VoLTE语音感知问题原因分析与优化

合集下载

VoLTE语音分组丢失原因分析及优化策略

VoLTE语音分组丢失原因分析及优化策略

其他VoLTE语音分组丢失原因分析及优化策略倪浩荡,邓寿提,韦文仁,孙兵,苏均垣(中国移动通信集团设计院有限公司广东分公司,广东广州 510000)摘 要:V oLTE语音业务相对普通数据业务来说,对无线信号质量的要求更高,与V oLTE语音业务有关的优化是当前无线网络优化的重点工作,其中分组丢失率是直接影响用户语音感知的重要指标,通过探讨V oLTE 语音分组丢失的原因,提出了无线侧优化策略,为日常无线网络优化提供思路及解决手段。

关键词:V oLTE;语音丢失;eSRVCC;无线网络优化中图分类号:TN929.5文献标识码:Adoi: 10.11959/j.issn.1000−0801.2018065VoLTE voice packet loss causes analysisand optimization strategyNI Haodang, DENG Shouti, WEI Wenren, SUN Bing, SU JunyuanGuangdong Branch of China Mobile Group Design Institute Co., Ltd., Guangzhou 510000, ChinaAbstract: Compared with common data service, the V oLTE voice services will require a higher quality of wireless signals, optimization associated with V oLTE voice services is the focus of current wireless network optimization. Moreover, packet loss rate is also an important indicator that directly affects users’ voice perception. The reasons why V oLTE voice packets were missing were discussed and wireless side optimization strategies through discussing, were proposed ideas and solutions for daily wireless network optimization were provided.Key words: V oLTE, voice packet loss, eSRVCC, wireless network optimization1 引言V oLTE(voice over LTE)语音业务相对普通数据业务来说,对无线信号质量的要求更高,与V oLTE语音业务有关的优化是当前无线网络优化的重点工作,其中分组丢失率是直接影响用户语音感知的重要指标,也是影响影响平均意见值(MOS)的一个重要因素。

VOLTE掉话分析

VOLTE掉话分析

VOLTE掉话分析VOLTE(Voice Over LTE)是一种在4G LTE网络上实现高质量语音通话的技术。

它比传统的2G和3G网络更高效和先进,但在实际应用过程中,仍有可能出现掉话的情况。

下面将分析VOLTE掉话的可能原因和解决方法。

首先,VOLTE掉话的原因可能和网络覆盖有关。

4GLTE网络有时在一些较为偏远的地区信号覆盖可能不稳定,或者室内覆盖不足,这都可能导致VOLTE掉话。

解决这一问题的方法可以是增加基站的覆盖范围或增加室内信号增强器等设备。

其次,VOLTE掉话的原因还可能和设备功率管理有关。

在信号弱的地方,手机可能会增大功率以保持通信连接,这可能会导致电量消耗过快,进而导致掉话。

此外,设备的软件或硬件故障也可能导致VOLTE掉话。

解决这一问题的方法可以是优化设备的功率管理算法,确保设备正常运行,并及时修复软硬件故障。

再次,VOLTE掉话的原因还可能和网络负载有关。

在高峰时段或网络拥堵的情况下,网络负载增加可能导致语音通话的质量下降,包括掉话。

解决这一问题的方法可以是提升网络的容量,增加带宽等。

此外,VOLTE掉话还可能和网络的QoS(Quality of Service)设置有关。

QoS的设置可以对不同类型的数据流分配不同的优先级,如果语音通话的优先级设置不当,可能导致VOLTE掉话。

解决这一问题的方法可以是合理设置QoS,确保语音通话的优先级高于其他数据流。

最后,VOLTE掉话的原因还可能和网络的连接稳定性有关。

网络的连接不稳定可能导致通话中断,从而出现掉话情况。

解决这一问题的方法可以是优化网络的传输协议,提高连接的稳定性。

总的来说,VOLTE掉话的原因可能涉及网络覆盖、设备功率管理、网络负载、QoS设置和连接稳定性等多个方面。

要解决这一问题,需要优化网络、设备和软件配置,并加强对网络质量的监控和维护。

只有在确保网络稳定和通信质量高的情况下,才能实现高质量的VOLTE通话体验。

VoLTE优化经验总结及案例

VoLTE优化经验总结及案例

VoLTE优化经验总结及案例分享1优化经验总结1.1日常优化总结日常优化工作主要从无线覆盖优化、参数优化、系统内外邻区优化,功能优化四个方面着手,与ATU路网、工程建设紧密配合,提升整体网络质量。

1.2RLC优先级优化现象:呼叫建立与切换过程冲突,专载被MME释放。

呼叫建立过程中专载建立与切换几乎同时发生,MME未收到NAS专载完成消息导致释放专载,终端回复invite580(也有上发CANCLE的情况),专载丢失形成未接通事件。

原因分析:QCI5设置的RLC优先级为2,高于SRB=2(传送NAS层消息)配置为3.导致NAS的层3消息已经比MR要早,但是因为优先级比MR 和SIP低,未及时发送。

优化措施:降低QCI5优先级,确保SIP消息及时上传,修改后此类问题改善明显。

1.3QCI5PDCP DiscardTimer时长优化现象:终端业务建立过程中,出现SIP信息传递丢失的问题,导致收到网络下发的INVITE500或者580等原因值释放。

原因分析:UE在无线信道较差的情况下,SIP信令发送或接收不完整或者无法及时传递,导致IMS相关定时器超时而发起会话cancel。

经过分析,由于QCI5的pdcp丢弃时长过小,在无线覆盖较差的地方,上行时延会变大,容易导致QCI5信令丢包。

优化措施:QCI5PDCP DiscardTimer由300ms修改为无穷大优化效果:VoLTE无线接通率提升明显1.4SBC传输协议TCP重传次数优化背景:被叫从2G返回4G后,主叫起呼,被叫首先bye消息,紧接着接连收到多条上一次呼叫的invite,被叫回复bye481\invite486\invite580,呼叫失败。

优化措施:爱立信SBC对TCP配置进行了修改:最大重传次数从15次改为5次,最大重传隔间从十几分钟改为15s,此类问题已解决。

1.5系统间邻区优化LTE网络的GSM邻区关系根据工程参数、共站2G邻区同向小区继承进行规划,同时根据4G、2G道路测试数据匹配进行邻区补充:4G弱信号路段与2G拉网服务小区匹配:利用第三方拉网测试数据,将4G和2G拉网信号强度、经纬度、服务小区等信息导出。

VoLTE常见问题及优化策略

VoLTE常见问题及优化策略
息包含重定向的目标频点,该频点与A3测报中小区频点一致。 ➢ 分析方法 检查异频A3测报中小区是否存在于异频邻区列表中。 ➢ 优化方法 1、基站侧增加区分QCI1业务的异频重定向关闭功能; 2、对于漏配邻区进行增补。
五、常见问题分析二 异系统重定向(1/2)
➢问题现象
终端在弱场区域,基站下发盲重定向的RRC Release消息,消息中包含重定向的2G 频点列表。
➢优化方法 1)可以通过调整天线方向角和下倾角、增加天线挂高、更换更高增益天线、 增强RS功率等方法来优化覆盖 2)对于相邻基站覆盖区不交叠部分内用户较多或者不交叠部分较大时,应新 建基站,或增加周边基站的覆盖范围,使两基站覆盖交叠深度加大 3)对于凹地、山坡背面等引起的弱覆盖区可用新增基站或RRU,以延伸覆盖 范围;对于电梯井、隧道、地下车库或地下室、高大建筑物内部的信号盲区可 以利用RRU、室内分布系统、泄漏电缆、定向天线等方案来解决
五、常见问题分析三 RSRP/SINR差(1/2)
➢问题现象 终端在弱场区域,RSRP/SINR过差,导致业务中断,原因多为RTP inactivity 导致RRC Release。 ➢分析方法 查看RRC Release之前的终端测量,确定终端是否处在RSRP/SINR过差区域。
五、常见问题分析三 RSRP/SINR差(2/2)
五、常见问题分析二 异系统重定向(2/2)
➢ 优化方法 1. LTE弱覆盖:优化LTE覆盖 2. 假性弱覆盖:优化切换、重选参数 3. 终端测量B2不及时:一是高通正在验证新的芯片,新芯片支持DRX休
眠期对异频异系统进行测量,缩短测量周期;二是通过删减无用的异 频频点,减少终端测量的频点数以达到缩短测量周期的目的 4. 2G邻区配置错误:做好eSRVCC的邻区精细化规划和周期一致性核查 5. 基站功能改进: 601P02版本可针对语音业务关闭重定向功能

VOLTE寻呼拥塞分析优化案例

VOLTE寻呼拥塞分析优化案例

VOLTE寻呼拥塞分析优化案例一、案例背景VOLTE(Voice over LTE)是指通过LTE网络进行语音通信的技术,它提供了高质量的语音通话和丰富的通话功能。

然而,在实际网络运营中,由于网络拥塞等原因,VOLTE寻呼过程中可能浮现延迟或者失败的情况,影响用户的通话体验。

因此,我们需要进行VOLTE寻呼拥塞分析优化,以提高寻呼成功率和通话质量。

二、问题分析1. 寻呼拥塞原因分析:我们需要对VOLTE寻呼拥塞问题进行深入分析,找出导致寻呼失败或者延迟的具体原因。

可能的原因包括网络拥塞、信号覆盖不足、信道干扰等。

2. 寻呼成功率分析:对于寻呼成功的情况,我们需要分析成功率,并根据不同地区、时间段等因素进行对照分析,找出成功率较低的地区或者时间段,并进一步分析原因。

3. 通话质量分析:除了寻呼成功率外,我们还需要分析VOLTE通话质量,包括音质、时延、丢包率等指标。

通过对通话质量的分析,我们可以找出影响通话质量的因素,并进行优化。

三、数据采集与分析1. 数据采集:我们需要采集VOLTE寻呼过程中的相关数据,包括寻呼请求次数、寻呼成功次数、寻呼失败次数、寻呼延迟时间、通话质量指标等。

这些数据可以通过网络监测设备、基站设备、用户设备等进行采集。

2. 数据分析:采集到的数据需要进行详细的分析,包括寻呼成功率的计算、寻呼延迟时间的统计、通话质量指标的计算等。

通过对数据的分析,我们可以找出问题所在,并制定相应的优化方案。

四、优化方案1. 网络优化:针对网络拥塞问题,我们可以通过增加基站、优化网络参数、调整信道分配等手段来提高网络容量和覆盖范围,从而减少寻呼拥塞情况的发生。

2. 信号优化:对于信号覆盖不足的问题,我们可以通过增加基站或者调整天线方向来改善信号覆盖情况,提高寻呼成功率。

3. 干扰处理:针对信道干扰问题,我们可以通过频谱分析、干扰源定位等手段来找出干扰源,并采取相应的干扰消除措施,提高寻呼成功率和通话质量。

VoLTE无线侧优化策略——提升用户语音感知

VoLTE无线侧优化策略——提升用户语音感知

VoLTE无线侧优化策略——提升用户语音感知VoLTE是在4G网络全IP条件下的端到端语音解决方案,能提供更短的接入时延和更好的语音质量。

在建立语音质差模型和分析空口丢包原理的基础上,梳理无线侧VoLTE语音感知的优化流程,对无线侧影响VoLTE语音感知的6个维度进行专项优化整治,实施效果较好,为今后VoLTE用户语音感知优化提供参考和指导。

0 引言VoLTE是基于IMS网络的LTE语音解决方案,相对于传统VoIP语音,能提供更好的QoS保障。

在衡量VoLTE网络性能、运营质量和客户感知的评估体系中,VoLTE语音的时延和丢包是关键指标。

时延的缩短对减少网络信令资源消耗和减轻网络负荷具有重要价值,也对提升客户体验和客户满意度具有显著意义。

5G时代到来后,VoNR将成为主流语音技术,在5G建设初期,VoNR将和VoLTE一起共同组成解决语音业务的基础,当手机移动到5G信号覆盖较差的区域时,需要切换到LTE网络,由VoLTE来提供语音服务。

为给客户提供优质的语音质量和感知体验,VoLTE语音感知优化成为当前重点研究课题之一。

1 无线侧的影响因素在3GPP LTE协议中,VoLTE业务编码有AMR-NB宽带(12.2k)和AMR-WB(23.85k)宽带两种编码,每20ms产生一个语音包,每160ms生成一个语音静默包,帧长20ms。

AMR-NB和AMR-WB的本质区别在于其语音带宽和抽样频率有所区别,NB 的语音带宽范围为300~3 400kHz,抽样频率为8kHz;而WB 的语音带宽为50~7000 kHz,抽样频率为16kHz。

用户语音感知差归纳为3种现象:吞字、断续和单通。

吞字是指感觉对方说话不清或漏字;断续是指感觉对方说话时断时续,有明显停顿;单通是指无法听到对方说话。

影响上述现象的无线侧的因素有空口时延、空口抖动、空口问题导致的丢包,各类因素说明如下(表1)。

2语音通话质差模型2.1 TD-LTE语音解决方案TD-LTE网络的语音解决方案主要包括SVLTE、CSFB和VoLTE/eSRVCC等3种,SVLTE属于双待终端解决方案,终端同时驻留在2G/3G以及LTE网络;CSFB属于单待终端解决方案,涉及2G/3G/4G系统,流程较复杂,呼叫时延较长;VoLTE通过IMS网络实现高清语音功能,呼叫时延较短。

VoLTE语音感知问题原因分析与优化

VoLTE语音感知问题原因分析与优化

8语音感知问题原因分析与优化8.1概述8.1.1 MOS指标定义MOS 值(Mean Opinion Score),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。

MOS 与人的主观感受映射关系如下:一般情况下,MOS 值大于等于被认为是较优的语音质量,大于等于被认为是可以接受的语音质量,低于被认为是难以接受的语音质量。

中国电信对MOS 分的定义为路测MOS 分,基于宽带AMR(AMR WB)的POLQA 算法打分。

8.1.2 MOS取值方法中国电信集团只有语音MOS的测试标准,视频业务目前业界无通用MOS测评标准,所以现阶段VoLTE 的MOS值测试仅针对语音业务。

MOS测试采用VoLTEv1.0可编辑可修改拨打VoLTE的方式,测试宽带VoLTE编码的语音质量。

VoLTE语音MOS采样机制如下:1)主叫起呼,进行录音(8s左右);2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s);3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推……8.1.3 影响MOS的主要因素影响VoLTE MOS值的因素主要有端到端时延、丢包、抖动等,如下:类别原因说明时延传输时延传输时延是指结点在发送数据时使数据块从结点进入到传输媒体所需的时间,即一个站点从开始发送数据帧到数据帧发送完毕(或者是接收站点接收一个数据帧的全部时间)所需要的全部时间,传输引入时延大于80ms,导致端到端时延大于200ms,通过ping包测试检测传输时延。

EPC转发时延排除空口时延和传输时延后,通过EPC抓包分析EPC转发时延问题空口时延空口是基站和移动电话之间的无线传输规范,定义每个无线信道的使用频率、带宽、接入时机、编码方法以及越区切换,影响空口时延的主要因素是数据传输时长、数据传输资源请求等待时间,以及数据处理导致的反馈延时等。

VoLTE语音感知问题原因分析与优化

VoLTE语音感知问题原因分析与优化

8语音感知问题原因分析与优化8.1概述8.1.1 MOS指标定义MOS值(MeanOpinionScore),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。

MOS与人的主观感受映射关系如下:一般情况下,MOS值大于等于3.8被认为是较优的语音质量,大于等于3.0被认为是可以接受的语音质量,低于3.0被认为是难以接受的语音质量。

中国电信对MOS分的定义为路测MOS分,基于宽带AMR(AMR WB)的POLQA算法打分。

8.1.2 MOS取值方法中国电信集团只有语音MOS的测试标准,视频业务目前业界无通用MOS测评标准,所以现阶段VoLTE 的MOS值测试仅针对语音业务。

MOS测试采用VoLTE拨打VoLTE的方式,测试宽带VoLTE编码的语音质量。

VoLTE语音MOS采样机制如下:1)主叫起呼,进行录音(8s左右);2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s);3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推……8.1.3 影响MOS的主要因素影响VoLTE MOS值的因素主要有端到端时延、丢包、抖动等,如下:类别原因说明时延传输时延传输时延是指结点在发送数据时使数据块从结点进入到传输媒体所需的时间,即一个站点从开始发送数据帧到数据帧发送完毕(或者是接收站点接收一个数据帧的全部时间)所需要的全部时间,传输引入时延大于80ms,导致端到端时延大于200ms,通过ping包测试检测传输时延。

EPC转发时延排除空口时延和传输时延后,通过EPC抓包分析EPC转发时延问题空口时延空口是基站和移动之间的无线传输规,定义每个无线信道的使用频率、带宽、接入时机、编码方法以及越区切换,影响空口时延的主要因素是数据传输时长、数据传输资源请求等待时间,以及数据处理导致的反馈延时等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8语音感知问题原因分析与优化8.1概述8.1.1 MOS指标定义MOS 值(Mean Opinion Score),即语音质量的平均意见值,是衡量通信系统语言质量的重要指标。

MOS 与人的主观感受映射关系如下:一般情况下,MOS 值大于等于3.8 被认为是较优的语音质量,大于等于3.0 被认为是可以接受的语音质量,低于3.0 被认为是难以接受的语音质量。

中国电信对MOS 分的定义为路测MOS 分,基于宽带AMR(AMR WB)的POLQA 算法打分。

8.1.2 MOS取值方法中国电信集团只有语音MOS的测试标准,视频业务目前业界无通用MOS测评标准,所以现阶段VoLTE 的MOS值测试仅针对语音业务。

MOS测试采用VoLTE 拨打VoLTE的方式,测试宽带VoLTE编码的语音质量。

VoLTE语音MOS采样机制如下:1)主叫起呼,进行录音(8s左右);2)被叫放音,主叫收音,被叫记录第1个MOS采样点(8s);3)主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);4)被叫放音,主叫收音,被叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);5)主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);6)被叫放音,主叫收音,被叫记录第3个MOS采样点(8s),如此类推……8.1.3 影响MOS的主要因素影响VoLTE MOS值的因素主要有端到端时延、丢包、抖动等,如下:类别原因说明时延传输时延传输时延是指结点在发送数据时使数据块从结点进入到传输媒体所需的时间,即一个站点从开始发送数据帧到数据帧发送完毕(或者是接收站点接收一个数据帧的全部时间)所需要的全部时间,传输引入时延大于80ms,导致端到端时延大于200ms,通过ping包测试检测传输时延。

EPC转发时延排除空口时延和传输时延后,通过EPC抓包分析EPC转发时延问题空口时延空口是基站和移动电话之间的无线传输规范,定义每个无线信道的使用频率、带宽、接入时机、编码方法以及越区切换,影响空口时延的主要因素是数据传输时长、数据传输资源请求等待时间,以及数据处理导致的反馈延时等。

降低空口时延,可以提升移动通信系统的性能,时延类问题优先排查传输时延和空口时延,通过PDCP环回、复测跟踪CELL DT数据等手段验证是否存在空口时延丢包空口持续下行质差包含下行弱覆盖,下行干扰,漏配邻区不切换,导致连续丢包上行高干扰上行干扰大于-113dBm,导致eNodeB无法正常解码PUSCH或DTX比例较高,导致连续丢包上行接入受限PL大于125,在上行底噪较好的情况下,也容易出现上行接收容易受限,现象是MOS样本发端的UL MAC BLER较高,尤其是CRS功率设置大于9.2dBm下行失步后重建下行失步主要原因为无线环境不好,干扰,弱覆盖等,在协议里面针对上行链路失步和下行链路失步分别定义了判断标准,上行链路失步会删除链路,立即断开,造成UE最终掉话,如在切换时目标小区上行失步会导致切换失败引起掉话;下行失步会进行cellupdate,如果cu成功,业务可以恢复,这种小区更新的原因是下行失步,目的是一直挽救机制,但在失步时语音业务会受到影响,MOS评分变低甚至掉话,UE从RRC连接态突然进入空闲态,并且发起RRC重建,导致连续丢包小区重建小区内RRC和激活用户数过多,导致QCI1无法及时调度,PDCP丢弃定时器超时后丢包,SRI调度不及时导致丢包等。

频繁切换系统内切换过程对MOS有影响,系统内切换对MOS值不一定影响非常大,RSRP较好地方切换MOS值下降0.1-0.5,而乒乓切换影响较大,MOS值下降0.5-1.5分,路测工具每10S采集一次MOS值(10S平均值),如果采集到切换过程的MOS,测试结果就会偏低,咋分析路测数据是,需要关注低MOS区域是否有切换或者乒乓切换发生,导致RTP短时间内连续丢包抖动传输抖动传输引入时延大于80ms,导致端到端时延大于200ms,通过ping包测试检测传输时延空口抖动语音抖动是网络时延和网络抖动造成的。

网络时延是指一个IP包在网络上传输所需的平均时间,网络抖动是指IP包传输时间的长短变化。

当网络上的语音时延(加上声音采样、数字化和压缩时延)超过200 ms时,通话双方一般就倾向于采用半双工的通话方式,一方说完后另一方再说。

另一方面,如果网络抖动较为严重,那么有的语音包因迟到被丢弃,会产生话音的断续及部分失真,严重影响音质。

,空口抖动容易出现在大话务场景下,因为调度因素出现空口抖动,还包括空口质量问题导致MAC重传引入的抖动。

8.2M OS优化思路MOS 质差首先要进行定界定位分析,判断问题原因,明确是无线空口问题还是网元设备问题,再进行深入分析和解决。

影响MOS的因素涉及端到端,具体可以归纳为两通道、三网元,需要拉通端到端进行分析优化,如下:两管道三网元空口管道承载网管道CN eNodeB UE1.空口质量2.空口资源3.QoS配置1.大时延、抖动2.丢包、乱序1.核心网数据配置2.组网结构3.流程配置1.基站处理能力2.算法特性限制1.终端能力2.语音编码1.话务容量受限2.覆盖差3.丢包时延大4.频繁重选或者位置更新导致寻呼不到5.上下行干扰1.参数配置2.容量或能力限制3.传输质量问题4.UGW到P-CSCF传输异常1.TAU和切换流程冲突、TAU失败问题2.被叫域选失败3.网络侧路由配置缺失/错误导致路由选择失败4.Diameter链路数据的捆绑方式5.UGW数据转发失败1.寻呼参数优化2.业务分层优化3.弱覆盖优化4.邻区优化5.RRC重建6.乒乓切换1.参数编码设置2.软件编码限制3.主被叫终端、用户行为4.特殊场景优化5.终端ROHC问题6.注册问题VoLTE MOS提升分析思维导图如下:8.2.1 终端侧终端侧主要考虑三个方面:硬件能力、软件能力、语音编码。

终端入网时一般均需要经过入网测试验证,确保其硬件、软件均正常,符合集团的终端入网规范,一般检查的范围包括:终端的MCU处理能力、终端是否支持VoLTE、1.8G/800M频段支持情况、信号灵敏度、RoHC等特性支持情况、终端操作系统、版本等;在核查问题时,需要检查其终端是否存在硬件、软件故障,检查其版本是否为正常的商用版本,在VOLTE商用初期,会有大量的终端存在网络适配、协议规范性、信号灵敏度等方面的问题,需要终端厂家整改。

VoLTE使用的AMR-WB有9种编码格式,常用的有AMR-WB 12.65kbit/s、AMR-WB 23.85kbit/s,采用更高的编码方式可以带来更好的语音质量,提升MOS。

宽带语音编码速率自适应有两种方式:1)终端自身触发;2)基站侧的ECN (Explicit Congestion Notification)显示拥塞指示来触发UE 修改自己的编码速率。

如下图所示,宽带编码速率自适应,主要是在近点采用较高的编码速率,在边缘采用较低的编码速率,Link Adaptation 可以和 Power Control 并行,对切换也没有影响,因为执行两者的输入不同。

8.2.2 基站侧基站侧的丢包率、抖动和时延是影响VoLTE语音质量的关键指标,对MOS 分影响较大,也是无线侧优化的重点。

下面分别给出了丢包率和抖动指标对MOS 分的影响趋势:丢包率对于语音MOS 分的影响较大,接近线性;语音包抖动超过一定值时会明显影响MOS,如 jitter超过100ms;端到端时延大到一定值时会明显影响 MOS 分。

由于丢包、时延和抖动是影响VoLTE语音质量的直接因素,反映到无线侧主要就是覆盖、资源、干扰、切换等,因此无线空口网络质量优化是MOS提升的关键。

8.2.2.1覆盖类覆盖是影响MOS的最重要因素,弱覆盖直接影响到语音质量。

根据多次MOS 值拉网分析MOS分随RSRP变化的分布,可知RSRP低于-110dBm时,MOS分恶化较为明显,如下所示:根据多次MOS值拉网分析MOS分随SINR分布,可知SINR低于0时,MOS分恶化较为明显,如下所示:MOS>3.5分,对应的覆盖要求为RSRP>-110dbm&SINR>0db,在覆盖达不到此要求的情况下,MOS无法达到要求。

定位方法:满足下述判断条件则认为网络覆盖差:RSRP分布:RSRP<-110dBm,SINR分布差:SINR<0dB。

优化方法:通过软件按规范筛选出覆盖黑点区域,进行天馈调整或功率补偿,缺少站点区域可规划新增站点。

8.2.2.2资源类在大话务量场景下,语音有高优先级,数据业务的负载对语音MOS的影响较小,但是语音业务话务量较大的情况下,也可能会出现资源受限导致的语音丢包,这种情况下要分析资源是否已经充分利用。

接入阶段的VoLTE用户干扰较大,刚接入用户初始接入功率很高,对相邻码道的用户会产生很大的干扰,而导致上行丢包。

平均每次VoLTE 语音呼叫的资源消耗情况:语音通话过程中的资源消耗PUCCH资源平均每用户每秒SR请求42.4 平均每用户每秒CQI反馈49.7PRB资源平均每用户上行每秒物理层速率(kbps)43.4 平均每用户下行每秒物理层速率(kbps)42.2平均每用户上行每秒占用PRB 个数146.3 平均每用户下行每秒占用PRB 个数143.5PDCCH资源平均每用户每秒消耗PDCCH 次数59.8 平均PDCCH 汇聚等级(AGG level) 2.83 平均每用户每秒消耗CCE 数量169.2 5M带宽每秒CCE 数量(3 symbols)21000小区容量:在5M带宽小区下,PDCCH 资源将会是 VOLTE 语音业务感知下降的最主要因素,理论支持 124 个用户:空口资源分别根据以下记录的指标,计算CCE,PRB的利用率,判断小区资源是否拥塞:平均利用率>60%,就认为负载较高,可能应影响语音质量。

需要进行高负荷场景下的参数配置核查。

定位方法:计算CCE,PRB利用率,判断小区资源是否拥塞,平均利用率>60%,就认为负载较高,可能会影响语音质量;优化方法:体现在无线环境良好的情况下,无干扰,无丢包,无高时延情况,MOS依然低下,需从后台查询小区状态是否存在高负荷情况,如PRB资源利用率大于60%,20M带宽用户数大于400。

8.2.2.3干扰类上行干扰直接影响上行丢包,从而影响MOS值。

查看MOS分低点区域TOP 小区的上行干扰话统数据,如果平均RSSI>=-105dBm,则初步判断很有可能存在上行干扰。

DT测试log中,查看终端上行发射功率是否存在大幅提升(表现为整网路测log的UE发射功率分布中,满功率比例明显增加,例如满功率比例增加15%以上),并且网管上的上行接收SINR水平降低。

相关文档
最新文档