排列组合练习题—导学案
人教版-数学-二年级上册-【精品】《排列组合》同步导学案

我明白:一种情况与顺序(),称为( );
另一种情况与顺序(),称为( )。
四、练兵场:1、P101练习二十三的第1、2题。
2、用数字0、1、2能摆出几个两位数?
3、用数字1、2、3、4能摆出几个两位数?
安阳外国语小学导学案
年级:二年级学科:数学主备人:杜秀芬审核人:
主人姓名:班级:本周训练主题:
课题、实验等活动,找出最简单的事物排列数和组合数;
2、在活动中提高我的初步的观察、分析及推理能力;
3、初步培养我的有顺序到、全面地思考问题的意识。
重难点预设:有顺序地、全面地思考问题的数学思想。
学习过程:
一、小热身:你能用数字1、2摆出几个两位数?(自己摆摆看)
我摆的两位数是:()、()
我明白:两个卡片的排列()不同,就表示不同的两位数。
二、学海探秘:你能用数字1、2、3摆出几个两位数?
你是怎么摆的?你用什么方法能保证不重复、不遗漏?
(先独立思考,然后可以和组员商量一下)
我摆的两位数是:
三、牛刀初试:P99的做一做第1、2小题。
排列组合导学案

龙文教育个性化辅导教学案学生:日期: 年月日第次时段: 教学课题排列组合—导学案教学目标考点分析1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能解决简单的实际问题.重点难点排列、组合的概念,利用计数原理推导排列数公式、组合数公式,利用排列组合解决实际问题.教学方法讲练结合法、启发式教学教学过程一、排列与排列数1.排列从n个不同元素中取出m(m≤n)个元素,,叫做从n个不同元素中取出m个元素的一个排列.2.排列数从n个不同元素中取出m(m≤n)个元素的,叫做从n个不同元素中取出m个元素的排列数,记作A m n.二、组合与组合数1.组合从n个不同元素中取出m(m≤n)个元素.叫做从n个不同元素中取出m个元素的一个组合.2.组合数从n个不同元素中取出m(m≤n)个元素的,叫做从n个不同元素中取出m个元素的组合数,用符号表示.三、排列数、组合数的公式及性质公式排列数公式==组合数公式===性质(1)A n n=;(2)0!=(1)C0n=;(2)C m n=;(3)C m n+C m-1n=备注n,m∈N*且m≤n四、课堂基础演练1.(教材习题改编)电视台在直播2012伦敦奥运会时要连续插播5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的是奥运宣传广告,且2个奥运宣传广告不能连播.则不同的播放方式有( )A.120 B.48C.36 D.182.某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数有( )A.35 B.70C.210 D.1053.将A、B、C、D、E排成一列,要求A、B、C在排列中顺序为“A、B、C”或“C、B、A”(可以不相邻),这样的排列种数为( )A.12 B.20C.40 D.604.某班3名同学去参加5项活动,每人只参加1项,同一项活动最多2人参加,则3人参加活动的方案共有________种(用数字作答).5.从3名男生、4名女生中,选派1名男生、2名女生参加辩论赛,则不同的选派方法共有________种.五、考题精练[例1] (2012·义乌模拟)2011年深圳世界大学生运动会火炬传递在A、B、C、D、E、F六个城市之间进行,以A为起点,F为终点,B与C必须接连传递,E必须在D的前面传递,且每个城市只经过一次,那么火炬传递的不同路线共有________种.[例2] (2010·湖北高考)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务者活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是( )A.152 B.126C.90 D.54[例3] (2011·北京海淀区期末)世博会期间,某班有四名学生参加了志愿者工作.将这四名学生分到A、B、C三个不同的展馆服务,每个展馆至少分配一人.若甲要求不到A馆,则不同的分配方案有( )A.36种 B.30种C.24种 D.20种若本例改成甲、乙不能分到同一个馆的分配方案有几种?六、巧练模拟1.(2012·金华联考)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( ) A.36种 B.42种C.48种 D.54种2.(2012·苏北四市联考)有3张都标着字母A,6张分别标着数字1,2,3,4,5,6的卡片,若任取其中5张卡片组成牌号,则可以组成的不同牌号的总数等于________.(用数字作答)3.(2011·潍坊模拟)如图,M,N,P,Q为海上四个小岛,现要建造三座桥,将这四个小岛连接起来,则不同的建桥方法有 ( )A.8种 B.12种C.16种 D.20种4.(2012·丽水月考)从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有( ) A.36种B.30种C.42种D.60种5.(2012·昌平区模拟)将1,2,3,…,9这9个数字填在如图所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为( )A.6种 B.12种C.18种D.24种6.(2011·威海模拟)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A.C28A23B.C28A66C.C28A26D.C28A257.(2012·开封定位评估)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ( )A.60 B.48C.42 D.36七、考题范例(12分)(2011·舟山模拟)有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.本节知识总结与题1.要搞清组合与排列的区别与联系:组合与顺序无关,排列与顺序有关;排列可以分成先选取(组合)后排列两个步骤.2.求解排列组合应用问题的思路:排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.3.求排列应用题的主要方法(1)对无限制条件的问题——直接法;(2)对有限制条件的问题,对于不同题型可采取直接法或间接法,具体如下:①每个元素都有附加条件——列表法或树图法;后感悟 ②有特殊元素或特殊位置——优先排列法;③有相邻元素(相邻排列)——捆绑法;④有不相邻元素(间隔排列)——插空法.4. 组合问题的两种主要类型(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型.考题逆向思维,用间接法处理.5. 对于限制条件较复杂的排列组合应用题要周密分析,设计出合理的方案.与排列组合有关的应用题往往比较复杂,一般要分类解决,应首先考虑有限制条件的元素或位置.课后作业一、选择题 1.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为( ) A .85 B .86C .91D .902.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种3.从5张100元,3张200元,2张300元的运动会门票中任选3张,则选取的3张中至少有2张价格相同的不同的选法共有( )A .70种B .80种C .90种D .100种4.2012年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有( )A .1 440种B .1 360种C .1 282种D .1 128种5.霓虹灯的一个部位由7个小灯泡并排组成,每个灯泡均可以亮出红色或黄色,现设计每次变换只闪亮其中的三个灯泡,且相邻的两个灯泡不同时亮,则一共可以呈现出不同的变换形式的种数为( )A .20B .30C .50D .80二、填空题6.(2012·本溪模拟)5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(以数字作答)7.(2012·北京模拟)三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为________.三、解答题8.将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他盒子中球的颜色齐全的不同放法共有多少种?9.某中学高三年级共有12个班级,在即将进行的月考中,拟安排12个班主任老师监考数学,每班1人,要求有且只有8个班级是自己的班主任老师监考,则不同的监考安排方案共有多少种?10.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙二人至少有一人参加,有多少种选法?(4)医疗队中至少有一名内科医生和一名外科医生,有几种选法?学生对于本次课评价:○特别满意○满意○一般○差学生签字:教师评定:1、上次作业评价:○非常好○好○一般○需要优化2、上课情况评价:○非常好○好○一般○需要优化教师签字:教务主任签字:___________龙文教育教务处。
高三一轮复习导学案排列组合1

第十二章排列组合、二项式定理、概率(1)12.1分类加法计数原理与分步乘法计数原理考点诠释重点:理解分类加法与分步乘法计数原理,并会应用其解决实际问题.难点:计数问题中如何判定是分类加法计数原理还是分步乘法计数原理.典例精析题型一分类计数原理【例1】高三一班有学生50人,男30人,女20人;高三二班有学生60人,男30人,女30人;高三三班有学生55人,男35人,女20人.(1)从高三一班或二班或三班中选一名学生任学校学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任校学生会体育部长,有多少种不同的选法?【方法归纳】分类计数原理,首先将完成一件事的方法分类,然后再计算各类方法中分别有多少种方法可以完成该事件,最后求其和.注意:每类方法可以独立完成.【举一反三】1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( D )A.3 B.4 C.6 D.8题型二分步计数原理【例2】已知集合M={-3,-2,-1,0,1,2},点P(a,b)表示平面上的点(a,b∈M),问:(1)点P可表示平面上多少个不同的点?(2)点P可表示平面上多少个第二象限的点?(3)点P可表示多少个不在直线y=x上的点?【思路分析】(1)由于a∈M,b∈M,分两步选取,故用乘法原理;(2)同(1),且满足a<0且b>0;(3)同(1),且满足a≠b.(3)点P(a,b)在直线y=x上的充要条件是a=b.【方法归纳】利用分步乘法计数原理解决问题应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的;(2)各步中的方法互相依存,缺一不可,只有各个步骤都完成才算完成这件事.【举一反三】2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有240 种.【解析】题型三分类和分步计数原理综合应用【例3】(2011长郡中学月考)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.【思路分析】可按涂相同颜色的区域分类计数.【解析】【方法归纳】对于复杂问题,不能只用分类加法计数原理或分步乘法计数原理解决时,可以综合应用两个原理,可以先分类,在某一类中再分步,也可先分步,在某一步中再分类.【举一反三】3.某个同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读.(1)若他从这些书中带一本去图书馆,有多少种不同的带法?(2)若带外语、数学、物理参考书各一本,有多少种不同的带法?(3)若从这些参考书中选两本不同学科的参考书带到图书馆,有多少种不同的带法?【解析】体验高考(2011大纲全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【解析】【举一反三】(2011全国)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( B )A.12种B.24种C.30种D.36种【解析】。
高中数学高二理科选修23排列组合导学案

《排列(1)》导学案【学习目标】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【重点难点】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【学法指导】(预习教材P14~ P18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?【教学过程】(一)导入探究任务一:排列问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?新知1:排列的定义一般地,从n个元素中取出m()个元素,按照一定的排成一排,叫做从个不同元素中取出个元素的一个排列.试试:写出从4个不同元素中任取2个元素的所有排列.反思:排列问题有何特点?什么条件下是排列问题?探究任务二:排列数及其排列数公式新知2 排列数的定义从个元素中取出(nm≤)个元素的的个数,叫做从n个不同元素取出m元素的排列数,用符合表示.试试:从4个不同元素a,b, c,d中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?问题:⑴从n个不同元素中取出2个元素的排列数是多少?⑵从n个不同元素中取出3个元素的排列数是少?⑶从n个不同元素中取出m(nm≤)个元素的排列数是多少?新知3 排列数公式从n个不同元素中取出m(nm≤)个元素的排列数=mnA新知4 全排列从n个不同元素中取出的一个排列,叫做n个元素的一个全排列,用公式表示为=nnA(二)深入学习例1计算:⑴410A;⑵218A; ⑶441010AA÷.变式:计算下列各式:⑴215A; ⑵66A⑶28382AA-; ⑷6688AA.例2若17161554mnA=⨯⨯⨯⨯⨯L,则n=,m=.变式:乘积(55)(56)(68)(69)n n n n----L用排列数符号表示.(,n N∈)例3 求证: 11--=m n m n nA A变式 求证: 7766778878A A A A =+-小结:排列数m n A 可以用阶乘表示为mn A =※ 动手试试练2. 从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个? .【当堂检测 】1. 计算:=+243545A A ;2.. 计算:=+++44342414A A A A ;3. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数.1. 求证:11211--++=-n n n n n n A n A A2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?【反思 】1. 排列数的定义2. 排列数公式及其全排列公式《排列(2)》导学案【学习目标 】1熟练掌握排列数公式;2. 能运用排列数公式解决一些简单的应用问题. 【重点难点 】1熟练掌握排列数公式;2. 能运用排列数公式解决一些简单的应用问题. 【学法指导 】(预习教材P 5~ P 10,找出疑惑之处)复习1:.什么叫排列?排列的定义包括两个方面分别是和 ;两个排列相同的条件是 相同, 也复习2:排列数公式:mn A = (,,m n N m n *∈≤) 全排列数:n n A = = .复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是【教学过程 】(一)导入探究任务一:排列数公式应用的条件 问题1: ⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法? ⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?新知:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可能相同的情况不能使用.探究任务二:解决排列问题的基本方法问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.(二)深入学习例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法?(2)6男2女排成一排,2女不能相邻,有多少种不同的站法?(3)4男4女排成一排,同性者相邻,有多少种不同的站法? (4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?变式::某小组6个人排队照相留念.(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?(5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法. 例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数. (1)没有重复数字的四位偶数? (2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字,⑴ 能组成多少个没有重复数字的四位奇数? ⑵ 能被5整除的没有重复数字四位数共有多少个?※ 动手试试 练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?练2.在3000至8000之间有多少个无重复数字的奇数?【当堂检测】1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.4. 现有4个男生和2个女生排成一排,两端不能排女生,共有种不同的方法.5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有种.1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?【反思】1. 正确选择是分类还是分步的方法,分类要做到“不重不漏”,分步要做到“步骤完整.2..正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序.《组合(1)》导学案【学习目标】1.正确理解组合与组合数的概念;2.弄清组合与排列之间的关系;3. 会做组合数的简单运算;.【重点难点】1.正确理解组合与组合数的概念;2.弄清组合与排列之间的关系;3. 会做组合数的简单运算;【学法指导】(预习教材P21~ P23,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面,分别是和 . 复习2:排列数的定义:从个不同元素中,任取个元素的排列的个数叫做从n个元素中取出m 元素的排列数,用符号表示复习3:排列数公式:mnA= (,,m n N m n*∈≤)【教学过程】(一)导入探究任务一:组合的概念问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合.试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系? 探究任务二.组合数的概念:从n 个 元素中取出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示. 探究任务三 组合数公式 m n C = =我们规定:=0nC (二)深入学习例1 甲、乙、丙、丁4个人,(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况; (2)从中选3个人排成一排,有多少种不同的方法?变式: 甲、乙、丙、丁4个足球队举行单循环赛: (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与顺序无关,要正确区分排列与组合.例2 计算:(1)47C ; (2)710C变式:求证:11+⋅-+=m n m n C mn m C※ 动手试试 练1.计算:⑴ 26C ; ⑵ 38C ;⑶ 2637C C -; ⑷ 253823C C -.练2. 已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?【当堂检测 】1. 若8名学生每2人互通一次电话,共通 次电话.2. 设集合{}A a,b,c,d,e ,B A =⊂,已知a B ∈,且B 中含有3个元素,则集合B 有 个.3. 计算:310C = .4. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .5.写出从a,b,c,d,e 中每次取3个元素且包含字母a ,不包含字母b 的所有组合1.计算:⑴ 215C ; ⑵ 2836C C ÷;2. 圆上有10个点:⑴ 过每2个点画一条弦,一共可以画多少条弦?⑵ 过每3点画一个圆内接三角形,一共有多少个圆内接三角形? 、【反思 】1. 正确理解组合和组合数的概念2.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==L 或者:)!(!!m n m n C mn -=),,(n m N m n ≤∈*且《 组合(2)》导学案【学习目标 】1. 2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【重点难点 】 1. 2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【学法指导 】 (预习教材P 24~ P 25,找出疑惑之处) 复习1:从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合;从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示.复习2: 组合数公式: m n C = =【教学过程 】 (一)导入探究任务一:组合数的性质问题1:高二(6)班有42个同学⑴ 从中选出1名同学参加学校篮球队有多少种选法? ⑵ 从中选出41名同学不参加学校篮球队有多少种选法? ⑶ 上面两个问题有何关系?新知1:组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=试试:计算:1820C反思:⑴若y x =,一定有yn x n C C =?⑵若yn x n C C =,一定有y x =吗?问题2 从121,,,+n a a a Λ这n +1个不同元素中取出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从132,,,+n a a a Λ这 个元素中取出 个元素与1a 组成的,共有 个;不含有1a 的组合是从132,,,+n a a a Λ这 个元素中取出 个元素组成的,共有个.从中你能得到什么结论? 新知2 组合数性质2 m n C 1+=m n C +1-m n C (二)深入学习例1(1)计算:69584737C C C C +++;变式1:计算2222345100C C C C ++++L例2 求证:n m C 2+=n m C +12-n m C +2-n m C变式2:证明:111m m m n n n C C C ++++=小结:组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公式的形式.例3解不等式()321010n n-C n -<∈+C N .练3 :解不等式:46n nC C <※ 动手试试练1.若542216444x x C -C C C -=+,求x 的值练2. 解方程:(1)3213113-+=x x C C(2)333222101+-+-+=+x x x x x A C C【当堂检测 】1. 908910099C -C =2. 若231212n n-C C =,则n =3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;4. 若7781n n n C C C +=+,则n = ; 5. 化简:9981m m m C -C C ++= .1. 计算:⑴ 197200C ; ⑵ 21-+•n n n n C C2. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?3. 若128n n C C =,求21n C 的值【反思 】1. 组合数的性质1:mn n m n C C -= 2. 组合数性质2:mn C 1+=mn C +1-m n C《组合(3)》导学案【学习目标 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题. 【重点难点 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题. 【学法指导 】(预习教材P 27~ P 28,找出疑惑之处)复习1:⑴ 从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...,用符号 表示;从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示.⑵ mn A =m n C = = m n A 与m n C 关系公式是复习2:组合数的性质1: . 组合数的性质2: .【教学过程 】 (一)导入探究任务一:排列组合的应用问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问: ⑴ 这位教练从17位学员中可以形成多少种学员上场方案?⑵ 如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条?⑵平面内有10个点,以其中每2个点为端点的有向线段多少条? 反思:排列组合在一个问题中能同时使用吗?(二)深入学习例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件. ⑴ 有多少种不同的抽法?⑵ 抽出的3件中恰好有1件是次品的抽法有多少种? ⑶ 抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件:⑴其中恰有2件次品的抽法有多少种?⑵其中恰有1件次品的抽法有多少种?⑶其中没有次品的抽法有多少种?⑷其中至少有1件次品的抽法有多少种?小结:对综合应用两个计数原理以及组合知识问题,思路是:先分类,后分步.例2 现有6本不同书,分别求下列分法种数:⑴分成三堆,一堆3本,一堆2本,一堆1本;⑵分给3个人,一人3本,一人2本,一人1本;⑶平均分成三堆.变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?例 3 现有五种不同颜色要对如图中的四个部分进行着色,要求有公共边的两块不能用一种颜色,问共有几种不同的着色方法?变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?※动手试试练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?练2. 高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动,(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内, 不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【当堂检测】1. 凸五边形对角线有条;2. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有个;3.要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是;4.有5名工人要在3天中各自选择1天休息,不同方法的种数是;5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?1. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,在第3题的2个小题中选做1个小题.有多少种不同的选法?2. 从5名男生和4名女生中选出4人去参加辩论比赛.⑴如果4人中男生和女生各选2名,有多少种选法?⑵如果男生中的甲和女生中的乙必须在内,有多少种选法?⑶如果男生中的甲和女生中的乙至少有1人在内,有多少种选法?⑷如果4人中必须既有男生又有女生,有多少种选法?【反思】1. 正确区分排列组合问题2. 对综合问题,要“先分类,后分步”,对特别元素,应优先考虑.。
排列组合综合导学案(11)

班级 第 小组, 姓名 学号高二(下)数学导学案(11) 第 1 页 共 1页第十章 排列组合-----综合应用(1)一、学习目标:1.处理排列组合问题的总原则:①弄清事件的背景,首先搞清有无顺序要求,若有则用m n A ,反之用mn C ;②弄清目标的实现,是分步达到的,还是分类达到的,从而正确运用计数原理,一个复杂问题往往是分类与分步交织在一起的;③最后看一下元素可否重复。
2掌握典型题型的技巧解法 ⑴相邻问题----捆绑法 ⑵相离问题----插空法 ⑶多元问题----分类法 ⑷标号排位问题----分步法 ⑸至少问题----间接法 ⑹选排问题----先取后排法 ⑺组排问题----先组后排法 二、学习重点与难点 重点:提高实战能力; 难点:提高实战能力;三、学习过程1.将9人排成三排,每排3人,甲在第一排,乙、丙在第三排,这样的排法有( )A .662313A A A 种B .()3331426A C C 种 C.3333143326A C A A C ++种 D.331426A A A 种2.从7名运动员中选出4名组成1004⨯米接力队,其中,甲、乙二人都不跑中间两棒的安排方法有多少种?3.从1、3、5、7中任取2个数字,从0、2、4、6、8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有多少个(有数字作答)?4.有10个三好生的名额,分配给高二年级6个班,每班至少一个名额,共有多少种不同的分配方案?5.(1)四个不同..的小球放入编号为1、2、3、4的四个盒子内,问恰有一个空盒的放法有多少种? (2)四个相同的小球放入编号为1、2、3、4的四个盒子内,恰有一个空盒的放法有多少种?6.(09辽宁)从5名男医生,4名女医生中选3名医生,组成一个医疗小分队,要求其中男女医生都有,则不同的组队方案共有 种。
7.在北京奥运会开始前,组委会要在8名志愿服务者中挑选6人分别去奥运会场馆“鸟巢”和“水立方”进行实地培训,每处3人,其中甲、乙两人不能分到同一组,且乙不能去水立方,则不同的安排方法种数为 。
导学案排列组合复习(日照实验高中导学案)

日照实验高中2007级导学案——计数原理排列组合单元复习学习目标:深刻理解排列与组合的区别和联系,熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的应用问题.学习重点难点:排列组合的综合应用自主学习:1.基本概念: 排列与排列数、组合与组合数2.基本公式: 排列数公式、组合数公式、组合数的两个性质3.排列组合的解题原则:(1)深入弄清问题的情景要深入弄清问题的情景,切实把握各因素之间的相互关系,不可分析不透,就用或乱套一气.具体地说:首先要弄清有无“顺序”的要求,如果有“顺序”的要求,用,如果无“顺序”要求,就用;其次,要弄清目标的实现,是分步达到的,还是分类完成的,前者用分步计数原理,后者用分类计数原理.事实上,一个复杂的问题,往往是分类和分步交织在一起的,这就要准确分清,哪一步用分步计数原理,哪一步用分类计数原理.(2)两个方向的解题途径对于较复杂的问题,一般都有两个方向的列式途径,一个是正面直接解,一个是反面排除法.前者是指按要求,一点一点选出符合要求的方案,后者是指先按照全局性的要求,选出方案,再把不符合其他要求的方案排除掉.这两个途径的优劣因题而异.一般地,一道题目“正面解”很繁琐时,“反面排除”往往简单,反之亦然.(3)分析问题的两个方向分析问题时,我们往往从元素和位置两个方向插手,一般情况,从算理上说,从特殊元素和特殊位置两个方向都能解决问题.但具体问题从特元与特位上作对比,则可能大相径庭,差距很大。
因此平常做题时,这两种训练都要进行. (4)特别强调一题多解一题多解,可以从不同角度分析同一问题,加深对分类计数原理、分步计数原理及排列组合的深刻认识与体会,同时,一题多解也是解排列组合问题最有效,最主要的检验方法.4.对常见问题分类总结关于数字问题,要注意“0”这个特元,关于人或物的排列问题,要注意元素相邻,往往采取“捆绑法”看成一个整体,元素不相邻,则往往采取“插空”的方法.例题解析:例1.(1)用0,1,2,3,4组合多少无重复数字的四位数?教师备课学习笔记(2)这四位数中能被3整除的数有多少个?解:(1)直接分类法:①特元法:②特位法:先考虑首位,可以从1,2,3,4四个数字中任取一个,共种方法,再考虑其它三个位置,可以从剩下的四个数字中任取3个.即种方法,则共有=96种方法,即96个无重复数字的四位数.间接排除法:先从五个数字中任取四个排成四位数:,再排除不符合要求的四位数即0在首位的四位数:.则共有=96个.(2)能被3整除的四位数应该是四位数字之和为3的倍数.分析:因为不含0时,1+2+3+4=10.10不是3的倍数,所以组成的四位数必须有0,即0,1,2,3或0,2,3,4,共有2()=36个.例2.用0,1,2,3,4五个数字组成无重复数字的五位数从小到大依次排列.(1)第49个数是多少?(2)23140是第几个数?解:(1)首位是1,2,3,4组成的五位数各24个.所以第49个数是首位为3的最小的一个自然数,即30124.(2)首位为1组成=24个数;首位为2,第二位为0,1共组成=12个数.首位为2,第二位为3,第三位为0的数共=2个;首位为2,第二位为3,第三位为1,第四位为0的数有1个,为23104.由分类计数原理: +++1=39.按照从小到大的顺序排列23104后面的五位数就是23140,所以23140是第40个数.例3.5男6女排成一列,问(1)5男排在一起有多少种不同排法?(2)5男都不排在一起有多少种排法?教师备课学习笔记(3)5男每两个不排在一起有多少种排法?(4)男女相互间隔有多少种不同的排法?解:(1)先把5男看成一个整体,得,5男之间排列有顺序问题,得,共种.(2)全排列除去5男排在一起即为所求,得.(3)因为男生人数少于女生人数,利用男生插女生空的方法解决问题,得. (4)分析利用男生插女生空的方法,但要保证两女生不能挨在一起,得. 例4.3名医生和6名护士被分配到3个单位为职工体检,每单位分配1名医生和2名护士,不同的分配方案有多少种?解:3名医生分到3个单位有种方案,6名护士分到3个单位,每个单位2名有种,根据分步计数原理,共有=540种方案.例5.四面体的顶点和各棱中点共10个点,在其中取4个点,可以组成多少个不同的三棱锥?解:组成三棱锥,只需4个点不共面,考虑到直接法有困难,故采用间接排除法.从10个点中任取4个点有中,其中4个点共面有三类情况:①4个点位于四面体的同一面中,有4种;②取任一条棱上的3个点,及该棱对棱的中点,这四点共面共有6种;③由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个顶点共面有3种,所以不同的取法共有-4-6-3=141种.例6.求证(1);(2)证明:(1)另一种解释:对于含某元素a的(n+1)个元素中取m个元素的排列可分为两类,一教师备课学习笔记类是不含元素a的,有个;另一类是含元素a的,有m个,因此共有(+m)个,即+m=.(2)∴.另一种解释:对于含有某元素a的(n+1)个元素中取m个元素的组合可分为两类,一类是不含元素a的,有个;另一类是含元素a的有个,因此共有(+)个,即课堂巩固:1.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有().A、24个B、30个C、40个D、60个2.5男2女排成一排,若女生不能排在两端,且又要相邻,不同的排法有().A、480种B、960种C、720种D、1440种3.某天课表中6节课需从4门文科,4门理科中选出6门课程排出,其中文科交叉排,且一、二节必须排语文、数学,则不同的排法共有_________种.归纳反思:合作探究:1.在50件产品中有4件是次品,其余均合格,从中任意取出5种,至少3件是次品的取法共有________种.2. 正方体的8个顶点可确定不同的平面个数为________,以这些顶点为顶点的四面体共有__________个. 教师备课学习笔记。
高中数学第一章1.2排列与组合1.2.1排列1课堂导学案

1.2.1 排列 1课堂导学三点剖析一、没有限制条件的排列问题【例1】 从甲、乙、丙3名同学中选出2名参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的方法?解析:从甲、乙、丙3名同学中任选2名分别参加上午、下午的活动,对应于从3个元素中任取2个元素的一个排列,因此共有23A =3×2=6种不同的方法.温馨提示判断是否是排列问题,关键是看是否与顺序有关.此问题的活动分上午和下午.甲参加上午的活动,乙参加下午的活动与甲参加下午的活动,乙参加上午的活动是不同的选派方法,与顺序有关.因此,此题是排列问题.二、有限制条件的排列问题【例2】 用0,1,2,3,4,5,6可以组成多少个没有重复数字的六位数?解法一:从特殊元素入手,0只能放在除十万位外的其他五个数位上,故共组成665615A A A +∙=4 320个没有重复数字的六位数. 解法二:从特殊位置入手,十万位不能排0,可先从其他6个数字中选出一个数字排到该位上,其他位置可随意排列,故共组成5616A A ∙=4 320(个)没有重复数字的六位数. 解法三:用排除法:先不考虑任何限制条件,共组成67A 个六位数,但需去掉0在十万位上的情形,有56A 种,故共有67A -56A =4 320(个)没有重复数字的六位数.温馨提示有限制条件的排列问题,往往先考虑有限制条件的特殊元素或特殊位置,这可叫“特殊元素(位置)优先法”.三、处理排列问题的典型问题和方法【例3】 三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?解析:(1)(捆绑法)因为三个女生必须在一起,所以可以把她们看成一个整体,这样同五个男生合在一起共有六个元素,排成一排共有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 种不同的排法,因此共有66A ·33A =4 320种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间一个空,这样共有六个位置,再把三个女生插入这六个位置中,使得每个位置至多有一个女生插入,就能保证任意两个女生都不相邻,因此共有55A ·36A =14 400种不同的排法.(3)(位置分析法):因为两端不能排女生,所以两端只能挑选5个男生中的2人,有25A 种不同的排法,对于其中的任意一种排法,其余6位都有66A 种排法,所以共有25A ·66A =14 400种不同的排法.(4)因为只要求两端不都排女生,所以如果首位排了男生,则末位就不再受条件限制了,这样可以有15A ·77A 种不同的排法;如果首位是女生,有13A 种排法,这时末位就只能排男生,共有13A ·15A ·66A 种不同的排法,所以共有15A ·77A +13A ·15A ·66A =36 000种不同的排法. 各个击破【类题演练1】5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的选法?解析:不同选法的种数有35A =5×4×3=60(种).【变式提升1】某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?解析:用1面旗表示的信号有13A 种,用2面旗表示的信号有23A 种,用3面旗表示的信号有33A 种,根据分类计数原理,所求的信号数是13A +23A +33A =3+3×2+3×2×1=15(种).【类题演练2】某年级开设语文、政治、外语、体育、数学、物理、化学七门课程,依下列条件课程表有多少种不同排法.(1)一天开设七门不同课程,其中体育不排第一节也不排在第七节;(2)一天开设四门不同课程,其中体育不排第一节也不排在第四节.解析:(1)从元素考虑先满足体育后再安排其他课,从2-6节中任取一节排体育有15A 种排法,再从剩下的6节课中排其它课程有66A 种排法.依乘法原理有15A ·66A =3 600(种).【变式提升2】用0,1,2,…9十个数字可组成多少个没有重复数字的:(1)五位奇数?(2)大于30 000的五位偶数?解析:(1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有15A 种取法.取定末位数字后,首位就有除这个数字和0之外的八种不同取法.首末两位取定后,十个数字还有八个数字可供中间的十位,百位与千位三个数位选取,共有38A 种不同的安排方法.因此由分步计数原理共有5×8×38A =13 440个没有重复数字的五位奇数.(2)要得偶数,末位应从0,2,4,6,8中选取,而要得比30 000大的五位偶数,可分两类: ①末位数字从0,2中选取,则首位可取3、4、5、6、7、8、9中任一个,共7种选取方法,其余三个数位就有除首末两个数位上的数字之外的八个数字可以选取,共38A 种取法.所以共有2×7×38A 种不同情况.②末位数字从4、6、8中选取,则首位应从3、4、5、6、7、8、9中除去末位数字的六个数字中选取,其余三个数位仍有38A 种选法,所以共有3×6×38A 种不同情况.由分类计数原理,共有2×7×38A +3×6×38A =10 752个比30 000大的无重复数字的五位偶数.【类题演练3】从6名运动员中选出4名参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方法?解析:设全集U={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元集个数的公式可得参赛方法共有:card(U)-card(A)-card(B)+card(A∩B)=24353546A A A A +--=252(种). 【变式提升3】信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是( )(用数字作答)解析:5面旗全排列有55A 种挂法,由于3面红旗与2面白旗的分别全排列均只能作一次 的挂法,故共有不同的信号种数是223355A A A ∙=10(种).。
排列与组合习题课(1)导学案 高二下学期数学人教A版(2019)选择性必修第三册

排列与组合习题课(1)【学习目标】1. 通过结合具体实例,能区别排列与组合,并能利用排列组合知识解决有关排列组合的简单实际问题;2. 能够分析事件如何完成,并从不同角度解决同一个问题;3. 能正确理解“至多”、“至少”、“恰有几个”等关键词,合理利用直接法和排除法解决实际问题.【知识梳理】1、排列与组合的概念 名称定 义 排列从n 个不同元素中取出()m m n ≤个不同元素 组合2、排列数与组合数(1)从n 个不同元素中取出()m m n ≤个元素的所有 的个数,叫做从n 个不同元素中取出m 个元素的排列数.(2)从n 个不同元素中取出()m m n ≤个元素的所有 的个数,叫做从n 个不同元素中取出m 个元素的组合数.3、排列数、组合数的公式及性质 公式 (1)A m n =;(2)C m n =()!!!n m n m =-(*,n m ∈N ,且m n ≤).特别地0C n =. 性质(1)0!= ;A n n = ;(2)C C m n m n n -=;11C C C m m m n n n -+=+.【学习任务】例1 (1)有三张参观券,要在5人中确定3人去参观,不同的方法种数是多少?(结果用数值表示)(2)要从5件不同的礼物中选出3件分送3位同学,不同的方法种数是多少?(结果用数值表示)例2 用0,1,2,3,4,5这六个数字,可以组成多少个没有重复数字的三位数?【变式1】用0,1,2,3,4,5这六个数字,可以组成多少个三位数?【变式2】用0,1,2,3,4,5这六个数字,可以组成多少个没有重复数字的三位的偶数?【变式3】由0,1,2,3,4,5,6可以组成多少个没有重复数字,并且比5000000大的正奇数?【变式4】用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有_______个.(用数字作答)【变式5】用1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有多少个?例3 现有4个不同的球,和4个不同的盒子,把球全部放入盒内.(1)小球全部放入盒子中有多少种不同的放法?(2)若每个盒子都不空,有多少种不同的放法?(3)恰有一个盒子没放球,有多少种不同的放法?(4)恰有两个盒子没放球,有多少种不同的放法?(5)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种不同的放法?【小结】1. 如何区分排列问题和组合问题?2. 如何应用计数原理解决实际问题?3. 本节课你获得了哪些解决排列组合问题的方法?4. “至多”、“至少”、“恰有几个”等关键词如何转化?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: 排列组合练习题 编写人:张智亮 姓名: ____组别 1、4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是
( ) A .6A 33 B .3A 33 C .2A 33 D .A 22A 41A 44
2.编号为1,2,3,4,5,6的六个人分别去坐编号为1,2,3,4,5,6的六个座位,其中有且只有两个人的编号与座位编号一致的坐法有
( )
A .15种 B.90种 C .135种 D .150种 3.从6位男生和3位女生中选出4名代表,代表中必须有女学生,则不同的选法有( )
A .168
B .45
C .60
D .111
4.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则不同的改变方法共有 ( )
A .210种
B .126种
C .70种
D .35种
5.某校刊设有9门文化课专栏,由甲,乙,丙三位同学每人负责3个专栏,其中数学专栏由甲负责,则不同的分工方法有
( ) A .1680种 B .560种 C .280种
D .140种 6.电话盘上有10个号码,采用八位号码制比采用七位号码制可多装机的门数是( ) A .871010A A - B .C 108-C 107 C .781010- D .88108
C A 7.已知集合A={1,2,3,4},集合B={﹣1,﹣2},设映射f: A →B ,若集合B 中的元素都是A 中元素在f 下的象,那么这样的映射f 有
( )
A .16个
B .14个
C .12个
D .8个 8.从图中的12个点中任取3个点作为一组,其中可
构成三角形的组数是 ( )
A .208
B .204
C .200
D .196
9.由0,1,2,3这四个数字可以组成没有重复数字且不能被5整除的四位数的个数是( )
A .24个
B .12个
C .6个
D .4个 10.假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法有( ) A .319823C C 种 B .(219733319723C C C C +)种 C .)C -(C 41975200种 D .)C C C (4197135200-种
11.把10个相同的小球放入编号为1,2,3的三个不同盒子中,使盒子里的球的个数不 小于它的编号数,则不同的放法种数是
( )
A.3
C B.26C C.39C D.2129C
6
12.由数字1、2、3、4、5组成没有重复数字,且数字1与2不相邻的五位数有_____个.13.有一角的人民币3张,5角的人民币2张,1元的人民币1张,用这人民币可以组成_________种不同币值。
14、把7个相同的小球放到10个不同的盒子中,每个盒子中放球不超1个,则有_______种不同放法。
15、在∠AOB的边OA上有5个点,边OB上有6个点,加上O点共12个点,以这12个点为顶点的三角形有_______个。
16.把8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另外一组的第二名进行淘汰赛,获胜者角逐冠亚军,败者角逐第三,第四名,则该大师赛共有____ 场比赛.
17.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了 5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种多少种?
18.用红、黄、蓝、绿、黑5种颜色给如图的a、b、c、d四个区域染
色,若相邻的区域不能用相同的颜色,试问:不同的染色方法的种数
是多少?
19.7名身高互不相同的学生,分别按下列要求排列,各有多少种不同的排法?
(1)7人站成一排,要求较高的3个学生站在一起;
(2)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减;
(3)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮.
考答案
1.D 2.C 3.D 4.C 5.C 解:23328632/280C C C C = 6.C 7.A 8.B
解:3312443204C C --= 9.B 解:112322
12.C C A = 10.B 11.D。