排列组合复习教学设计

合集下载

《排列与组合》教学设计(通用7篇)

《排列与组合》教学设计(通用7篇)

《排列与组合》教学设计(通用7篇)《排列与组合》教学设计(通用7篇)作为一名专为他人授业解惑的人民教师,就有可能用到教学设计,借助教学设计可以让教学工作更加有效地进行。

如何把教学设计做到重点突出呢?下面是小编帮大家整理的《排列与组合》教学设计,希望能够帮助到大家。

《排列与组合》教学设计篇1教学目标:1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

2、经历探索简单事物排列与组合规律的过程。

3、培养学生有序地全面地思考问题的意识。

4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。

教学重点:经历探索简单事物排列与组合规律的过程。

教学难点:初步理解简单事物排列与组合的不同。

教具准备:乒乓球、衣服图片、纸箱、每组三张数字卡片、吹塑纸数字卡片。

一、情境导入,展开教学今天,王老师要带大家去“数学广角”里做游戏,可是,我把游戏要用的材料都放在这个密码包里。

你们想解开密码取出游戏材料吗?(想)我给大家提供解码的3个信息。

1、好,接下来老师提供解码的第一个信息:密码是一个两位数。

(学生在两位数里猜)(你们猜的对不对呢?请听第二个解码信息)2、下面,提供解码的第二个信息:密码是由2和7组成的(学生说出27和72)。

能说说看你是怎么想的吗?3、下面,提供解码的第三个信息:刚才说了密码可能是27也可能是72。

其实这个密码和老师的年龄有关。

哪个才是真正的密码是?(学生说出是27)到底是不是27呢?请看(教师出示密码)。

真的是27,恭喜大家解码成功!二、多种活动,体验新知1、感知排列师:请小朋友先到“数字宫”做个排数字游戏,好吗?这有两张数字卡片(1 、2)(老师从密码包里拿出),你能摆出几个两位数?(用数字卡摆一摆)生:我摆了两个不同的数字12和21。

(教师板书)师:同学们想得真好。

我又请来了一位好朋友数字3,现在有三个数字1、2、3,让大家写两位数,你们不会了吧?(会)别吹牛!(真的会)好,下面大家分组合作,组长记录。

(完整版)排列组合复习教学设计

(完整版)排列组合复习教学设计

《排列组合的复习》教学设计上传: 李火年更新时间:2012-5-8 6:27:32教学目标1.知识目标(1)能够熟练判断所研究问题是否是排列或组合问题;(2)进一步熟悉排列数、组合数公式的计算技能;(3)熟练应用排列组合问题常见解题方法;(4)进一步增强分析、解决排列、组合应用题的能力。

2.能力目标认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。

3.德育目标(1)用联系的观点看问题;(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。

教学重点:排列数与组合数公式的应用教学难点:解题思路的分析教学策略:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。

媒体选用:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究。

教学过程一、知识要点精析(一)基本原理1.分类计数原理:做一件事,完成它可以有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第类办法中有种不同的办法,那么完成这件事共有:…种不同的方法。

2.分步计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的办法,那么完成这件事共有:…种不同的方法。

3.两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:(1)对于加法原理有以下三点:①“斥”——互斥独立事件;②模式:“做事”——“分类”——“加法”③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。

(2)对于乘法原理有以下三点:①“联”——相依事件;②模式:“做事”——“分步”——“乘法”③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。

(二)排列1.排列定义:一般地说从个不同元素中,任取个元素,按照一定的顺序排成一列,叫做从个不同元素中,任取个元素的一个排列。

《排列与组合》教学设计优秀9篇

《排列与组合》教学设计优秀9篇

《排列与组合》教学设计优秀9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《排列与组合》教学设计优秀9篇作为一位杰出的老师,常常需要准备教案,教案有助于顺利而有效地开展教学活动。

高中数学排列组合教案模板

高中数学排列组合教案模板

教学目标:1. 知识传授目标:使学生正确理解和掌握排列组合的基本概念、加法原理和乘法原理。

2. 能力培养目标:培养学生运用排列组合知识分析和解决实际问题的能力。

3. 思想教育目标:培养学生严谨的逻辑思维和良好的数学素养。

教学重点:1. 排列组合的定义及基本性质。

2. 加法原理和乘法原理的应用。

教学难点:1. 排列组合问题中分类与分步的区别。

2. 复杂排列组合问题的求解。

教学过程:一、新课导入1. 复习相关概念:回顾集合、组合等概念,为排列组合的学习奠定基础。

2. 引入排列组合:通过实例,让学生了解排列组合在生活中的应用,激发学习兴趣。

二、新课讲授1. 排列组合的定义及基本性质:- 排列:从n个不同元素中取出m个元素,按照一定顺序排成一列。

- 组合:从n个不同元素中取出m个元素,不考虑顺序。

- 排列数的计算公式:A_n^m = n! / (n-m)!- 组合数的计算公式:C_n^m = n! / [m!(n-m)!]2. 加法原理和乘法原理:- 加法原理:若一个任务可以通过完成若干个互不相交的子任务之一来完成,则总完成方式数等于每种子任务完成方式数之和。

- 乘法原理:若一个任务需要由若干个相继的独立操作完成,则总完成方式数等于每个独立操作完成方式数的乘积。

3. 排列组合问题中的分类与分步:- 分类:将问题分为若干个互不相交的类别,分别计算每个类别的完成方式数,然后相加。

- 分步:将问题分为若干个步骤,每个步骤之间具有相依性和连续性,依次计算每个步骤的完成方式数,然后相乘。

三、课堂练习1. 完成教材中的例题,巩固排列组合的知识。

2. 解答一些实际生活中的排列组合问题,提高学生的应用能力。

四、课堂小结1. 回顾排列组合的定义、基本性质、加法原理和乘法原理。

2. 总结排列组合问题中分类与分步的区别。

3. 强调排列组合在实际生活中的应用。

五、课后作业1. 完成教材中的练习题,巩固所学知识。

2. 选择一些实际生活中的排列组合问题进行探究,提高自己的应用能力。

数学排列组合教案高中模板

数学排列组合教案高中模板

课时:2课时教学目标:1. 让学生理解排列组合的概念,掌握排列组合的基本原理。

2. 培养学生运用排列组合知识解决实际问题的能力。

3. 培养学生的逻辑思维能力和创新意识。

教学重点:1. 排列组合的概念和基本原理。

2. 排列组合的应用。

教学难点:1. 排列组合的计算方法。

2. 排列组合在解决实际问题中的应用。

教学过程:第一课时一、导入新课1. 复习组合数学中的排列概念,引导学生回顾排列的定义和性质。

2. 引出排列组合的概念,提出本节课的学习目标。

二、新课讲解1. 排列组合的定义:排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的方法数;组合是指从n个不同元素中取出m(m≤n)个元素,不考虑顺序的方法数。

2. 排列组合的原理:排列数公式A_n^m = n!/(n-m)!,组合数公式C_n^m =n!/[(n-m)!m!]3. 排列组合的性质:对称性、乘法原理、加法原理。

三、例题讲解1. 讲解排列组合的基本计算方法,通过实例让学生掌握计算公式。

2. 讲解排列组合在解决实际问题中的应用,如:生日问题、握手问题等。

四、课堂练习1. 学生独立完成课堂练习,巩固排列组合的基本计算方法。

2. 教师巡视指导,解答学生疑问。

第二课时一、复习导入1. 复习排列组合的定义、原理和计算方法。

2. 引导学生思考排列组合在解决实际问题中的应用。

二、新课讲解1. 排列组合的扩展:错位排列、多重排列等。

2. 排列组合在实际问题中的应用,如:排列组合在密码设置、计算机科学中的应用等。

三、例题讲解1. 讲解错位排列、多重排列的计算方法。

2. 讲解排列组合在解决实际问题中的应用实例。

四、课堂练习1. 学生独立完成课堂练习,巩固排列组合的扩展知识和应用。

2. 教师巡视指导,解答学生疑问。

五、课堂小结1. 回顾排列组合的定义、原理、计算方法和应用。

2. 强调排列组合在数学和其他学科中的重要性。

六、布置作业1. 完成课后习题,巩固排列组合知识。

排列组合教案设计模板

排列组合教案设计模板

课程名称:排列组合年级:八年级学科:数学课时:2课时教学目标:1. 知识与技能:理解排列组合的概念,掌握排列组合的基本原理和方法。

2. 过程与方法:通过实际问题,培养学生运用排列组合解决实际问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生严谨的数学思维和良好的合作精神。

教学重点:1. 排列组合的概念和原理。

2. 排列组合的基本方法。

教学难点:1. 排列组合在实际问题中的应用。

2. 复杂排列组合问题的解决。

教学准备:1. 多媒体课件2. 教学辅助工具(如骰子、扑克牌等)3. 学生练习题教学过程:第一课时一、导入1. 提出问题:生活中有哪些场景需要用到排列组合?2. 引导学生思考,举例说明。

二、新课导入1. 介绍排列组合的概念:排列是指从n个不同的元素中取出m(m≤n)个不同的元素,按照一定的顺序排成一列的方法数;组合是指从n个不同的元素中取出m (m≤n)个不同的元素,不考虑顺序的方法数。

2. 讲解排列组合的原理:排列问题中,第1个位置有n种选择,第2个位置有n-1种选择,以此类推,直到第m个位置有n-m+1种选择。

因此,排列的总数为n×(n-1)×...×(n-m+1)。

组合问题中,只需要计算排列的总数除以m!(m的阶乘)。

三、基本方法1. 讲解排列的基本方法:排列公式为A(n,m) = n×(n-1)×...×(n-m+1)。

2. 讲解组合的基本方法:组合公式为C(n,m) = A(n,m)/m!。

四、例题讲解1. 举例说明排列和组合的应用。

2. 讲解例题,引导学生分析问题,运用排列组合公式解决问题。

五、课堂练习1. 出示练习题,让学生独立完成。

2. 针对练习题进行讲解,纠正学生错误。

第二课时一、复习导入1. 回顾上一节课的内容,提问学生排列组合的概念和基本方法。

2. 学生回答问题,巩固所学知识。

二、实际问题解决1. 提出实际问题,如:班级里有6名学生参加数学竞赛,需要从中选出3名学生参加决赛,有多少种不同的选法?2. 引导学生运用排列组合的方法解决问题。

高中数学排列组合教案

高中数学排列组合教案

高中数学排列组合教案高中数学排列组合教案(精选篇1)一.课标要求:1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题; 2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。

二.命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。

三.要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。

3.排列(1)排列定义,排列数(2)排列数公式:系= =n·(n-1)…(n-m+1);(3)全排列列: =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4.组合(1)组合的定义,排列与组合的区别;(2)组合数公式:Cnm= = ;(3)组合数的性质①Cnm=Cnn-m;② ;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk; 6.二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。

高中数学排列与组合教案

高中数学排列与组合教案

高中数学排列与组合教案教学目标:1. 理解排列与组合的概念。

2. 能够应用排列与组合的知识解决实际问题。

3. 提高学生的逻辑思维能力和解决问题的能力。

教学内容:1. 排列的概念及其性质。

2. 组合的概念及其性质。

3. 排列与组合的应用。

教学过程:第一课时:1. 引入排列与组合的概念,通过实际例子引发学生对排列与组合的认识。

2. 讲解排列的定义和性质,例如排列中元素不重复出现的特点。

3. 给学生布置一些排列练习题,让他们熟悉排列的运算方法和规律。

第二课时:1. 复习排列的概念和性质。

2. 讲解组合的定义和性质,例如组合中元素可重复出现的特点。

3. 给学生布置一些组合练习题,让他们熟悉组合的运算方法和规律。

第三课时:1. 复习排列与组合的概念和性质。

2. 讲解排列与组合的应用,例如在排队、选做题目等实际问题中的运用。

3. 给学生布置一些综合排列与组合的练习题,让他们能够灵活运用排列与组合的知识解决问题。

教学反馈:1. 对学生在排列与组合方面的理解进行总结和反馈。

2. 引导学生思考排列与组合在日常生活中的应用,并展开讨论。

教学评价:通过作业、课堂表现和练习题的表现评价学生对排列与组合的掌握程度和应用能力。

教学延伸:鼓励学生深入学习排列与组合知识,并拓展到更高级的数学领域,如概率论等。

教学资源:教科书、课件、练习题。

教学提醒:教师应注意引导学生通过实例来理解排列与组合的概念,激发学生的学习兴趣和思考能力。

同时,要关注学生的学习状态,及时调整教学方法,确保学生的学习效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《排列组合的复习》教学设计上传: 李火年更新时间:2012-5-8 6:27:32教学目标1.知识目标(1)能够熟练判断所研究问题是否是排列或组合问题;(2)进一步熟悉排列数、组合数公式的计算技能;(3)熟练应用排列组合问题常见解题方法;(4)进一步增强分析、解决排列、组合应用题的能力。

2.能力目标认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。

3.德育目标(1)用联系的观点看问题;(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。

教学重点:排列数与组合数公式的应用教学难点:解题思路的分析教学策略:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。

媒体选用:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究。

教学过程一、知识要点精析(一)基本原理1.分类计数原理:做一件事,完成它可以有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第类办法中有种不同的办法,那么完成这件事共有:…种不同的方法。

2.分步计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的办法,那么完成这件事共有:…种不同的方法。

3.两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:(1)对于加法原理有以下三点:①“斥”——互斥独立事件;②模式:“做事”——“分类”——“加法”③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。

(2)对于乘法原理有以下三点:①“联”——相依事件;②模式:“做事”——“分步”——“乘法”③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。

(二)排列1.排列定义:一般地说从个不同元素中,任取个元素,按照一定的顺序排成一列,叫做从个不同元素中,任取个元素的一个排列。

特别地当时,叫做个不同元素的一个全排列。

2.排列数定义:从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示。

3.排列数公式:(1)…,特别地(2)且规定(三)组合1.组合定义:一般地说从个不同元素中,任取个元素并成一组,叫做从个不同元素中取出个元素的一个组合。

2.组合数定义:从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数,用符号表示。

3.组合数公式:(1)(2)4.组合数的两个性质:(1)规定(2)(四)排列与组合的应用1.排列的应用问题(1)无限制条件的简单排列应用问题,可直接用公式求解。

(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法”求解。

2.组合的应用问题(1)无限制条件的简单组合应用问题,可直接用公式求解。

(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。

3.排列、组合的综合问题排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。

在解决排列与组合的应用题时应注意以下几点:(1)限制条件的排列问题常见命题形式:“在”与“不在”“相邻”与“不相邻”在解决问题时要掌握基本的解题思想和方法:①“相邻”问题在解题时常用“捆绑法”,可以把两个或两个以上的元素当做一个元素来看,这是处理相邻最常用的方法。

②“不相邻”问题在解题时最常用的是“插空法”。

③“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置。

④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出结果。

(2)限制条件的组合问题常见命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”。

(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复,不遗漏按事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列问题的最基本,也是最重要的思想方法。

4、解题步骤:(1)认真审题:看这个问题是否与顺序有关,先归结为排列问题或组合问题或二者的综合题,还应考虑以下几点:①在这个问题中个不同的元素指的是什么?②个元素指的又是什么?②从个不同的元素中每次取出个元素的排列(或组合)对应的是什么事件;(2)列式并计算;(3)作答。

二、学习过程题型一:排列应用题9名同学站成一排:(分别用A,B,C等作代号)(1)如果A必站在中间,有多少种排法?(答案:)(2)如果A不能站在中间,有多少种排法?(答案:)(3)如果A必须站在排头,B必须站在排尾,有多少种排法?(答案:)(4)如果A不能在排头,B不能在排尾,有多少种排法?(答案:)(5)如果A,B必须排在两端,有多少种排法?(答案:)(6)如果A,B不能排在两端,有多少种排法?(答案:)(7)如果A,B必须在一起,有多少种排法?(答案:)(8)如果A,B必须不在一起,有多少种排法?(答案:)(9)如果A,B,C顺序固定,有多少种排法?(答案:)题型二:组合应用题若从这9名同学中选出3名出席一会议(10)若A,B两名必在其内,有多少种选法?(答案:)(11)若A,B两名都不在内,有多少种选法?(答案:)(12)若A,B两名有且只有一名在内,有多少种选法?(答案:)(13)若A,B两名中至少有一名在内,有多少种选法?(答案:或)(14)若A,B两名中至多有一名在内,有多少种选法?(答案:或)题型三:排列与组合综合应用题若9名同学中男生5名,女生4名(15)若选3名男生,2名女生排成一排,有多少种排法?(答案:)(16)若选3名男生2名女生排成一排且有一男生必须在排头,有多少种排法?(答案:)(17)若选3名男生2名女生排成一排且某一男生必须在排头,有多少种排法?(答案:)(18)若男女生相间,有多少种排法?(答案:)题型四:分组问题6本不同的书,按照以下要求处理,各有几种分法?(19)一堆一本,一堆两本,一堆三本(答案:)(20)甲得一本,乙得两本,丙得三本(答案:)(21)一人得一本,一人得两本,一人得三本(答案:)(22)平均分给甲、乙、丙三人(答案:)(23)平均分成三堆(答案:)(24)分成四堆,一堆三本,其余各一本(答案:)(25)分给三人每人至少一本。

(答案: + + )题型五:全能与专项车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名老师傅既能当车工又能当钳工现在要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方法?题型六:染色问题(26)梯形的两条对角线把梯形分成四部分,用五种不同颜色给这四部分涂不同颜色,且相邻的区域不同色,问有()种不同的涂色方法?(答案:260)(27)某城市在中心广场建造一个花圃,花圃分为6个部分(如图)。

现在栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有种。

分析:先排1、2、3排法种排法;再排4,若4与2同色,5有种排法,6有1种排法;若4与2不同色,4只有1种排法;若5与2同色,6有种排法;若5与3同色,6有1种排法所以共有( + +1)=120种题型七:编号问题(28)四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有多少种?(答案:144)(29)将数字1,2,3,4填在标号为1,2,3,4的四个方格里,每格填上一个数字且每个方格的标号与所填的数字均不相同的填法有多少种?(答案:9)题型八:几何问题(30):(Ⅰ)四面体的一个顶点为A,从其它顶点和各棱的中点中取3个点,使它们和点A在同一个平面上,有多少种不同的取法?(Ⅱ)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,有多少种不同的取法?解:(1)(直接法)如图,含顶点A的四面体的3个面上,除点A外都有5个点,从中取出3点必与点A共面共有种取法,含顶点A的三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法。

根据分类计数原理,与顶点A共面三点的取法有 +3=33(种)(2)(间接法)如图,从10个顶点中取4个点的取法有种,除去4点共面的取法种数可以得到结果。

从四面体同一个面上的6个点取出4点必定共面。

有 =60种,四面体的每一条棱上3点与相对棱中点共面,共有6种共面情况,从6条棱的中点中取4个点时有3种共面情形(对棱中点连线两两相交且互相平分)故4点不共面的取法为-(60+6+3)=141题型九:关于数的整除个数的性质:①被2整除的:个位数为偶数;②被3整除的:各个位数上的数字之和被3整除;③被6整除的:3的倍数且为偶数;④被4整除的:末两位数能被4整除;⑤被8整除的:末三位数能被8整除;⑥25的倍数:末两位数为25的倍数;⑦5的倍数:个位数是0,5;⑧9的倍数:各个位数上的数字之和为9的倍数。

(31):用0,1,2,3,4,5组成无重复数字的五位数,其中5的倍数有多少个?(答案:216)题型十:隔板法:(适用于“同元”问题)(32):把12本相同的笔记本全部分给7位同学,每人至少一本,有多少种分法?分析:把12本笔记本排成一行,在它们之间有11个空当(不含两端)插上6块板将本子分成7份,对应着7名同学,不同的插法就是不同的分法,故有种。

三、在线测试题1.以一个正方形的顶点为顶点的四面体共有( D )个(A)70(B)64(C)60(D)582.3名医生和6名护士被分配到3所所为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( D )(A)90种(B)180种(C)270种(D)540种3.将组成篮球队的12个名额分配给7所学校,每校至少1个名额,则不同的名额分配方法共有( A )(A)(B)(C)(D)4.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为( B )(A)480 (B)240 (C)120 (D)965.编号为1,2,3,4,5的五个人分别去坐在编号为1,2,3,4,5的座位上,至多有两个号码一致的坐法种数为( C )(A)90 (B)105 (C)109 (D)1006.如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现在4种颜色可供选择,则不同的着色方法共有( B )种(用数字作答)(A)48 (B)72 (C)120 (D)367.若把英语“error”中字母的拼写顺序写错了,则可能出现的错误的种数是( A )。

(A)19 (B)20 (C)119 (D)608.某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有( D )(A)6 种(B)5种(C)4种(D)3种四、课后练习1.10个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于盒子的编数,问有种不同的放法?2.坐在一排9个椅子上,相邻两人之间至少有2个空椅子,则不同的坐法的种数是3.如图A,B,C,D为海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有种。

相关文档
最新文档