人教A版高中数学选修推理与证明同步练习(4)

合集下载

新人教A版高中数学选修1-2第二章:推理与证明

新人教A版高中数学选修1-2第二章:推理与证明

第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1­ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。

2014-2015学年 高中数学 人教A版选修2-2 推理与证明课后作业

2014-2015学年 高中数学 人教A版选修2-2 推理与证明课后作业

§2.1 合情推理与演绎推理2.1.1 合情推理(一)一、基础过关1.数列5,9,17,33,x ,…中的x 等于( )A .47B .65C .63D .1282.已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33为( )A .3B .-3C .6D .-6 3.根据给出的数塔猜测123 456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111A .1 111 110B .1 111 111C .1 111 112D .1 111 1134.我们把1,4,9,16,25,…这些数称做正方形数,这是因为这些数目的点子可以排成一个正方形(如图).试求第n 个正方形数是( )A .n (n -1)B .n (n +1)C .n 2D .(n +1)25.f (n )=1+12+13+…+1n (n N ∈ *),计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,推测当n ≥2时,有________. 二、能力提升6.设x R ∈,且x ≠0,若x +x -1=3,猜想x 2n +x -2n (n R ∈*)的个位数字是________.7.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________.8.如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________.9.如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题.(1)按照要求填表:(2)S 10=________.(3)S n =10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=________.(用k 表示)11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n+2=0(n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分. (1)3条直线最多将平面分成多少部分?(2)设n 条直线最多将平面分成f (n )部分,归纳出f (n +1)与f (n )的关系;(3)求出f (n ).三、探究与拓展13.在一容器内装有浓度r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式bn .2.1.1 合情推理(二)一、基础过关 1.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin (x +y )类比,则有sin(x +y )=sin x +sin yC .把a (b +c )与a x +y 类比,则有a x +y =a x +a yD .把a (b +c )与a ·(b +c )类比,则有a ·(b +c )=a ·b +a ·c 2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; ③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°. A .①②B .①③C .①②④D .②④3.在等差数列{a n }中,若a n <0,公差d >0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q >1,则下列有关b 4,b 5,b 7,b 8的不等关系正确的是( )A .b 4+b 8>b 5+b 7B .b 5+b 7>b 4+b 8C .b 4+b 7>b 5+b 8D .b 4+b 5>b 7+b 84.已知扇形的弧长为l ,半径为的r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇=________.5.类比平面直角坐标系中△ABC 的重心G (x ,y )的坐标公式⎩⎨⎧x =x 1+x 2+x 33y =y 1+y 2+y33(其中A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)),猜想以A (x 1,y 1,z 1)、B (x 2,y 2,z 2)、C (x 3,y 3,z 3)、D (x 4,y 4,z 3)为顶点的四面体A —BCD 的重心G (x ,y ,z )的公式为________.6.公差为d (d ≠0)的等差数列{a n }中,S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d ,类比上述结论,相应地在公比为q (q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有_____________________________________. 二、能力提升7.把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是________.(填序号) ①如果一条直线与两条平行线中的一条相交,则也与另一条相交; ②如果一条直线与两条平行线中的一条垂直,则也与另一条垂直; ③如果两条直线同时与第三条直线相交,则这两条直线相交或平行; ④如果两条直线同时与第三条直线垂直,则这两条直线平行.8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质中,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.9.已知抛物线y 2=2px (p >0),过定点(p,0)作两条互相垂直的直线l 1、l 2,若l 1与抛物线交于P 、Q 两点,l 2与抛物线交于M 、N 两点,l 1的斜率为k ,某同学已正确求得弦PQ 的中点坐标为(p k 2+p ,pk),请你写出弦MN 的中点坐标:________.10.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.11.如图(1),在平面内有面积关系S △P A ′B ′S △P AB=P A ′P A ·PB ′PB ,写出图(2)中类似的体积关系,并证明你的结论.12.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.三、探究与拓展13.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及给出理由.2.1.2演绎推理一、基础过关1.下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③ B.②③④C.②④⑤D.①③⑤2.下列说法不正确的是() A.演绎推理是由一般到特殊的推理B.赋值法是演绎推理C.三段论推理的一个前提是肯定判断,结论为否定判断,则另一前提是否定判断D.归纳推理的结论都不可靠3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin (x2+1)是奇函数.以上推理() A.结论正确B.大前提不正确C.小前提不正确D.全不正确4.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等.”以上推理的大前提是() A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形5.给出演绎推理的“三段论”:直线平行于平面,则平行于平面内所有的直线;(大前提)已知直线b∥平面α,直线a⊂平面α;(小前提)则直线b∥直线a.(结论)那么这个推理是()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误6.下列几种推理过程是演绎推理的是() A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图二、能力提升7.三段论:“①小宏在2013年的高考中考入了重点本科院校;②小宏在2013年的高考中只要正常发挥就能考入重点本科院校;③小宏在2013年的高考中正常发挥”中,“小前提”是__________(填序号).8.在求函数y=log2x-2的定义域时,第一步推理中大前提是当a有意义时,a≥0;小前提是log2x-2有意义;结论是__________________.9.由“(a2+a+1)x>3,得x>3a2+a+1”的推理过程中,其大前提是______________.10.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上的凸集,给出平面上4个点集的图形如图(阴影区域及其边界):其中为凸集的是________(写出所有凸集相应图形的序号).11.用演绎推理证明函数f(x)=|sin x|是周期函数.12.设a>0,f(x)=e xa+ae x是R上的偶函数,求a的值.三、探究与拓展13.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.§2.2直接证明与间接证明2.2.1综合法和分析法(一)一、基础过关1.已知a,b,c R,那么下列命题中正确的是() A.若a>b,则ac2>bc2B.若ac>bc,则a>bC.若a3>b3且ab<0,则1a>1b D.若a2>b2且ab>0,则1a<1b2.A、B为△ABC的内角,A>B是sin A>sin B的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知直线l,m,平面α,β,且l⊥α,m⊂β,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l⊥m;④若l∥m,则α⊥β. 其中正确命题的个数是()A.1 B.2 C.3 D.44.设a,b都是正实数,且a≠b,a+b=2,则必有() A.1≤ab≤a2+b22B.ab<1<a2+b22C.ab<a2+b22<1 D.a2+b22<ab<15. 已知a ,b 为非零实数,则使不等式:a b +ba≤-2成立的一个充分不必要条件是( )A .ab >0B .ab <0C .a >0,b <0D .a >0,b >0二、能力提升6. 设0<x <1,则a =2x ,b =1+x ,c =11-x中最大的一个是( )A .aB .bC .cD .不能确定7. 已知a 、b 、c R ,且a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是0D .正、负不能确定8.设a =2,b =7-3,c =6-2,则a ,b ,c 的大小关系为________. 9.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p 、q 的大小关系为________.10.如果a a +b b >a b +b a ,求实数a ,b 的取值范围.11.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 212.已知a >0,1b -1a >1,求证:1+a >11-b .三、探究与拓展13.已知a 、b 、c 是不全相等的正数,且0<x <1.求证:log x a +b 2+log x b +c 2+log x a +c2<log x a +log x b +log x c .2.2.1 综合法和分析法(二)一、基础过关1. 已知a ≥0,b ≥0,且a +b =2,则( )A .a ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤32. 已知a 、b 、c 、d ∈{正实数},且a b <cd,则( )A .a b <a +c b +d <c dB .a +c b +d <a b <c dC .a b <c d <a +c b +dD .以上均可能3. 下面四个不等式:①a 2+b 2+c 2≥ab +bc +ac ; ②a (1-a )≤14; ③b a +ab ≥2; ④(a 2+b 2)(c 2+d 2)≥(ac +bd )2.其中恒成立的有( )A .1个B .2个C .3个D .4个4. 若实数a ,b 满足0<a <b ,且a +b =1,则下列四个数中最大的是( )A .12B .2abC .a 2+b 2D .a5.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是________.6. 如图所示,SA ⊥平面ABC ,AB ⊥BC ,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F .求证:AF ⊥SC .证明:要证AF ⊥SC ,只需证SC ⊥平面AEF ,只需证AE ⊥SC (因为______),只需证______,只需证AE ⊥BC (因为________),只需证BC ⊥平面SAB ,只需证BC ⊥SA (因为________).由SA ⊥平面ABC 可知,上式成立. 二、能力提升7. 命题甲:(14)x 、2-x 、2x -4成等比数列;命题乙:lg x 、lg(x +2)、lg(2x +1)成等差数列,则甲是乙的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8. 若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg(a +b 2),则( )A .R <P <QB .P <Q <RC .Q <P <RD .P <R <Q9. 已知α、β为实数,给出下列三个论断:①αβ>0;②|α+β|>5;③|α|>22,|β|>2 2.以其中的两个论断为条件,另一个论断为结论,你认为正确的命题是________. 10.如果a ,b 都是正数,且a ≠b ,求证:a b +ba>a +b .11.已知a >0,求证: a 2+1a 2-2≥a +1a-2.12.已知a 、b 、c R ∈,且a +b +c =1,求证:(1a -1)(1b -1)·(1c -1)≥8.13.已知函数f (x )=x 2+2x +a ln x (x >0),对任意两个不相等的正数x 1、x 2,证明:当a ≤0时,f (x 1)+f (x 2)2>f (x 1+x 22).三、探究与拓展14.已知a ,b ,c ,d R ∈,求证:ac +bd ≤(a 2+b 2)(c 2+d 2).(你能用几种方法证明?)2.2.2 反证法一、基础过关1. 反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是( )①与已知条件矛盾 ②与假设矛盾 ③与定义、公理、定理矛盾 ④与事实矛盾 A .①②B .①③C .①③④D .①②③④2. 否定:“自然数a ,b ,c 中恰有一个偶数”时正确的反设为( )A .a ,b ,c 都是偶数B .a ,b ,c 都是奇数C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数 3. 有下列叙述:①“a >b ”的反面是“a <b ”; ②“x =y ”的反面是“x >y 或x <y ”; ③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有 ( ) A .0个B .1个C .2个D .3个4. 用反证法证明命题:“a 、b N ∈,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不都能被5整除D .a 不能被5整除5. 用反证法证明命题:“若整系数一元二次方程ax 2+bx +c =0有有理根,那么a ,b ,c 中存在偶数”时,否定结论应为( )A .a ,b ,c 都是偶数B .a ,b ,c 都不是偶数C .a ,b ,c 中至多一个是偶数D .至多有两个偶数6.“任何三角形的外角都至少有两个钝角”的否定应是____________________________. 7.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为_________. 二、能力提升8. 已知x 1>0,x 1≠1且x n +1=x n ·(x 2n +3)3x 2n +1(n =1,2,…),试证:“数列{x n }对任意的正整数n 都满足x n >x n +1”,当此题用反证法否定结论时应为 ( )A .对任意的正整数n ,有x n =x n +1B .存在正整数n ,使x n =x n +1C .存在正整数n ,使x n ≥x n +1D .存在正整数n ,使x n ≤x n +1 9. 设a ,b ,c 都是正数,则三个数a +1b ,b +1c ,c +1a( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2 10.若下列两个方程x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根, 则实数a 的取值范围__.11.已知a ,b ,c ,d R ∈,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.12.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不可能都大于14.三、探究与拓展13.已知函数f (x )=a x +x -2x +1 (a >1),用反证法证明方程f (x )=0没有负数根.§2.3 数学归纳法2.3.1数学归纳法一、基础过关1.某个命题与正整数有关,如果当n =k (k N ∈*)时,该命题成立,那么可推得n =k +1时,该命题也成立.现在已知当n =5时,该命题成立,那么可推导出( )A .当n =6时命题不成立B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立2.一个与正整数n 有关的命题,当n =2时命题成立,且由n =k 时命题成立可以推得n =k +2时命题也成立,则 ( )A .该命题对于n >2的自然数n 都成立B .该命题对于所有的正偶数都成立C .该命题何时成立与k 取值无关D .以上答案都不对3.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步验证n 等于 ( )A .1B .2C .3D .04.若f (n )=1+12+13+…+12n +1(n N ∈*),则n =1时f (n )是( )A .1B .13C .1+12+13D .以上答案均不正确5.已知f (n )=1n +1n +1+1n +2+…+1n2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+146.在数列{a n }中,a 1=2,a n +1=a n3a n +1(n N ∈*),依次计算a 2,a 3,a 4,归纳推测出a n 的通项表达式为 ( )A .24n -3B .26n -5C .24n +3D .22n -1二、能力提升7.用数学归纳法证明等式(n +1)(n +2)…(n +n )=2n ·1·3·…·(2n -1)(n N ∈*),从k 到k +1左端需要增乘的代数式为( ) A .2k +1B .2(2k +1)C .2k +1k +1D .2k +3k +18.已知f (n )=1n +1+1n +2+…+13n -1(n N ∈*),则f (k +1)=f (k )+______________________.9.用数学归纳法证明:(1-13)(1-14)(1-15)…(1-1n +2)=2n +2(n ∈N *).10.用数学归纳法证明:12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2(n N ∈*).11.已知数列{a n }的第一项a 1=5且S n -1=a n (n ≥2,n N ∈*),S n 为数列{a n }的前n 项和. (1)求a 2,a 3,a 4,并由此猜想a n 的表达式;(2)用数学归纳法证明{a n }的通项公式.三、探究与拓展12.是否存在常数a 、b 、c ,使得等式1×22+2×32+3×42+…+n (n +1)2=nn +12(an 2+bn +c )对一切正整数成立?并证明你的结论.2.3.2 数学归纳法应用举例一、基础过关1.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2 (n N ∈*),验证n =1时,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+42.用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取 ( ) A .2B .3C .5D .63.已知f (n )=1+12+13+…+1n (n N ∈+),证明不等式f (2n )>n 2时,f (2k +1)比f (2k )多的项数是( )A .2k-1项B .2k+1项 C .2k 项D .以上都不对4.用数学归纳法证明不等式1n +1+1n +2+…+12n >1124(n N ∈*)的过程中,由n =k 递推到n =k +1时,下列说法正确的是 ( )A .增加了一项12(k +1)B .增加了两项12k +1和12(k +1)C .增加了B 中的两项,但又减少了一项1k +1D .增加了A 中的一项,但又减少了一项1k +15.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n N ∈*).依次计算出S 1,S 2,S 3,S 4后,可猜想S n的表达式为________________. 二、能力提升6.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n N ∈*)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)37.k (k ≥3,k ∈N *)棱柱有f (k )个对角面,则(k +1)棱柱的对角面个数f (k +1)为 ( )A .f (k )+k -1B .f (k )+k +1C .f (k )+kD .f (k )+k -28.对于不等式n 2+n ≤n +1 (n N ∈*),某学生的证明过程如下:①当n =1时,12+1≤1+1,不等式成立.②假设n =k (k N ∈*)时,不等式成立,即k 2+k ≤k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<k 2+3k +2+(k +2)=(k +2)2=(k +1)+1,所以当n =k +1时,不等式成立,上述证法 ( ) A .过程全部正确 B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确9.用数学归纳法证明122+132+…+1(n +1)2>12-1n +2.假设n =k 时,不等式成立.则当n =k +1时,应推证的目标不等式是__________________. 10.证明:62n -1+1能被7整除(n N ∈*).11.求证:1n +1+1n +2+…+13n >56(n ≥2,n N ∈ *).12.已知数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n +2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明.三、探究与拓展13.试比较2n+2与n 2的大小(n N ∈*),并用数学归纳法证明你的结论.章末检测一、选择题1.由1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,得到1+3+…+(2n -1)=n 2用的是 ( ) A .归纳推理B .演绎推理C .类比推理D .特殊推理2.在△ABC 中,E 、F 分别为AB 、AC 的中点,则有EF ∥BC ,这个问题的大前提为( ) A .三角形的中位线平行于第三边 B .三角形的中位线等于第三边的一半 C .EF 为中位线 D .EF ∥BC3.用反证法证明命题“2+3是无理数”时,假设正确的是 ( )A .假设2是有理数B .假设3是有理数C .假设2或3是有理数D .假设2+3是有理数 4.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A .2k (k +2)B .1k (k +1)C .1(k +1)(k +2)D .2(k +1)(k +2)5.已知f (x +1)=2f (x )f (x )+2,f (1)=1(x N ∈*),猜想f (x )的表达式为( )A .42x +2B .2x +1C .1x +1D .22x +16.已知f (x +y )=f (x )+f (y )且f (1)=2,则f (1)+f (2)+…+f (n )不能等于 ( )A .f (1)+2f (1)+…+nf (1)B .f (n (n +1)2)C .n (n +1)D .n (n +1)2f (1)7.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0;②a =b 与b =c 及a =c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( )A .0个B .1个C .2个D .3个8.我们把平面几何里相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.下列几何体中,一定属于相似体的有( )①两个球体;②两个长方体;③两个正四面体; ④两个正三棱柱;⑤两个正四棱椎. A .4个B .3个C .2个D .1个9.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于( )A .12B .-1C .2D .310.定义在R 上的函数f (x )满足f (-x )=-f (x +4),且f (x )在(2,+∞)上为增函数.已知x 1+x 2<4且(x 1-2)·(x 2-2)<0,则f (x 1)+f (x 2)的值( )A .恒小于0B .恒大于0C .可能等于0D .可正也可负二、填空题11.从1=12,2+3+4=32,3+4+5+6+7=52中,可得到一般规律为__________________.12.如图所示是按照一定规律画出的一列“树型”图,设第n 个图有a n 个“树枝”,则a n +1与a n (n ≥1)之间的关系是__________________.13.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =ACBC ,把这个结论类比到空间:在三棱锥A —BCD 中(如图所示),面DEC 平分二面角A —CD —B 且与AB 相交于E ,则得到的类比的结论是________.三、解答题14.把下面在平面内成立的结论类比地推广到空间,并判断类比的结论是否成立: (1)如果一条直线和两条平行线中的一条相交,则必和另一条相交; (2)如果两条直线同时垂直于第三条直线,则这两条直线互相平行.15.1,3,2能否为同一等差数列中的三项?说明理由.16.设a ,b 为实数,求证:a 2+b 2≥22(a +b ).17.设a ,b ,c 为一个三角形的三边,s =12(a +b +c ),且s 2=2ab ,试证:s <2a .18.数列{a n }满足a 1=16,前n 项和S n =n (n +1)2a n .(1)写出a 2,a 3,a 4;(2)猜出a n 的表达式,并用数学归纳法证明.19.设f (n )=1+12+13+…+1n ,是否存在关于自然数n 的函数g (n ),使等式f (1)+f (2)+…+f (n -1)=g (n )·[f (n )-1]对于n ≥2的一切自然数都成立?并证明你的结论.。

11-12学年高中数学 2.1.1.1 归纳推理同步练习 新人教A版选修2-2

11-12学年高中数学 2.1.1.1 归纳推理同步练习 新人教A版选修2-2

归纳推理一、选择题1.关于归纳推理,下列说法正确的是( ) A .归纳推理是一般到一般的推理 B .归纳推理是一般到个别的推理 C .归纳推理的结论一定是正确的 D .归纳推理的结论是或然性的 [答案] D[解析] 归纳推理是由特殊到一般的推理,其结论的正确性不一定.故应选D. 2.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 [答案] B[解析] 由归纳推理的定义知B 是归纳推理,故应选B. 3.数列{a n }:2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33 D .27 [答案] B[解析] 因为5-2=3×1,11-5=6=3×2,20-11=9=3×3,猜测x -20=3×4,47-x =3×5,推知x =32.故应选B.4.在数列{a n }中,a 1=0,a n +1=2a n +2,则猜想a n 是( ) A .2n -2-12 B .2n -2C .2n -1+1 D .2n +1-4[答案] B[解析] ∵a 1=0=21-2, ∴a 2=2a 1+2=2=22-2,a 3=2a 2+2=4+2=6=23-2,a 4=2a 3+2=12+2=14=24-2,……猜想a n =2n-2. 故应选B.5.某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( )A .a (1+p )7B .a (1+p )8C.a p [(1+p )7-(1+p )] D.a p[(1+p )8-(1+p )] [答案] D[解析] 到2006年5月10日存款及利息为a (1+p ). 到2007年5月10日存款及利息为a (1+p )(1+p )+a (1+p )=a [(1+p )2+(1+p )]到2008年5月10日存款及利息为a [(1+p )2+(1+p )](1+p )+a (1+p )=a [(1+p )3+(1+p )2+(1+p )] ……所以到2012年5月10日存款及利息为a [(1+p )7+(1+p )6+…+(1+p )]=a (1+p )[1-(1+p )7]1-(1+p )=a p[(1+p )8-(1+p )]. 故应选D.6.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n 等于( ) A.2(n +1)2 B.2n (n +1)C.22n-1 D.22n -1[答案] B[解析] 因为S n =n 2a n ,a 1=1, 所以S 2=4a 2=a 1+a 2⇒a 2=13=23×2,S 3=9a 3=a 1+a 2+a 3⇒a 3=a 1+a 28=16=24×3,S 4=16a 4=a 1+a 2+a 3+a 4⇒a 4=a 1+a 2+a 315=110=25×4. 所以猜想a n =2n (n +1),故应选B.7.n 个连续自然数按规律排列下表:根据规律,从2010到2012箭头的方向依次为( ) A .↓→ B .→↑ C .↑→ D .→↓ [答案] C[解析] 观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由234可知从2010到2012为↑→,故应选C.8.(2010·山东文,10)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x ) [答案] D[解析] 本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数, ∴g (-x )=-g (x ),选D ,体现了对学生观察能力,概括归纳推理的能力的考查. 9.根据给出的数塔猜测123456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1111 1234×9+5=11111 12345×9+6=111111…A .1111110B .1111111C .1111112D .1111113 [答案] B[解析] 根据规律应为7个1,故应选B.10.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第七个三角形数是( ) A .27 B .28 C .29 D .30 [答案] B[解析] 观察归纳可知第n 个三角形数共有点数:1+2+3+4+…+n =n (n +1)2个,∴第七个三角形数为7×(7+1)2=28.二、填空题11.观察下列由火柴杆拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴杆有________根;第n个图形中,火柴杆有________根.[答案] 13,3n+1[解析] 第一个图形有4根,第2个图形有7根,第3个图形有10根,第4个图形有13根……猜想第n个图形有3n+1根.12.从1=12,2+3+4=32,3+4+5+6+7=52中,可得一般规律是__________________.[答案] n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2[解析] 第1式有1个数,第2式有3个数相加,第3式有5个数相加,故猜想第n个式子有2n-1个数相加,且第n个式子的第一个加数为n,每数增加1,共有2n-1个数相加,故第n个式子为:n+(n+1)+(n+2)+…+{n+[(2n-1)-1]}=(2n-1)2,即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.13.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为________.[答案] S=4(n-1)(n≥2)[解析] 每条边上有2个圆圈时共有S=4个;每条边上有3个圆圈时,共有S=8个;每条边上有4个圆圈时,共有S=12个.可见每条边上增加一个点,则S增加4,∴S与n的关系为S=4(n-1)(n≥2).14.(2009·浙江理,15)观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,……由以上等式推测到一个一般的结论:=__________________.对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1[答案] 24n-1+(-1)n22n-1[解析] 本小题主要考查归纳推理的能力等式右端第一项指数3,7,11,15,…构成的数列通项公式为a n =4n -1,第二项指数1,3,5,7,…的通项公式b n =2n -1,两项中间等号正、负相间出现,∴右端=24n -1+(-1)n 22n -1.三、解答题15.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立?[解析] 根据已知特殊的数值:9π、162π、253π,…,总结归纳出一般性的规律:n2(n -2)π(n ≥3).∴在n 边形A 1A 2…A n 中:1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3).16.下图中(1)、(2)、(3)、(4)为四个平面图.数一数每个平面图各有多少个顶点?多少条边?它们围成了多少个区域?并将结果填入下表中.平面区域 顶点数 边数 区域数 (1) (2) (3) (4)(1)(2)现已知某个平面图有999个顶点,且围成了999个区域,试根据以上关系确定这个平面图有多少条边?[解析] 各平面图形的顶点数、边数、区域数如下表:平面区域 顶点数 边数 区域数 关系 (1) 3 3 2 3+2-3=2 (2) 8 12 6 8+6-12=2 (3) 6 9 5 6+5-9=2 (4) 1015710+7-15=2结论 VE FV +F -E =2 推广999E999E =999+999-2其顶点数故可猜想此平面图可能有1996条边.17.在一容器内装有浓度为r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n (每次注入的溶液浓度都是p %),计算b 1、b 2、b 3,并归纳出b n 的计算公式.[解析] b 1=a ·r 100+a 4·p100a +a 4=1100⎝ ⎛⎭⎪⎫45r +15p , b 2=ab 1+a 4·p 100a +a 4=1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫452r +15p +452p .b 3=a ·b 2+a 4·p100a +a 4=1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫453r +15p +452p +4253P ,∴归纳得b n =1100⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫45n r +15p +452p +…+4n -15n P . 18.设f (n )=n 2+n +41,n ∈N +,计算f (1),f (2),f (3),…,f (10)的值,同时作出归纳推理,并用n =40验证猜想是否正确.[解析] f (1)=12+1+41=43,f (2)=22+2+41=47,f (3)=32+3+41=53,f (4)=42+4+41=61, f (5)=52+5+41=71,f (6)=62+6+41=83, f (7)=72+7+41=97,f (8)=82+8+41=113, f (9)=92+9+41=131,f (10)=102+10+41=151.由于43、47、53、61、71、83、97、113、131、151都为质数. 即:当n 取任何非负整数时f (n )=n 2+n +41的值为质数. 但是当n =40时,f (40)=402+40+41=1681为合数. 所以,上面由归纳推理得到的猜想不正确.。

配套K12新版高中数学人教A版选修2-2习题:第二章推理与证明 2.2.1.1

配套K12新版高中数学人教A版选修2-2习题:第二章推理与证明 2.2.1.1

2.2直接证明与间接证明2.2.1综合法和分析法第1课时综合法课时过关·能力提升基础巩固1设a,b∈R,若a-|b|>0,则下列不等式正确的是()A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0解析∵a-|b|>0,∴|b|<a,∴a>0,∴-a<b<a,∴b+a>0.答案D2函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)解析f'(x)=(x-3)'e x+(x-3)·(e x)'=(x-2)e x,令f'(x)>0,解得x>2,故选D.答案D3已知在等差数列{a n}中,a5+a11=16,a4=1,则a12的值是()A.15B.30C.31D.64解析已知在等差数列{a n }中,a 5+a 11=16,又a 5+a 11=2a 8,所以a 8=8.又2a 8=a 4+a 12,所以a 12=15.故选A. 答案A4已知a ≥0,b ≥0,且a+b=2,则( )A.ab ≤12B.ab ≥12C.a 2+b 2≥2D.a 2+b 2≤3解析由a+b=2,可得ab ≤1,当且仅当a=b=1时取等号.又a 2+b 2=4-2ab ,∴a 2+b 2≥2. 答案C5已知实数a ≠0,且函数f (x )=a (x 2+1)-(2x +1a )有最小值-1,则a= .解析f (x )=ax 2-2x+a-1a 有最小值,则a>0,对称轴为x=1a ,f (x )min =f (1a)=-1,即f (1a )=a ·(1a )2-2×1a +a-1a =-1,即a-2a =-1,所以a 2+a-2=0(a>0),解得a=1. 答案16设p ,q 均为实数,则“q<0”是“关于x 的方程x 2+px+q=0有一个正实根和一个负实根”的 条件.(填“充要”“必要不充分”“充分不必要”或“既不充分也不必要”)解析因为q<0,所以Δ=p 2-4q>0.所以“方程x 2+px+q=0有一个正实根和一个负实根”成立.因为“方程x 2+px+q=0有一个正实根和一个负实根”,所以q<0.答案充要7设a ,b ,c 为不全相等的正数,且abc=1,求证:1a+1b+1c>√a +√b +√c . 分析解答本题可先把abc=1代入,再利用基本不等式进行推证. 证明因为a ,b ,c 为不全相等的正数,且abc=1,所以1a+1b+1c=bc+ca+ab.又bc+ca ≥2√bc ·√ca =2√c ,ca+ab ≥2√ca ·√ab =2√a ,ab+bc ≥2√ab ·√bc =2√b ,且a ,b ,c 不全相等,所以上述三个不等式中的“=”不能同时成立.所以2(bc+ca+ab )>2(√c +√a +√b ), 即bc+ca+ab>√a +√b +√c . 故1a +1b +1c >√a +√b +√c .8在△ABC 中,三边a ,b ,c 成等比数列.求证:a cos 2C 2+c cos 2A 2≥32b. 证明∵a ,b ,c 成等比数列,∴b 2=ac. ∵左边=a (1+cosC )2+c (1+cosA )2=12(a+c )+12(a cos C+c cos A )=12(a+c )+12(a ·a 2+b 2-c 22ab+c ·b 2+c 2-a 22bc)=12(a+c )+12b ≥√ac +b 2=b+b 2=32b=右边,当且仅当a=c 时,等号成立,∴a cos 2C2+c cos 2A2≥32b.9若a ,b ,c 是不全相等的正数,求证:lga+b 2+lg b+c 2+lg c+a2>lg a+lg b+lg c. 证明∵a ,b ,c ∈(0,+∞),∴a+b2≥√ab >0,b+c2≥√bc >0,a+c2≥√ac >0.又a ,b ,c 是不全相等的正数,故上述三个不等式中等号不能同时成立.∴a+b 2·b+c 2·c+a2>abc 成立. 上式两边同时取常用对数,得lg (a+b 2·b+c 2·c+a2)>lg(abc ),∴lga+b 2+lg b+c 2+lg c+a2>lg a+lg b+lg c. 能力提升1若a ,b ,c 是常数,则“a>0,且b 2-4ac<0”是“对任意x ∈R ,有ax 2+bx+c>0”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析因为a>0,且b 2-4ac<0⇒ax 2+bx+c>0对任意x ∈R 恒成立.反之,ax 2+bx+c>0对任意x ∈R 恒成立不能推出a>0,且b 2-4ac<0,反例为:当a=b=0,且c>0时也有ax 2+bx+c>0对任意x ∈R 恒成立,所以“a>0,且b 2-4ac<0”是“对任意x ∈R ,有ax 2+bx+c>0”的充分不必要条件. 答案A2在面积为S (S 为定值)的扇形中,弧所对的圆心角为θ,半径为r ,当扇形的周长p 最小时,θ,r 的值分别是( ) A.θ=1,r=√S B.θ=2,r=√S 4C.θ=2,r=√S 3D.θ=2,r=√S解析因为S=12θr 2,所以θ=2S r2.又扇形周长为p=2r+θr=2(r +Sr)≥4√S ,所以当r=S r,即r=√S 时,p 取最小值,此时θ=2. 故选D. 答案D★3若O 是平面上的定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗⃗ |),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.外心 B.内心 C.重心D.垂心解析因为OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗⃗ |),所以AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|). 所以AP 是△ABC 中∠BAC 的内角平分线.故动点P 的轨迹一定通过△ABC 的内心. 答案B4已知sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,则cos(α-β)的值为 . 解析∵sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,∴{sinα+sinβ=-sinγ,cosα+cosβ=-cosγ.以上两式两边平方相加,得2+2(sin αsin β+cos αcos β)=1,∴cos(α-β)=-12.答案-125已知q 和n 均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x 1+x 2q+…+x n q n-1,x i∈M ,i=1,2,…,n }. (1)当q=2,n=3时,用列举法表示集合A ;(2)设s ,t ∈A ,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,其中a i ,b i ∈M ,i=1,2,…,n.证明:若a n <b n ,则s<t. (1)解当q=2,n=3时,M={0,1},A={x|x=x 1+x 2·2+x 3·22,x i ∈M ,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)证明由s ,t ∈A ,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,a i ,b i ∈M ,i=1,2,…,n 及a n <b n ,可得s-t=(a 1-b 1)+(a 2-b 2)q+…+(a n-1-b n-1)·q n-2+(a n -b n )q n-1 ≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q -1)(1-q n -1)1-q-q n-1=-1<0. 所以,s<t.6已知数列{a n }满足a 1=1,a n+1=3a n +1.(1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.证明(1)由a n+1=3a n +1得a n+1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n 2,因此{a n }的通项公式为a n =3n -12. (2)由(1)知1a n=23n-1. 因为当n ≥1时,3n -1≥2×3n-1,所以13n-1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n)<32.所以1a 1+1a 2+…+1a n <32.★7设f n (x )是等比数列1,x ,x 2,…,x n 的各项和,其中x>0,n ∈N ,n ≥2.(1)证明:函数F n (x )=f n (x )-2在(12,1)内有且仅有一个零点(记为x n ),且x n =12+12x n n+1;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x ),比较f n (x )和g n (x )的大小,并加以证明.(1)证明F n (x )=f n (x )-2=1+x+x 2+…+x n -2,则F n (1)=n-1>0,F n (12)=1+12+(12)2+…+(12)n-2=1-(12)n+11-12-2=-12n <0,所以F n (x )在(12,1)内至少存在一个零点.又F n '(x )=1+2x+…+nx n-1>0,故F n (x )在(12,1)内单调递增,所以F n (x )在(12,1)内有且仅有一个零点x n . 因为x n 是F n (x )的零点,所以F n (x n )=0,即1-x n n+11-x n-2=0,故x n =12+12x n n+1.(2)解当x=1时,f n (x )=g n (x );当x ≠1时,f n (x )<g n (x ). 证明如下:由假设,g n (x )=(n+1)(1+x n )2. 设h (x )=f n (x )-g n (x )=1+x+x 2+…+x n -(n+1)(1+x n )2,x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,h'(x )=1+2x+…+nx n-1-n (n+1)x n -12. 若0<x<1,h'(x )>x n-1+2x n-1+…+nx n-1-n (n+1)2x n-1=n (n+1)2x n-1-n (n+1)2x n-1=0. 若x>1,h'(x )<x n-1+2x n-1+…+nx n-1-n (n+1)2x n-1 =n (n+1)2x n-1-n (n+1)2x n-1=0.所以h (x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以h (x )<h (1)=0,即f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x );当x≠1时,f n(x)<g n(x).。

2020_2021学年高中数学第二章推理与证明2.1.1合情推理训练含解析新人教A版选修1_2

2020_2021学年高中数学第二章推理与证明2.1.1合情推理训练含解析新人教A版选修1_2

2.1.1 合情推理[A 组 学业达标]1.“鲁班发明锯子”的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.该过程体现了( )A .归纳推理B .类比推理C .没有推理D .以上说法都不对解析:推理是根据一个或几个已知的判断来确定一个新的判断的思维过程,上述过程是推理,由性质类比可知是类比推理. 答案:B2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( ) A.r 22B.l 22 C.lr2D .无法确定解析:扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2. 答案:C3.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.干支是天干和地支的总称.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.2019年是干支纪年法中的己亥年,那么2050年是干支纪年法中的( )A.丁酉年B.庚午年C.乙未年D.丁未年解析:天干是以10为构成的等差数列,地支是以12为公差的等差数列,2019年是干支纪年法中的己亥年,则2050的天干为庚,地支为午,故选B.答案:B4.n个连续自然数按规律排列下表:根据规律,从2 019到2 021箭头的方向依次为( )A.↓→B.→↑C.↑→D.→↓解析:观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由可知从2019到2021为→↓,故应选D.答案:D5.如图所示,着色的三角形的个数依次构成数列{a n}的前4项,则这个数列的一个通项公式为( )A.a n=3n-1B.a n=3nC.a n=3n-2n D.a n=3n-1+2n-3解析:∵a1=1,a2=3,a3=9,a4=27,∴猜想a n=3n-1.答案:A6.观察下列等式:1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49,……照此规律,第五个等式应为________.解析:等式的左边是2n-1个连续自然数的和,最小的为序号n,右边是(2n-1)2.所以第5个等式为5+6+7+…+13=(2×5-1)2.答案:5+6+7+8+…+13=817.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系:________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b78.已知△ABC的边长分别为a,b,c,内切圆半径为r,用S△ABC表示△ABC的面积,则S△ABC=12r (a +b +c ).类比这一结论有:若三棱锥A ­BCD 的内切球半径为R ,则三棱锥体积V A ­BCD =________.解析:内切圆半径r ――→类比内切球半径R .△ABC 周长a +b +c ――→类比棱锥A ­BCD 各面面积和. 答案:V A ­BCD =13R (S △ABC +S △ACD +S △BCD +S △ABD )9.如图所示,在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α,β,则cos 2α+cos 2β=1,则在立体几何中,给出类比猜想.解析:在长方形ABCD 中,cos 2α+cos 2β=⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=a 2+b 2c 2=c 2c 2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ, 则cos 2α+cos 2β+cos 2γ=1.证明如下:cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫m l 2+⎝ ⎛⎭⎪⎫n l 2+⎝ ⎛⎭⎪⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1. [B 组 能力提升]1.将正整数排成下表: 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 ……则在表中数字2 019出现在( )A.第44行第78列B.第45行第82列C.第44行第77列D.第45行第83列解析:第n行有2n-1个数字,前n行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1 936,452=2 025,且1 936<2 019<2 025,∴2 019在第45行.又2 025-2 019=6,且第45行有2×45-1=89个数字,∴2 019在第89-6=83列.答案:D2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A.289 B.1 024C.1 225 D.1 378解析:记三角形数构成的数列为{a n},则a1=1,a2=3=1+2,a3=6=1+2+3,a4=10=1+2+3+4,可得通项公式为a n=1+2+3+…+n=n(n+1)2.同理可得正方形数构成的数列的通项公式为b n =n 2.将四个选项的数字分别代入上述两个通项公式,使得n 都为正整数的只有1 225. 答案:C3.类比平面内一点P (x 0,y 0)到直线Ax +By +C =0(A 2+B 2≠0)的距离公式,猜想空间中一点P (x 0,y 0,z 0)到平面Ax +By +Cz +D =0(A 2+B 2+C 2≠0)的距离公式为d =________.解析:类比平面内点到直线的距离公式 d =|Ax 0+By 0+C |A 2+B2,易知答案应填|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2.答案:|Ax 0+By 0+Cz 0+D |A 2+B 2+C24.在平面中,△ABC 的∠ACB 的平分线CE 分△ABC 面积所成的比S △AEC S △BEC=AC BC,将这个结论类比到空间:在三棱锥A ­BCD 中,平面DEC 平分二面角A ­CD ­B 且与AB 交于E ,则类比的结论为________.解析:平面中的面积类比到空间为体积, 故S △AEC S △BEC类比成V A ­CDE V B ­CDE.平面中的线段长类比到空间为面积, 故AC BC类比成S △ACD S △BDC.故有V A ­CDE V B ­CDE =S △ACD S △BDC.答案:V A ­CDE V B ­CDE =S △ACD S △BDC5.已知椭圆具有以下性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b 2=1写出具有类似的性质,并加以证明.解析:类似的性质为:若M ,N 是双曲线x 2a2-y 2b 2=1上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标为(m ,n ),(x ,y ), 则N (-m ,-n ).∵点M (m ,n )在已知双曲线上, ∴n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +nx +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).。

人教A版高中数学选修一第二章推理与证明答案.docx

人教A版高中数学选修一第二章推理与证明答案.docx

第二章合情推理与演绎推理答案 2.1.1 合情推理与演绎推理(1)1、d n a a n )1(1-+=2、B3、A4、()nn n n )1(1169411+-++-+-+Λ 5、θθθn cos 23cos 22cos 2 6、V+F —E=2 7、解:9)5(,5)4(,2)3(,0)2(====f f f f可以归纳出每增加一条直线,交点增加的个数为原有直线的条数 4)4()5(,3)3()4(,2)2()3(=-=-=-∴f f f f f f 猜测得出1)1()(-=--n n f n f 有)1(432)2()(-++++=-n f n f Λ)2)(1(21)(-+=∴n n n f 因此)2)(1(21)(,5)4(-+==n n n f f8、解:4211223⨯=432212233⨯=+44332122333⨯=++4544321223333⨯=+++()414321223333+=+++++n n Λ由此可以有求和的一般公式为()414321223333+=+++++n n Λ2.1.2合情推理与演绎推理(2)1、C2、D3、D4、类比5、(1)圆柱面(2)两个平行平面6、()()()x C x S x S 22= ()()()()()y S x C y C x S y x S +=+7、在等比数列{}n a 中,若q p n m +=+,()*,,,Nq p n m ∈,则q p n ma a a a⋅=⋅8、(1)(平面)在平行四边形中,对角线互相平分;(立体)在平行六面体中,对角线相交于同一点,且在这一点互相平分;(2)(平面)在平行四边形中,各对角线长的平方和等于各边长的平方和;(立体)在平行六面体中,各对角线长的平方和等于各棱长的平方和;(3)(平面)圆面积等于圆周长与半径之积的1/2;(立体)球体积等于球面积与半径之积的1/3;(4)(平面)正三角形外接圆半径等于内切圆半径的2倍,(立体)正四面体的外接球半径等于内切球半径的3倍。

人教版数学高二 数学A版选修1-2 第二章《推理与证明》教辅资料

人教版数学高二 数学A版选修1-2 第二章《推理与证明》教辅资料

满足y=x 2,则log 2(22)x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。

其中正确的是( )。

(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④解析 用综合法可得应选(B ) 例2 函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .解析∵函数y =f (x )在(0,2)上是增函数, ∴ 0<x+2<2即-2<x <0∴函数y=f(x+2) 在(-2,0)上是增函数, 又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数 由图象可得f(2.5)>f(1)>f(3.5)故应填f(2.5)>f(1)>f(3.5)例3 已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b解析∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与c b 全不相等。

∴ 2,2,2b a c a c ba b a c b c+>+>+>三式相加得6b c c a a ba ab bc c+++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即 3b c a a c b a b c a b c+-+-+-++>练习一、选择题1.如果数列{}n a 是等差数列,则( )。

(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =2.在△ABC 中若b=2asinB 则A 等于( )(A)06030或 (B)06045或 (C)0012060或 (D)0015030或 3.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个二、填空题4. 已知 5,2==b a ,向量b a 与的 夹角为0120,则a b a .)2(-=5. 如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足n,n证明:如图,连接BD ,∵在△ABC 中,BE=CE DF=CF ∴E F ∥BD又BD ⊂平面ABD ∴BD ∥平面ABD7.解:∵f(x-4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即ab +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又ab +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒-4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有f (t +m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒2m +2(t-1)m +(t 2+2t +1)≤0 ⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f(x-4)≤x ⇒41(2x -10x +9)=41(x-1)(x-9)≤0∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x=1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立 ∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立 令 x =1有t 2+4t ≤0⇒-4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解令t = -4得,2m - 10m +9≤0⇒1≤m ≤9 即当t = -4时,任取x ∈[1,9]恒有f (x -4)-x =41(2x -10x +9)=41(x-1)(x-9)≤0 ∴ m max =92.2直接证明2.2.1 综合法一、选择题(1)由等差数列的性质:若m+n=p+q 则q p n m a a a a +=+可知应填(B )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修1-2《推理与证明测试题》
一、选择题:
1、与函数x y =为相同函数的是( )
A.2
x y = B.x
x y 2= C.x e y ln = D.x
y 2log 2=
2、下面使用类比推理正确的是 ( ). A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”
C.“若()a b c ac bc +=+” 类推出“
a b a b
c c c
+=+ (c ≠0)
” D.“n n a a b =n (b )” 类推出“n n a a b +=+n
(b )”
3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线
b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误
的,这是因为 ( )
A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误
4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。

A.假设三内角都不大于60度; B.假设三内角都大于60度; C.假设三内角至多有一个大于60度; D.假设三内角至多有两个大于60度。

5、当=n 1,2,3,4,5,6时,比较n
2和2n 的大小并猜想 ( )
A.1≥n 时,2
2n n
> B. 3≥n 时,2
2n n
> C. 4≥n 时,22n n > D. 5≥n 时,2
2n n > 6、已知"1""1",,2
2
≤+≤∈y x xy R y x 是则的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
7、在下列表格中,每格填上一个数字后,使每一行成等差数
列,每一列成等比数列,则a+b+c 的值是( ) A. 1 B. 2 C.3 D.4
8、 对“a,b,c 是不全相等的正数”,给出两个判断:
①0)()()(2
22≠-+-+-a c c b b a ;②a c c b b a ≠≠≠,,不能同时成立, 下列说法正确的是( ) A .①对②错
B .①错②对
C .①对②对
D .①错②错
9、设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则=+y
c
x a ( ) A .1 B .2 C .3 D .不确定
10、():344,(),
x
x y x y y
x y ≥⎧⊗=⊗=⎨
<⎩定义运算例如则下列等式不能成立....
的是( ) A .x y y x ⊗=⊗ B .()()x y z x y z ⊗⊗=⊗⊗
C .2
2
2
()x y x y ⊗=⊗ D .)()()(y c x c y x c ⋅⊗⋅=⊗⋅ (其中0>c )
二、填空题:
11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 。

12、 类比平面几何中的勾股定理:若直角三角形ABC 中的两边AB 、AC 互相垂直,则三角形三边长之间满足关系:222BC AC AB =+。

若三棱锥A-BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 . 13、从11=,)21(41+-=-,321941++=+-,)4321(16941+++-=-+-,…,推广到第n 个等式为_________________________. 14、已知13a =,133
n
n n a a a +=+,试通过计算2a ,3a ,4a ,5a 的值,推测出n a =___________.
三、解答题:
15、在△ABC 中,证明:2
2221
12cos 2cos b a b B a A -
=-。

16、设R y x b a ∈,,,,且12
2=+b a ,12
2=+y x ,试证:1≤+by ax 。

17、用反证法证明:如果2
1>x ,那么0122
≠-+x x 。

18、已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d 的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;
(2)试写出30a 关于d 的关系式,并求30a 的取值范围;
(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
高二数学选修1-2《推理与证明测试题》答案提示
1——10、 DCABD BAABC
11、____14__________
12、2
222ABD ACD ABC BCD S S S S ∆∆∆∆++= 13、+-+-2
2
2
4321…)321()1()1(121
n n n n +⋅⋅⋅+++⋅-=⋅-+++
14、________
3
n
______ 15、证明:2
22222sin 21sin 212cos 2cos b
B
a A
b B a A ---=- ⎪⎪⎭⎫ ⎝⎛---=222222sin sin 21
1b B a
A b a 由正弦定理得:2
222sin sin b
B
a A = 2
2221
12cos 2cos b
a b B a A -=-∴
16、证明: 2
2
2
2
2
2
2
2
2
2
2
2
))((1y b x b y a x a y x b a +++=++=
2
2
2
2
2
)(2by ax y b aybx x a +=++≥ 故1≤+by ax
17、假设0122
=-+x x ,则21±
-=x
容易看出2121<--,下面证明2
121<+-。

要证:2
121<+-, 只需证:2
32<, 只需证:4
92<
上式显然成立,故有2
121<+-。

综上,2121<
±-=x 。

而这与已知条件2
1
>x 相矛盾, 因此假设不成立,也即原命题成立。

18、解:(1)3,401010.102010=∴=+==d d a a . (2)()
)0(110102
22030≠++=+=d d d d a a ,
⎥⎥⎦
⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=4321102
30
d a ,
当),0()0,(∞+∞-∈Y d 时,[)307.5,a ∈+∞.
(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a Λ是首项为1,公差为1的
等差数列,当1≥n 时,数列)1(1011010,,,++n n n a a a Λ是公差为n d 的等差数列. 研究的问题可以是:
试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围.
研究的结论可以是:由()
323304011010d d d d a a +++=+=, 依次类推可得
()
⎪⎩⎪
⎨⎧=+≠--⨯=+++=++.1),
1(10,1,11101101
)1(10d n d d d d d a n n
n Λ 当0>d 时,)1(10+n a 的取值范围为),10(∞+等.。

相关文档
最新文档