自由度ppt课件
合集下载
自由度的计算(经典PPT)

计算平面机构自由度时应注意的事项(2/8)
F=3n-(2pl+ph) =3×5-2×7 -0 =1
计算平面机构自由度时应注意的事项(3/8)
(2)同一运动副 如果两构件在多处 接触而构成运动副,且符合下列情况者, 则为同一运动副,即只能算一个运动副。
1)移动副,且移动方向彼此平行或 重合;
2)转动副,且转动轴线重合; 3)平面高副,且各接触点处的公法 线彼此重合。
No Image
No Image
四、机构
机构:具有确定相对运动并传递运动和力的运动链。 在运动链中,如果将某一个构件加以固定; 而让另一个或几个构件按给定运动规律相固定构件运动时
如果运动链中其余各构件都有确定的相对运动,
则此运动链成为机构。
2
C
B
1
3
4
A
D
机构的组成(14/14)
4.机构 具有固定构件的运动链称为机构。 机 架 ——机构中的固定构件。
闭式运动链(简称闭链) 开式运动链(简称开链)
2
3
1
4
2 3
1 4
平面闭式运动链 空间闭式运动链
23
1
4
平面开式运动链
4
3
5
2 1
空间开式运动链
三、运动链
运动链:两个或两个以上的构件通过运动副联接而构成的系统。 开式运动链:运动链的各构件未构成首末封闭的系统
闭式运动链:运动链的各构件构成首末封闭的系统
移动副
y
1
x
2
自由度数目 1
约束特点: Y方向移动 ,z方向转动
约束数目 2
机构的组成(7/14)
高副 两个独立相对运动。引入1个约束, 保留2个自由度
第02章--平面机构及自由度计算PPT课件

由度,故平面机构的自由度F为
F3 n2P LP H
10
2.3.2 计算平面机构自由度时应注意的事项
实际工作中,机构的组成比较复杂,运用公式 计算 F3n2PLPH 自由度时可能出现差错,这是由于机构中常常存在一些特 殊的结构形式,计算时需要特殊处理。
(1) 复合铰链 (2) 局部自由度 (3) 虚约束
图2-3 构件的自由度 4
1.1.3 课程任务
❖ 机构由若干个相互联接起来的构件组成。机构中两构件之间 直接接触并能作确定相对运动的可动联接称为运动副。如图 2-1(b)所示的内燃机的轴与轴承之间的联接,活塞与汽缸之 间的联接,凸轮与推杆之间的联接,两齿轮的齿和齿之间的 联接等。
❖ 两个构件构成运动副后,构件的某些独立运动受到限制,这 种运动副对构件的独立运动所加的限制称为约束。运动副每 引入一个约束,构件就失去一个自由度。
平面机构及自由度计算
所有构件均在同一平面或相互平行的平面内运动的机构 称为平面机构。工程中常用机构大多数都是平面机构。如图 2-1(a)所示的卡车自动卸料机构、如图2-1(b)所示的内燃机 中的机构都属于平面机构。
图2-1 平面机构 1
平面机构及自由度计算
2.1 平面机构的组成 2.2 平面机构运动简图 2.3 平面机构的自由度计算
11
2.3.3 平面机构具有确定运动的条件
机构相对机构是由构件和运动副组成的系统,机构要实 现预期的运动传递和变换,必须使其运动具有可能性和确 定性。
如图2-14(a)所示的机构,自由度F=0;如图2-14(b)所 示的机构,自由度F=-1,机构不能运动。
如图2-15所示的五杆机构,自由度F=2,若取构件1为 主动件,当只给定主动件1 的位置角1时,从动件2、3、 4的位置既可为实线位置,也可为虚线所处的位置,因此其 运动是不确定的。若取构件1、4为主动件,使构件1、4都 处于给定位置1、4时,才使从动件获得确定运动。
F3 n2P LP H
10
2.3.2 计算平面机构自由度时应注意的事项
实际工作中,机构的组成比较复杂,运用公式 计算 F3n2PLPH 自由度时可能出现差错,这是由于机构中常常存在一些特 殊的结构形式,计算时需要特殊处理。
(1) 复合铰链 (2) 局部自由度 (3) 虚约束
图2-3 构件的自由度 4
1.1.3 课程任务
❖ 机构由若干个相互联接起来的构件组成。机构中两构件之间 直接接触并能作确定相对运动的可动联接称为运动副。如图 2-1(b)所示的内燃机的轴与轴承之间的联接,活塞与汽缸之 间的联接,凸轮与推杆之间的联接,两齿轮的齿和齿之间的 联接等。
❖ 两个构件构成运动副后,构件的某些独立运动受到限制,这 种运动副对构件的独立运动所加的限制称为约束。运动副每 引入一个约束,构件就失去一个自由度。
平面机构及自由度计算
所有构件均在同一平面或相互平行的平面内运动的机构 称为平面机构。工程中常用机构大多数都是平面机构。如图 2-1(a)所示的卡车自动卸料机构、如图2-1(b)所示的内燃机 中的机构都属于平面机构。
图2-1 平面机构 1
平面机构及自由度计算
2.1 平面机构的组成 2.2 平面机构运动简图 2.3 平面机构的自由度计算
11
2.3.3 平面机构具有确定运动的条件
机构相对机构是由构件和运动副组成的系统,机构要实 现预期的运动传递和变换,必须使其运动具有可能性和确 定性。
如图2-14(a)所示的机构,自由度F=0;如图2-14(b)所 示的机构,自由度F=-1,机构不能运动。
如图2-15所示的五杆机构,自由度F=2,若取构件1为 主动件,当只给定主动件1 的位置角1时,从动件2、3、 4的位置既可为实线位置,也可为虚线所处的位置,因此其 运动是不确定的。若取构件1、4为主动件,使构件1、4都 处于给定位置1、4时,才使从动件获得确定运动。
自由度的计算(经典完整)ppt课件

B2 A1
低副(以转动副为例) 联接前:F=3×2=6
能动吗?
联接后:F=3×2-2×1=4
高副(以凸轮副为例)
联接前:F=3×2=6
联接后:F=3×2-1×1=5
.
一、平面运动链的自由度计算公式
F3n2pl ph
n——活动构件数 Pl——低副数 Ph——高副数
分析: 两杆(如门、风扇)
F=3×1-2×1=1
如果运动链中其余各构件都有确定的相对运动,
则此运动链成为机构。
2
C
B
1
3
4
A
D
.
机构的组成(14/14)
4.机构 具有固定构件的运动链称为机构。 机 架 ——机构中的固定构件。
原动件 ——按给定已知运动规律 独立运动的构件;常以转向箭头表示。
2 从动件
3 4
1原动件
机架 平面铰链四杆机构
从动件 ——机构中其余活动构件。 其运动规律决定于原动件的运动规律
机构的组成(5/16)
y
转动副
x
2 1
约束特点: x,y方向移动.
自由度数目 约束数目
1
2
移动副
机构的组成(6/16)
一个独立相对运动。引入2个约束, 保留1个自由度
移动副
y
1
x
2
自由度数目 1
约束特点: Y方向移动 ,z方. 向转动
约束数目 2
机构的组成(7/14)
高副 两个独立相对运动。引入1个约束, 保留2个自由度
=3×4-2×5 -0 =2
.
机构自由度的计算(2/7)
2
3
1
4
3
2
4
《机械原理自由度》课件

机械故障诊断
通过运动分析诊断机械故障的原因 和位置。
控制系统设计
利用运动分析结果设计控制系统的 参数和策略。
机构运动分析的实例
平面四杆机构的运动分析
01
通过解析法计算平面四杆机构的自由度,并分析其运动特性。
凸轮机构的运动分析
02
利用实验法测量凸轮机构的位移、速度和加速度,分析其运动
规律。
机器人臂关节的运动分析
03
通过数值法模拟机器人臂关节的运动行为,优化关节的设计参
数。
04
机构动力学分析
机构动力学的基本概念
机构动力学是研究机 械系统中机构运动及 其与力的关系的学科 。
机构动力学的基本概 念包括力、力矩、加 速度、速度和位移等 。
它涉及到系统的平衡 、运动规律、动态响 应等方面的内容。
机构动力学分析的Байду номын сангаас法
空间机构自由度计算
总结词
空间机构自由度计算是机械原理中一个复杂的概念,它涉及到机构在空间中的 运动自由度数。
详细描述
空间机构的自由度计算公式为F=6n-(3PL + Ph),其中n为活动构件数,PL为低 副数,Ph为高副数。与平面机构不同,空间机构需要考虑三个方向的自由度, 因此计算更为复杂。
特殊机构自由度计算
通过建立平面连杆机构的运动学和动力学模型,分析其运动规律 和动态响应。
凸轮机构的动力学分析
研究凸轮机构的动态行为,包括从动件的运动规律和受力情况等。
齿轮机构的动力学分析
分析齿轮机构的动态特性,如振动、冲击和噪声等,以提高齿轮传 动的平稳性和可靠性。
05
机构优化设计
机构优化设计的目标和方法
目标
自由度的计算(经典课件)

自由度的计算(经典课件)
目录
• 自由度的定义 • 自由度的计算方法 • 自由度在物理中的应用 • 自由度在数学中的应用 • 自由度的计算实例
01 自由度的定义
自由度的定义
自由度是指在某一物理系统或数学模型中,描述一个状态所需的独立参数的数量。
在物理学中,自由度通常用于描述粒子在空间中的位置和动量,或者描述物体的旋 转状态。
热力学的自由度计算
总结词
热力学的自由度计算是研究系统热力学性质的重要手段,它涉及到系统的熵、焓等热力学量的计算。
详细描述
在热力学中,自由度的计算通常基于系统的质量和能量守恒方程。通过求解这些方程,可以得到系统 的熵、焓等热力学量,进而确定系统的自由度数。自由度的计算对于分析系统热力学性质、预测反应 过程和优化能源利用等具有重要意义。
公式
对于一个$m times n$的矩阵$A$,其自由度可以通过计算其秩$r$来 获得,即$r = min(m, n)$。
向量的自由度计算
总结词
向量的自由度计算是解析几何中的基本概念,用于描述向量在空间中的独立变化程度。
详细描述
向量的自由度是指向量在空间中可以独立变化的维度数量。对于一个三维向量,其自由度为3, 因为三个参数(x、y、z)可以独立地变化以产生不同的向量。更高维度的向量具有更多的自 由度。
在数学中,自由度通常用于描述矩阵或向量的秩,或者描述概率分布的参数个数。
自由度在物理中的意义
01
在经典力学中,一个质点的自由度 是3,因为需要三个参数(x, y, z) 来描述其在空间中的位置。
02
对于一个刚体,其自由度取决于 其运动方式。例如,一个绕固定 点旋转的刚体有3个自由度(角度 和角速度)。
统计力学的自由度计算
目录
• 自由度的定义 • 自由度的计算方法 • 自由度在物理中的应用 • 自由度在数学中的应用 • 自由度的计算实例
01 自由度的定义
自由度的定义
自由度是指在某一物理系统或数学模型中,描述一个状态所需的独立参数的数量。
在物理学中,自由度通常用于描述粒子在空间中的位置和动量,或者描述物体的旋 转状态。
热力学的自由度计算
总结词
热力学的自由度计算是研究系统热力学性质的重要手段,它涉及到系统的熵、焓等热力学量的计算。
详细描述
在热力学中,自由度的计算通常基于系统的质量和能量守恒方程。通过求解这些方程,可以得到系统 的熵、焓等热力学量,进而确定系统的自由度数。自由度的计算对于分析系统热力学性质、预测反应 过程和优化能源利用等具有重要意义。
公式
对于一个$m times n$的矩阵$A$,其自由度可以通过计算其秩$r$来 获得,即$r = min(m, n)$。
向量的自由度计算
总结词
向量的自由度计算是解析几何中的基本概念,用于描述向量在空间中的独立变化程度。
详细描述
向量的自由度是指向量在空间中可以独立变化的维度数量。对于一个三维向量,其自由度为3, 因为三个参数(x、y、z)可以独立地变化以产生不同的向量。更高维度的向量具有更多的自 由度。
在数学中,自由度通常用于描述矩阵或向量的秩,或者描述概率分布的参数个数。
自由度在物理中的意义
01
在经典力学中,一个质点的自由度 是3,因为需要三个参数(x, y, z) 来描述其在空间中的位置。
02
对于一个刚体,其自由度取决于 其运动方式。例如,一个绕固定 点旋转的刚体有3个自由度(角度 和角速度)。
统计力学的自由度计算
《自由度及计算》课件

方差分析中的自由度
方差分析用于确定一个或多个因素是否对数据造成了显著影响,需要计算组 内方差和组间方差,并使用自由度进行计算。
结论
作用
自由度在统计学中起着重要的作用。
计算方式
通过样本数量和独立变量数量计算得出。
统计方法
常用于t检验和方差分析等统计方法的计算中。
《自由度及计算》PPT课 件
# 自由度及计算 PPT 课件
自由度的定义
自由度是指系统可以自由变动的能力,在统计学中,它是指样本中独立变量 的数量。
自由度的计算
1 离散型数据
自由度计算公式为:n-1
2 连续型数据
自由度计算公式为:N-1
t检验中的自由度
t检验用于确定一个样本是否与某一总体是否有显著差异,t值的计算需要自由 度,通常计算公式为n-1或N-1。
自由度的计算 ppt课件

为使运动链获得确定的相对运动,构件的总数、运动 副类型和数量以及独立运动数目必须符合一定的关系, 将在自由度计算中加以论述。
PPT课件
12
§1.2 机构运动简图
在对现有机械进行分析或设计新机器时,都需 要绘出其机构运动简图。 1. 机构运动简图的定义 机构运动简图 根据机构的运动尺寸,按一定的 比例尺定出各运动副的位置, 采用运动副及常 用机构运动简图符号和构件的表示方法,将机构 运动传递情况表示出来的简化图形。 机构示意图 按比例绘出不严格的,只表示机械 结构状况的简图。
18
平面运动副的约束
PPT课件
19
平面运动副的约束
高副约束1个自由度
PPT课件
20
§1.4 平面机构的自由度计算公式 n个活动构件(不包括机架), pl个低
副, ph个高副,则
自由度计算公式: F=3n-(2pl+ph)
PPT课件
21
举例 3
2
3
1
4
3
2
4
1
5
10 C 11
8 ,9 3
7D B
所拆杆组中,级别最高的杆组为 该机构的杆组级别
PPT课件
32
颚式破碎机 机构简图及杆组拆法
组成原理:原动件+机架+杆组(F=0)
PPT课件
33
平面机构中的高副低代
高副低代的原则:
• 代替前后机构的自由度完全相同 • 代替前后机构的瞬时速度和瞬时
加速度完全相同
PPT课件
34
高副低代的方法: 二高副元素在接触点处的曲率中心用
PPT课件
24
举例 4Βιβλιοθήκη F 3n 2 pl ph 35260 3
PPT课件
12
§1.2 机构运动简图
在对现有机械进行分析或设计新机器时,都需 要绘出其机构运动简图。 1. 机构运动简图的定义 机构运动简图 根据机构的运动尺寸,按一定的 比例尺定出各运动副的位置, 采用运动副及常 用机构运动简图符号和构件的表示方法,将机构 运动传递情况表示出来的简化图形。 机构示意图 按比例绘出不严格的,只表示机械 结构状况的简图。
18
平面运动副的约束
PPT课件
19
平面运动副的约束
高副约束1个自由度
PPT课件
20
§1.4 平面机构的自由度计算公式 n个活动构件(不包括机架), pl个低
副, ph个高副,则
自由度计算公式: F=3n-(2pl+ph)
PPT课件
21
举例 3
2
3
1
4
3
2
4
1
5
10 C 11
8 ,9 3
7D B
所拆杆组中,级别最高的杆组为 该机构的杆组级别
PPT课件
32
颚式破碎机 机构简图及杆组拆法
组成原理:原动件+机架+杆组(F=0)
PPT课件
33
平面机构中的高副低代
高副低代的原则:
• 代替前后机构的自由度完全相同 • 代替前后机构的瞬时速度和瞬时
加速度完全相同
PPT课件
34
高副低代的方法: 二高副元素在接触点处的曲率中心用
PPT课件
24
举例 4Βιβλιοθήκη F 3n 2 pl ph 35260 3
自由度的计算 PPT

低副(以转动副为例) 联接前:F=3×2=6
能动吗?
联接后:F=3×2-2×1=4
高副(以凸轮副为例)
联接前:F=3×2=6 联接后:F=3×2-1×1=5
一、平面运动链的自由度计算公式
F3n2pl ph
n——活动构件数 Pl——低副数 Ph——高副数
分析: 两杆(如门、风扇) F=3×1-2×1=1
机构的组成(7/14)
高副 两个独立相对运动。引入1个约束, 保留2个自由度
高副
n
t n2 t
21
1
约束特点:n方向移动
自由度数目 约束数目
2
1
机构的组成(13/1对可动的系统。
闭式运动链(简称闭链) 开式运动链(简称开链)
2
3
1
4
2 3
1 4
平面闭式运动链 空间闭式运动链
=3×4-2×5 -0 =2
机构自由度的计算(2/7)
2
3
1
4
3
2
4
1
5
3)曲柄滑块机构
F=3n-(2pl+ph) =3×3-2×4 -0 =1
机构自由度的计算(3/7)
4)凸轮机构
F=3n-(2pl+ph) =3×2-2×2 -1 =1
计算平面机构自由度时应注意的事项
1.要正确计算运动副的数目 (1)复合铰链 两个以上构件同时在一处以转 动副相联接就构成了复合铰链。
23
1
4
平面开式运动链
4
3
5
2 1
空间开式运动链
三、运动链
运动链:两个或两个以上的构件通过运动副联接而构成的系统。 开式运动链:运动链的各构件未构成首末封闭的系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;.
5
两刚片以一铰及不通过该铰的一个链杆相联, 构成无多余约束的几何不变体系.
常变体系
瞬变体系
两刚片以不相互平行,也不相交于一点的三个 链杆相连,构成无多余约束的几何不变体系.
;.
6
刚片本身不 应包含多余约束
判断自由度
;.
7
;.
8
多余约束:在体系上加上或撤除某一约束并不改变 原体系的自由度数,则该约束就是多余约束。
分清必要约束和非必要约束
刚结点-3个约束
;.
2
瞬变体系
C
A
B
A
B
C’
三
0 0'
铰 共
P
线
N1
N2
N3
;.
3
平面体系的自由度 平面刚片体系的自由度
单铰:连接两个刚片的铰结点。
复铰:连接两个以上刚片的铰结点。 相当于(n-1)个单铰。
先考虑内部(不考虑支座),杆7个,21个自由度,约束2+2+2+2+2+4+4=18,支 座处三个,共21个,静定
;.
4
W=结点数x2 -杆件数-支承链杆数 W=刚片数x3-单铰数x2-支承链杆数
计算自由度大于零一定可变; 若等于零则一定不变吗? 计算自由度小于零一定不变吗? 计算自由度小于零一定有多余约束吗?
自由度
y
A 0
A' Dy
Dx
x
y
A'
B' D
AB
Dy
Dx
0Leabharlann x体系可独立运动的方式称为该体系的自由度。或表示体系位置的独立坐标数。 平面体系的自由度:用以确定平面体系在平面内位置的独立坐标数。
;.
1
约束 如果体系有了自由度,必须消除,消除的办法是增加约束。约束有三种:
A
C
B
链杆-1个约束
单铰-2个约束