz.
示范
1
11
(1)求分式 2x3 y 2 z , 4x 2 y 3 , 6xy 4 的最简公分母。
12 x3 y 4 z
5) 5)

3x2 x2
15x 25
方法归纳
(1)
3 2a 2b

ab ab2c
(2) 2x 与 3x x5 x5
通分要先确定分式的最简公分母。
1.怎样找公分母?
2.找最简公分母应从几方面考虑?
第一要看系数;第二要看字母
通分:
(1)
3 2a 2b

ab ab2c
(2) 2x 与 3x x5 x5
4×3 12 =
5×3 15
7×3 21 =
8×3 24
你能说出分数通分的数学原理吗?
3 5 和 2 4 1 和 3
63
78
解:3 2 4 4 1 8 ,3 21
36
7 56 8 56
思考:把
1
ab

2a a2
b
化成分母相同
的分式,要求:不改变分式的值,相
同的分母要尽可能简单。
2x 3y2 4xy
(2) c , a , b ; ab bc ac
例1.
(2) 2x 与 3x x5 x5
解:最简公分母是 (x 5)(x 5)
2x 2x (x 5) x 5 (x 5) (x 5)
2x2 10x x2 25

15.1.2_分式的基本性质1

15.1.2_分式的基本性质1

分式中,当A=0且B ≠ 0时,分式 值为零。
A 的 B
复习题:
1. 下列各式中,属于分式的是( B )
x 1 A、 2
2 B、 x 1
2
1 2 C、 x y 2
a D、 2
2x 2. x取何值时,分式 有意义; x 4 x 4 3. x取何值时,分式 x 2 的值为零;
2
a 1 4. 分式 的值为零的条件是 a 1且b 1 . b1
1
2
y x 1 (5).三个分式 2 x , 3 y 2 , 4 xy 的最简公分母是( C )
2 3 y B. C. 12 xy D. 12 x 2 y 2 2-2 2x (6) .分式 2 1 , x 的最简公分母是_________. x x 2( x 1)
A. 4 xy
2
x 4y 其中 x 2,y 3 (7).化简求值: 2 4 x 8 xy
解: (2)最简公分母是 ( x 5)( x 5)
2 x 10 x 2x 2 x( x 5) 2 x 5 ( x 5)( x 5) x 25
3 x 15 x 3x 3 x( x 5) 2 x 5 ( x 5)( x 5) x 25
2 2
当堂检测(参考答案)
填空:
2y ( ) ( 1) xy 2xy 2 3x -3xy ( ) 3x ( 2) 2 x y x y2 30 m 5mn ( 3) 24 n ( ) 4n2 2 ab b a b ( 4) 2 ab b ( ) ab+1
尝试题:(典例)
填空:
3
观察分子分母如何变化
x2
x ( ) (1) xy y

15.1.2分式的约分和通分

15.1.2分式的约分和通分
分式的约分和通分
复习回顾:
1.分式的基本性质:
分式的分子与分母同乘(或除以)一个不为0的整式 分式的值___不__变______
用字母表示为:
A AC A AC (C≠0) B ,BC B BC
2.分式的符号法则:
(1) a a b b
(2)a a a b b b
概念——约分与最简分式
与分数的约分类似,我们利用分数的基本性质,
约去3x2 3xy 的分子和分母的公因式 3x
6 x 2 把 3x 2 3xy 化为 x y
6x2
2x
像这样,把一个分式的分子与分母的公因式约去,
叫做分式的约分。
经过约分后的分式
x y 2x
,其分子与分母没有
公因式
像这样,分子与分母没有公因式的分式,叫做最
A. 4 xy B. 3 y 2 C. 12 xy 2 D. 12 x 2 y 2
3.分式
1, x x2 x 2(x1)
的最简公分母是__2_x(__x_+ __1( _). x-1)
4. 三个分式 1, y , 3 的最简公分母
x x2 x x2 1
是 x(x+1( )x-1)
5.通分:
(1) 2 与a-1 3a9 a2 9
3、分式通分与最简公分母:
(1)分数通分:
4 12 8
(1) 7 与 1 12 8
32
最简公分母:
解: 7 12
72 12 2
14 24
1 1 3 3 8 8 3 24
4×3×2=24
(2)观察下列式子,利用分式的基 本性质,仿照分数通分化简:
(1)2a32b与aab2cb
(2) 2x 与3x x5 x5

崇仁县第七中学八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质第2课时分式的约分通分

崇仁县第七中学八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质第2课时分式的约分通分

第2课时 分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念. 2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.重点运用分式的基本性质正确地进行分式的约分与通分. 难点通分时最简分分母的确定;运用通分法则将分式进行变形.一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +bab相等吗?为什么? 利用分式的基本性质,分式a 2+aba 2b 约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab.教师点拨:分式a 2+ab a 2b 可以化为a +bab ,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分?类似的,你能把分式a b ,cd变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分__.二、探究新知1.约分:(1)-25a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9; (3)6x 2-12xy +6y23x -3y.分析:为约分,要先找出分子和分母的公因式. 解:(1)-25a 2bc 315ab 2c =-5abc ·5ac 25abc ·3b =-5ac23b; (2)x 2-9x 2+6x +9=(x +3)(x -3)(x +3)2=x -3x +3; (3)6x 2-12xy +6y 23x -3y =6(x -y )23(x -y )=2(x -y ).若分子和分母都是多项式,则往往需要把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母没有公因式,我们把这样的分式称为__最简分式__.(不能再化简的分式)2.练习:约分:2ax 2y 3axy 2;-2a (a +b )3b (a +b );(a -x )2(x -a )3;x 2-4xy +2y ;m 2-3m 9-m 2;992-198. 学生先独立完成,再小组交流,集体订正.3.讨论:分式12x 3y 2z ,14x 2y 3,16xy4的最简公分母是什么?提出最简公分母概念.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母. 学生讨论、小组交流、总结得出求最简公分母的步骤: (1)系数取各分式的分母中系数最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.4.通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3xx +5 .分析:为通分,要先确定各分式的公分母.解:(1)最简公分母是2a 2b 2c . 32a 2b=3·bc 2a 2b ·bc =3bc2a 2b 2c, a -b ab 2c =(a -b )·2a ab 2c ·2a =2a 2-2ab2a 2b 2c. (2)最简公分母是(x -5)(x +5). 2x x -5=2x (x +5)(x -5)(x +5)=2x 2+10xx 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 5.练习:通分:(1)13x 2与512xy ;(2)1x 2+x 与1x 2-x ;(3)1(2-x )2与xx 2-4. 教师引导:通分的关键是先确定最简公分母;如果分式的分母是多项式则应先将分母分解因式,再按上述的方法确定分式的最简公分母.学生板演并互批及时纠错.6.思考:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么? 教师让学生讨论、交流,师生共同作以小结. 三、课堂小结1.什么是分式的约分? 怎样进行分式的约分? 什么是最简分式?2.什么是分式的通分? 怎样进行分式的通分? 什么是最简公分母?3.本节课你还有哪些疑惑?四、布置作业教材第133页习题15.1第6,7题.本节课是在学习了分式的基本性质后学的,重点是运用分式的基本性质正确的约分和通分,约分时要注意一定要约成最简分式,熟练运用因式分解;通分时要将分式变形后再确定最简公分母.§18.1 平行四边形的性质教案(1)一、教学目标1知识目标:1、通过经历运用图形的变换探索图形性质的过程,体验数学研究和发现的过程,并得出正确的结论.2、在对平行四边形的原有认识的基础上,探索并掌握平行四边形的性质.2能力目标:培养学生的观察猜想、实践操作、团队合作、数学说理能力和数学语言规范表达的能力.3情感目标:渗透化未知为已知的数学方法;渗透从特殊到一般、从具体到抽象、从感性到理性的辩证思想;渗透严谨求实的科学态度的理念;营造“民主、和谐”的课堂氛围让学生在愉快的学习中不断获得成功的体验.二、教学重点、难点教学重点:让学生亲历平行四边形性质的“观察——猜想——验证”过程,理解性质内容,并学会用它们进行有关的说理和计算教学难点:通过性质的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.三、教学过程(一)、创设情境、导入新课①多媒体课件展示图片,通过观察图案,指出平行四边形是我们生活中常见的一种图形.②问题情境导入:如图是某区部分街道示意图,其中BC∥AD∥EG,AB//FH∥DC从学校站乘车到书店站只有两条路线有直接到达的公交车,喜羊羊走路线1:学校—E—A—F—书店;美羊羊走路线2:学校—H—O—G—书店.谁先到书店?(二)、概念引入1、两组对边分别平行的四边形叫做平行四边形. 学校书店ACEFGH记作: ABCD 读作:平行四边形ABCD ∵AB∥CD AD∥BC∴四边形ABCD 是平行四边形.或 ∵四边形ABCD 是平行四边形 ∴AB∥CD AD∥BC 教师提示:平行四边形的对边平行 2、下面的图形中 是平行四边形.(三)探索发现 画一画 1、如何画一个ABCD ?2、我们刚才画平行四边形的过程就是利用了平行四边形的特征,请同学们试一试,用什么方法可以再画一个和ABCD 一样大小的EFGH ?量一量1、以同桌为单位,用直尺,量角器等工具度量你的平行四边形的边和角,并记录下数据,猜想平行四边形的对边对角之间的关系.教师请部分同学公布测量结果.2、用几何画板动画展示运动中的平行四边形的对边、对角之间的关系.让学生加深对平行四边形的对边,对角的认识.转一转在平行四边形ABCD 中连结AC 、BD ,它们的交点记为O.用一枚图钉在O 点穿过,观察旋转后的 ABCD 与是否重合用几何画板动态展示平行四边形绕对角线交点旋转180度的情况,引导学生推出平行四边形的性质.引导学生得出结论124563平行四边形的性质:平行四边形的对边相等、对角相等 几何语言描述:∵ 四边形ABCD 是平行四边形∴ AB=CD ,AD =BC .(平行四边形的对边相等) ∠D= ∠B, ∠C= ∠B .(平行四边形的对角相等)(四)例题讲解 例1 如图,在ABCD 中,已知∠A =40°,求其它各个内角的度数.解 ∵四边形ABCD 是平行四边形 ∴ ∠C =∠A = 40° ∵ AD ∥BC ,∴ ∠B = 180°-∠A = 180° - 40° = 140° ∴ ∠D = ∠B = 140°变式1.已知: ABCD 中, 若∠A+∠C=80°,你能求出各角的度数吗?说说你的理由.变式2.已知 ABCD 中, 若∠B=2 ∠A ,你能求出各角的度数吗?说说你的理由. 例2如图,在□ABCD 中,AB=8,周长等于24.求其余三条边的长. 解:在□ABCD 中, AB=CD, AD=BC. ∵ AB=8,∴ CD=8. 又∵AB+BC+CD+AD=24, ∴ AD=BC= = 4.变式1.如图:已知平行四边形ABCD 周长等于16,AB :BC=3:5, 求平行四边形的各边长.变式2.如图:已知平行四边形 ABCD ,CD=3cm,BC=5cm,AC=4cm, 求 ABCD 的面积. 试一试如图,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺量出平行线之间这些垂线段的长度.1(242)2AB经过度量,我们发现这些垂线段的长度都相等.由此,我们得到平行线的又一个性质:平行线之间的距离处处相等.(五)巩固提高1、(基础题)如图所示,四边形ABCD 是平行四边形 ①若∠A=120° ,则∠B=.∠C= ;∠D=.②若AB =5,BC =3,求它的周长(请写出推理过程). 解决问题引导学生利用平行四边形的性质解决刚才喜羊羊与美羊羊碰到的问题,2、(提高题)如图所示,在平行四边形ABCD 中BC=9,若BE 平分∠ABC,且把AD 分成两段的长度差为1cm,求CD 的长.(六)小结回顾1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2、平行四边形的性质:(七)作业布置 基础题课本习题18.1第1、2题 中等题对边对边平行且相等角对角相等 邻角互补231ECBDABACDEF C如右图,AB=AC,且AB=5,从等腰三角形底边上任一点,分别作两腰的平行线,求所成的平行四边形AEDF的周长?提高题(深圳中考题)如图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将ΔABC向上翻折,点A正好落在CD上的点F处,若ΔFDE的周长为8,ΔFCB的周长为22,则FC的长为单项式与单项式相乘1教学目标知识与技能学生能理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.正确区别各单项式中的系数,同底数的幂和不同底数幂的因式.过程与方法让学生感知单项式乘法法则对两个以上单项式相乘同样成立,知道单项式乘法的结果仍是单项式;经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力.情感、态度与价值观注意培养学生的归纳、概括能力以及运算能力,充分调动学生的积极性,主动性.重点难点重点对单项式运算法则的理解和应用.难点应用单项式与单项式的乘法法则解决数学问题.教学过程一、复习旧知,导入新课我们已经学习了幂的运算性质,你能解答下面的问题吗?1.判断下列计算是否正确,如有错误加以改正.(1)a3·a5=a10;(2)a·a2·a5=a7;(3)(a3)2=a9;(4)(3ab2)2·a4=6a2b4.2.计算:(1)10×102×104=( );(2)(a+b)·(a+b)3·(a+b)4=( );(3)(-2x2y3)2=( ).【教师活动】我们刚才已经复习了幂的运算性质.从本节开始,我们学习整式的乘法.我们知道,整式包括什么?(包括单项式和多项式.)因此整式的乘法可分为单项式乘以单项式、单项式乘以多项式、多项式乘以多项式.这节课我们就来学习最简单的一种:单项式与单项式相乘.二、师生互动,探究新知1.一个长方体底面积是4xy,高度是3x,那么这个长方体的体积是多少?【学生活动】小组合作完成,在小组交流讨论后由代表发言.【教师活动】每一步的依据是什么?(乘法交换律)因此4xy·3x=4·xy·3·x=(4·3)·(x·x)·y=12x2y.(要强调解题的步骤和格式)2.仿照刚才的作法,你能解出下面的题目吗?(1)3x2y·(-2xy3)=[3·(-2)]·(x·x2)(y·y3)=-6x3y4.(2)(-5a2b3)·(-4b2c)=[(-5)×(-4)]·a2·(b3·b2)·c=20a2b5c.【教师活动】第(2)题中在第二个单项式-4b2c中出现的c怎么办?【学生活动】由小组讨论归纳单项式乘单项式的法则,教师板书.单项式和单项式相乘,系数与系数相乘,相同字母的幂分别相乘;对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.三、随堂练习,巩固新知1.3x5·5x3= ,4y·(-2xy3)= .2.3×103×5×102= .3.(-3x2y)·xy2= .4.下列计算正确的是( )A.4a2·2a2=8a6B.2x4·3x4=6x8C.3x2·4x2=12x2D.(2ab2)·(-3abc)=-6a2b3【答案】1.15x8,-8xy4×1063.-x3y34.B四、典例精析,拓展新知【例1】边长是a的正方形面积是a·a,反过来说,a·a也可以看作是边长为a的正方形的面积. 探讨:3a·2a的几何意义.探讨:3a·5ab的几何意义.【答案】可以看做是长为a,宽为5b,高为3a的长方体的体积,也可以看作是长为5a,宽为b,高为3a的长方体的体积.【例2】纳米是一种长度单位,1米=109纳米,试计算长为5米,宽为4米,高为3米的长方体的体积是多少立方纳米?【分析】长方体体积=长×宽×高【答案】6×1028(立方纳米)【教学说明】注意单位换算.五、运用新知,深化理解1.边长分别为2a和a的两个正方形按如图形式摆放,则图中阴影部分的面积是( )A.2a2B.2C.5a2-3aD.a22.光速约为3×105 km/s,太阳光照射到地球所需的时间为5×102 s,则太阳与地球间的距离是km.【答案】1.A ×108【教学说明】第1题若学生思维受阻时,引导阴影部分可以转化成哪些图形的积和差?直角三角形的底和高各是多少?六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.教学反思这节课内容较为简单,在探索单项式乘单项式法则时,注意让学生自己归纳,以提高学生使用数学语言的能力,在推导的过程中,注意每步依据为后面几何证明服务,从而培养逻辑思维能力,变式训练中表达阴影部分面积,旨在培养学生直观图感,将图形语言向数学符号语言转化能力,同时注意转化数学思想的应用.。

分式的基本性质(3)通分_教案

分式的基本性质(3)通分_教案

15.1.2 分式的基本性质(3)----通分教学设计教学目标1.进一步理解分式的基本性质.2.学习掌握分式的约分和通分.3.通过学习分式的基本性质,约分、通分法则,渗透类比的思想方法.教学重点掌握通分的法则教学难点运用分式的基本性质,将分式进行变形教学过程设计一、复习回顾二、复习引入1.分数的通分计算解:(1)(2)变形的依据是分式的基本性质,重点是求出分母的最小公倍数。

分数的通分:根据分数的基本性质,把几个异分母的分数分别化成与原来的分数相等的同分母的分数。

师生活动:教师指出(1)是约分,依据是分式的基本性质,那么(2)是什么变形呢?从而引入新课。

2.分数通分的知识梳理根据分数的基本性质,把几个异分母的分数分别化成与原来的分数相等的同分母的分数,叫分数的通分.1.通分的依据是:分数的基本性质2.通分的基本方法是:先找出分数的分子、分母的最小公倍数,再通分.3.通分的目的:化为同分母分数设计意图:从学生熟悉的分数通分入手,回顾分数的计算及知识梳理,自然衔接新课。

三、类比归纳,讲授新课观察课前的填空题:教师指出是各分母的最简公分母;并得到分式通分的概念:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同2 2 2分母的分式,叫做分式的通分。

我们把各分母的所有因式的最高次幂的积,叫做最简公分母.探究:如何确定最简公分吗1.定系数:各分母系数的最小公倍数2.定字母:各分母中含有的所有字母3.定指数:各字母最高次幂设计意图:通过分数概念的类比,学生能轻松得出分式的概念,并进行类比记忆。

通过事例探究如何确定最简公分母。

例4.解:最简公分母是2a2b2c.师生活动:教师给出例题的示范,并指出由分母的变化决定分子的变化。

跟踪训练1通分:最简公分母是解:最简公分母是(x+5)(x-5).教师总结:分母是多项式时,先因式分解,再将每一个因式看成一个整体,最后确定最简公分母.跟踪训练2通分:解:最简公分母是(a+b)(a-b).跟踪训练3跟踪训练4找出各组分式的最简公分母师生活动:请学生到白板上板演,教师巡视并答疑解惑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.理解并识记什么是通分、最简公分母. • 2.会正确运用分式的基本性质进行分式的通分.
指导自学:
• 认真看课本P131-P132,要求: • 1.类比分数的通分,理解、识记分式的通分. • 2.注意“黄色书签”的提示,思考如何找各分式分母的最简公分
母. • 3.注意例4的解题格式和步骤,思考是如何利用分式的基本性质进
为通分先要确定各分式的公分母,一般取各分母的所有因式的 最高次幂的积作公分母,叫做最简公分母. 注意:确定最简公母是通分的关键.
例4 通分:
(1)
3 2a2b

ab ab2c
2 a2 b2 c
最简公分母
解:(1)最简公分母是2a2b2c
3 2a2b
=
3· bc 2a2b · bc
=
3bc 2a2b2c
8x+4
= 1- 2x
= -(2x -1)(2x+1)
-4x2 +1
2x 4x2 -1
小贴士:在分式的约分与通分中,通常碰到如下因式符号变形: (b-a)2=(a-b)2; b-a=-(a-b).
(3)
2xy (x y)2
, x2
x
y2
解:最简公分母是(x+y)2(x-y)
2xy (x + y)2
=
(
x
2xy(x + y)2
(x
y) -
y)
=
2x2 y - 2xy2 (x + y)2(x - y)
x
x(x + y)
x2 + y2
x2 -
y2 =
(x + y)2(x -
= y)
(x + y)2(x -
y)
作业:
必做题:
1.分式 ,
的最简公分母是________________________.
(1) 与
(2) 与
(3)

(4)

(5) 与
(6) 与
练习:通分:(1)3a1b3
,
3 4a2b
解:最简公分母是12a2b3
1 3ab3
=
4a 12a2b3
3 4a2b
=
9b2 12a 2b3
(2) 4 , 2x 1 2x 4x2 1
解:最简公分母是(2x+1)(2x-1)
4
4(2x+1)
= y)
x(x -
ax y)(x +
= y)
x3
ax - xy
2
,
b x2 +
= xy
b x(x +
= y)
b(x- y) x(x - y)(x +
= y)
bx x3 -
by xy2
,
方法归纳:先将分母因式分解,再将每一个 因式看成一个整体,最后确定最简公分母.
方法归纳
确定几个分式的最简公分母的方法: (1)因式分解 (2)系数:各分式分母系数的最小公倍数; (3)字母:各分母的所有字母的最高次幂; (4)多项式:各分母所有多项式因式的最高次幂; (5)积: 将(2)、(3)、(4)中的因式相乘。
2. , , 的最简公分母是________________________.
选做题: 3.通分:
(1) 与
(3)

(5)

(2)

(4)
,与
(6) 与
=
2x2 + x2 -
5x 25
,
3x = x+ 5
3x(x - 5) = (x + 5)(x - 5)
3x2 x2 -
5x . 25
母 不同的因式
例5
通分:
x2
a
y2

x2
b
xy
(x+y)(x-y) x(x+y)
解:最简公分母是x(x+y)(x-y)
x2
a -
y2
=
(x-
a y)(x +
行通分的. • 如有疑问,可小声问同桌或举手问老师. • 5分钟后,比谁能运用分式的基本性质进行通分.
讲授新课 三 分式的通分 分式的通分的定义
与分数的通分类似,根据分式的基本性质,使分子、分母同乘适当 的整式(即最简公分母),把分母不相同的分式变成分母相同的分 式,这种变形叫分式的通分.
最简公分母
,
a - b (a - b) ? 2a 2a2 2ab ab2c = ab2c · 2a = 2a2b2c .
(2) 2x 与 3x x5 x5
(2)最简公分母是(x+5)(x-5)
最 简
1·(x-5)
1·(x+5)

分 1(x-5) (x+5)
2x x- 5
=
2x(x + 5) (x - 5)(x + 5)
想一想:
分数和分式在约分和通分的做法上有什么共同点?
这些做法的根据是什么?
分数
约分
找分子与分母的 最大公约数
通分
找所有分母的 最小公倍数
分式
找分子与分母 的公因式
找所有分母的 最简公分母
依据 分数或分式的基本性质
检测:
1. 根据分式的基本性质,把几个___________的分式分别化成与原来分式 相等的____________的分式,叫做分式的通分. 2. 为通分,要先确定各分式的公分母,一般取各分母的所有 因式的 ________________作公分母,它叫做最简公分母. 3. 通分:
相关文档
最新文档