郑振龙金融工程第二版习题答案
郑振龙《金融工程》第2版课后习题(股指期货、外汇远期利率远期与利率期货)【圣才出品】

郑振龙《金融工程》第2版课后习题第五章股指期货、外汇远期利率远期与利率期货1.美国某公司拥有一个β系数为1.2,价值为l000万美元的投资组合,当时标准普尔500指数为1530点,请问该公司应如何应用标准普尔500指数期货为投资组合套期保值?答:由题意可知,该公司持有资产组合,应进行空头套期保值。
应卖出的标准普尔500指数期货合约份数为:G H V V N ⨯=β=100000001.2312501530≈⨯份。
2.瑞士和美国两个月连续复利利率分别为2%和7%,瑞士法郎的现货汇率为0.6800美元,2个月期的瑞士法郎期货价格为0.7000美元,请问有无套利机会?答:有套利机会,理由主要如下:(1)根据已知条件可以计算瑞士法郎2个月期理论远期汇率为:2/12(0.070.02)0.680.68570.7F e ⨯-==<2个月期瑞士法郎期货价格高估。
(2)假设期初投资者在现货市场上获得2个月期0.68单位美元的借款,同时卖出2/120.02e ⨯单位的2个月期的瑞士法郎期货。
投资者在现货市场上卖出美元,兑换瑞士法郎,持有瑞士法郎直到期货到期。
期货到期时,投资者交割瑞士法郎,获得美元,并偿还美元借款。
综上,以美元计算投资者的套利所得为:2/120.022/120.070.70.680.01436e e ⨯⨯-=(美元)。
3.假设某投资者A 持有一份β系数为0.85的多样化的股票投资组合,请问,如果不进行股票现货的买卖,只通过期货交易,是否能提高该投资组合的β系数?答:可以。
理由主要如下:投资者可以利用股指期货,根据自身的预期和特定的需求改变股票投资组合的β系数,从而调整股票组合的系统性风险与预期收益。
设定股票组合的原β系数为β,目标β系数为β*.套期保值比率就应该为β*-β,需要交易的股指期货份数为()*H GV V ββ-。
这里V H 和V G 分别代表股票投资组合的总价值与一份股指期货合约的规模。
郑振龙金融工程课后作业习题及答案

第二章课后作业:1.假如英镑与美元的即期汇率是1英镑=1.6650美元,6个月期远期汇率是1英镑=1.6600美元,6个月期美元与英镑的无风险年利率分别是6%和8%,问是否存在无风险套利机会?如存在,如何套利?解:11121.6600 1.6650100%0.60%8%6%2%161.6650-=⨯⨯=<-=美元年升水率 则美元远期升水还不够,处于被低估状态,可以套利,基本过程为:首先借入美元,在期初兑换成英镑到英国投资6个月;同时在期初卖出一份6个月期的英镑期货合约;在投资期满后将英镑计价的本息和按原定远期汇率兑换回美元,偿还借款本息和后剩余的即为无风险套利。
2.一只股票现在价格是40元,该股票1个月后价格将是42元或者38元。
假如无风险利率是8%,用风险中性定价法计算执行价格为39元的一个月期欧式看涨期权的价值是多少?解:设价格上升到42元的概率为P ,则下降到38元的概率为1-P ,根据风险中性定价法有()18%1242381400.5669P P eP -⨯+-= ⇒=⎡⎤⎣⎦设该期权价值为f ,则有 ()()18%12423901 1.69f P P e -⨯=-+-= ⎡⎤⎣⎦元第三章课后作业:1.假设一种无红利支付的股票目前的市价为20元,无风险连续复利年利率为10%,求该股票3个月期远期价格。
(0.025 1.025e=) .该股票3个月期远期价格为解:()310%122020 1.02520.5r T t F Se e ⨯-===⨯= 元。
2.假设恒生指数目前为10000点,香港无风险连续复利年利率为10%,恒生指数股息收益率为每年3%,求该指数4个月期的期货价格。
该指数期货价格为解: ()()()110%3%31000010236.08r q T t F Se e -⨯--=== 点。
3.某股票预计在2个月和5个月后每股分别派发1元股息,该股票目前市价等于30元,所有期限的无风险连续复利年利率均为6%,某投资者刚取得该股票6个月期的远期合约空头,请问:①该远期价格等于多少?若交割价格等于远期价格,则远期合约的初始值等于多少?②3个月后,该股票价格涨到35元,无风险利率仍为6%,此时远期价格和该合约空头价值等于多少?(0.010.0250.030.99,0.975, 1.03e e e --===)4.瑞士和美国两个月连续复利率分别为2%和7%,瑞士法郎的现货汇率为0.6500美元,2个月期的瑞士法郎期货价格为0.6600美元,请问有无套利机会?瑞士法郎期货的理论价格为:解:()()()17%2%60.65000.65540.6600$f r r T t F Se e -⨯--===<可见,实际的期货交割价格太高了。
金融工程郑振龙课后习题答案

金融工程郑振龙课后习题答案第1章7.该说法是正确的。
从图1.3中可以看出,如果将等式左边的标的资产多头移至等式右边,整个等式左边就是看涨期权空头,右边则是看跌期权空头和标的资产空头的组合。
9. ()5%4.821000012725.21⨯=元e⨯10. 每年计一次复利的年利率=(1+0.14/4)4-1=14.75%连续复利年利率= 4ln(1+0.14/4)=13.76%。
11. 连续复利年利率=12ln(1+0.15/12)=14.91%。
12. 12%连续复利利率等价的每季度支付一次利息的年利率=4(e0.03-1)=12.18%。
因此每个季度可得的利息=10000×12.8%/4=304.55元。
第2章1.2007年4月16日,该公司向工行买入半年期美元远期,意味着其将以764.21人民币/100美元的价格在2007年10月18日向工行买入美元。
合约到期后,该公司在远期合约多头上的盈亏=10000(752.63764.21)115,800⨯-=-。
2.收盘时,该投资者的盈亏=(1528.9-1530.0)×250=-275美元;保证金账户余额=19,688-275=19,413美元。
若结算后保证金账户的金额低于所需的维持保证金,即19,688(S P5001530)25015,750&指数期货结算价时(即+-⨯<S&P500指数期货结算价<1514.3时),交易商会收到追缴保证金通知,而必须将保证金账户余额补足至19,688美元。
3.他的说法是不对的。
首先应该明确,期货(或远期)合约并不能保证其投资者未来一定盈利,但投资者通过期货(或远期)合约获得了确定的未来买卖价格,消除了因价格波动带来的风险。
本例中,汇率的变动是影响公司跨国贸易成本的重要因素,是跨国贸易所面临的主要风险之一,汇率的频繁变动显然不利于公司的长期稳定运营(即使汇率上升与下降的概率相等);而通过买卖外汇远期(期货),跨国公司就可以消除因汇率波动而带来的风险,锁定了成本,从而稳定了公司的经营。
郑振龙《金融工程》第2版章节题库(远期与期货定价)【圣才出品】

A(rr
ic
)
D B
1
ir
D B
3000 (4% 4.6%) 3 12
1 4% 3 12
4.4554 (万美元)
该公司的实际借款利息为 4.60%。
3.已知:1 个月期美元利率 4%,4 个月期美元利率 5.2%,1 个月期欧元利率 3.8%,
4 个月期欧元利率 4.1%。外汇市场上欧元兑美元即期汇价为:1 欧元=1.18 美元。
解:①清算日交割的金额为
交割金额=
A(ir
ic )
D B
1
Байду номын сангаас
ir
D B
3000 (6% 4.6%) 3 12
1 6% 3 12
10.3448 (万美元)
该公司的实际借款利息为 4.60%。
3/4
圣才电子书 十万种考研考证电子书、题库视频学习平台
②交割金额=
现金市场利率;iL 为现金市场从 T0 至 T2 日现金市场利率;DS 为从 T0 至 T1 日之间的天数;DL
为从 T0 至 T2 日之间的天数; DF 为自 T1 日至 T2 日之间的天数;B 为通常使用的一年中的天
数,大多数货币使用 B=360 天,对英镑而言,使用 B=365 天。
(2)远期利率协议和短期利率期货合约的区别
1 ×(1+8%)×1.58=1.0665(美元) 1.6
期末归还美元借款后获得的无风险套利收益为:
1.0665-1×(1+4%)= 0.0265(美元)
2.已知:1 月 1 日某公司预计 3 个月后借入 3 个月期的欧洲美元 3000 万,担心 3 个
月后欧洲美元利率上涨,决定做远期利率协议交易套期保值。1 月 1 日伦敦市场远期利率协
《金融工程》新第二版习题答案郑振龙

《⾦融⼯程》新第⼆版习题答案郑振龙《⾦融⼯程》课后题答案第⼆章1、按照式⼦:(1+8%)美元=1.8×(1+4%)马克,得到1美元=1.7333马克。
2、设远期利率为i,根据(1+9.5%)×(1+i)=1+9.875%,i=9.785%.3、存在套利机会,其步骤为:(1)以6%的利率借⼊1655万美元,期限6个⽉;(2)按市场汇率将1655万美元换成1000万英镑;(3)将1000万英镑以8%的利率贷出,期限6个⽉;(4)按1.6600美元/英镑的远期汇率卖出1037.5万英镑;(5)6个⽉后收到英镑贷款本息1040.8万英镑(1000e0.08×0.5),剩余3.3万英镑;(6)⽤1037.5万元英镑换回1722.3万美元(1037.5×1.66);(7)⽤1715.7美元(1665 e0.06×0.5)归还贷款本息,剩余6.6万美元;(8)套利盈余=6.6万美元+3.3万英镑。
4、考虑这样的证券组合:购买⼀个看涨期权并卖出Δ股股票。
如果股票价格上涨到42元,组合价值是42Δ-3;如果股票价格下降到38元,组合价值是38Δ。
若两者相等,则42Δ-3=38Δ,Δ=075。
可以算出⼀个⽉后⽆论股票价格是多少,组合的价值都是28.5,今天的价值⼀定是28.5的现值,即2 8.31=28.5 e-0.08×0.08333。
即-f+40Δ=28.31,f是看涨期权价格。
f=1.69。
5、按照风险中性的原则,我们⾸先计算风险中性条件下股票价格向上变动的概率p,它满⾜等式:42p+38(1-p)=40e0.08×0.08333,p=0.5669,期权的价值是:(3×0.5669+0×0.4331)e-0.0 8×0.08333=1.69,同题4按照⽆套利定价原则计算的结果相同。
6、考虑这样的组合:卖出⼀个看跌期权并购买Δ股股票。
郑振龙《金融工程》第2版课后习题(互换的定价与风险分析)【圣才出品】

郑振龙《金融工程》第2版课后习题第七章互换的定价与风险分析1.假设在一笔互换合约中,某一金融机构每半年支付6个月期的LIBOR,同时收取8%的年利率(半年计一次复利),名义本金为l 亿美元。
互换还有1.25年的期限。
3个月、9个月和15个月的LIBOR(连续复利率)分别为10%、10.5%和11%。
上一次利息支付日的6个月LIBOR 为10.2%(半年计一次复利)。
试分别运用债券组合和FRA 组合计算此笔利率互换对该金融机构的价值。
答:(1)运用债券组合计算该笔利率互换的价值①现金流交换日交换的固定利息额)(04.0)2/%8(1亿美元=⨯=K 根据固定利率债券定价公式有:)(9824.004.104.004.025.111.075.0105.025.01.0亿美元=++=⨯-⨯-⨯-e e e B fix ;②下一交换日应交换的浮动利息额)(051.0)2/%2.10(1*亿美元=⨯=K )(0251.1)051.01(25.01.0亿美元=+=⨯-e B fl ;③由题意可知,该金融机构是互换空头,即浮动利率的支付者,则其利率互换的价值为:(亿美元)互换-0.0431.0251-0.9824==-=fl fix B B V 。
(2)运用FRA 组合计算该笔利率互换的价值6个月计一次复利的8%对应的连续复利利率为=+)2/%81ln(27.84%。
计算该金融机构每次交换后的FRA 价值。
①3个月后交换的FRA 价值为:-0.011= )e e -(e×10.25-10%0.510%0.57.84%⨯⨯⨯(亿美元);②3个月到9个月的远期利率为:0.1050.750.100.250.10750.5⨯-⨯=9个月后交换的FRA 价值为:-0.014= )e e -(e×10.75-10.5%0.510.75%0.57.84%⨯⨯⨯(亿美元);③9个月到15个月的远期利率为:%75.111175.05.075.0105.025.111.0==⨯-⨯。
郑振龙《金融工程》第2版课后习题(期权的回报与价格分析)【圣才出品】

郑振龙《金融工程》第2版课后习题第十章期权的回报与价格分析1.某投资者买进一份欧式看涨期权,同时卖出一份标的资产、期限和协议价格都相同的欧式看跌期权,请描述该投资者的盈亏状况,并揭示相关衍生产品之间的关系。
答:不考虑期权费,该投资者最终的回报为:max(S T-X,0)+min(S T-X,0)=S T-X可见,这相当于协议价格为X的远期合约多头。
类似的,欧式看涨期权空头和欧式看跌期权多头可以组成远期合约空头。
该习题就说明了如下问题:远期合约多头可以拆分成欧式看涨期权多头和欧式看跌期权空头;远期合约空头可以拆分成欧式看涨期权空头和欧式看跌期权多头。
当X等于远期价格时,远期合约的价值为0。
此时看涨期权和看跌期权的价值相等。
2.假设现在是5月份,A股票价格为18元,期权价格为2元。
甲卖出1份A股票的欧式看涨期权,9月份到期,协议价格为20元。
如果期权到期时A股票价格为25元,请问甲在整个过程中的现金流状况如何?答:甲会在5月份收入200元(2×100)的期权费,9月份因行权而付出500元(=(25-20)×100)。
3.设某一无红利支付股票的现货价格为30元,连续复利无风险年利率为6%,求该股票的协议价格为27元、有效期为3个月的看涨期权价格的下限。
答:无收益看涨期权的价格的下限为:C≥max[S-Xe-r(T-t),0]。
因而本题看涨期权价格的下限=max[30-27e-0.06×0.25,0]=3.40(元)。
4.某一协议价格为25元、有效期为6个月的欧式看涨期权价格为2元,标的股票价格为24元,该股票预计在2个月和5个月后各支付0.50元股息,所有期限的无风险连续复利年利率均为8%,请问该股票的协议价格为25元、有效期为6个月的欧式看跌期权价格等于多少?答:根据有收益欧式看涨期权与欧式看跌期权平价关系:,可得:看跌期权价格p=c+Xe-rT+D-S0=2+25e-0.08×0.5+0.5e-0.08×2/12+0.5e-0.08×5/12-24=3.00(元)。
郑振龙《金融工程》第2版课后习题(期权价格的敏感性和期权的套期保值)【圣才出品】

郑振龙《金融工程》第2版课后习题第十四章期权价格的敏感性和期权的套期保值1.一个看涨期权的Delta 值为0.7意味着什么?若每个期权的Delta 值均为0.7,如何使一个1000个看涨期权的空头变成Delta 中性?答:(1)Delta 值为0.7意味着此时该看涨期权的标的股票每上涨1元钱,该看涨期权的价格就应该上涨0.7元钱。
(2)看涨期权空头的Delta 值为负,需要用正的Delta 值对冲才能使Delta=0。
因而若每个期权的Delta 值均为0.7,要使一个1000个看涨期权空头变成Delta 中性,则必须买入700份股票,或者进入标的为700份该股票的远期的多头。
2.无风险年利率为10%,股票价格的年波动率为25%。
计算标的为不支付红利的股票、6个月期的平价欧式看涨期权的Delta 值。
答:Delta=1()N d 。
由于该期权为平价期权,因而标的资产价格S=协议价格X,则)ln(XS =1ln =0,则21()()2r T t d T tσσ+-=-20.25(0.1)*0.520.25*0.5+Delta=1()N d =0.6447。
3.以年计,一个期权头寸的Delta 值为-0.1意味着什么?若一个交易者认为股票价格的隐含波动率都不会变,那么期权头寸是什么类型?答:Theta 衡量期权价格对时间变化的敏感度。
以年计,一个期权头寸的Theta 值为-0.1意味着时间每减少1年,期权的价值将下降0.1元。
若股票价格的隐含波动率不变,期权的头寸将可能是任何期权的多头或者是实值状态的无收益资产欧式看跌期权和处于实值状态的附有很高利率的外汇的欧式看涨期权的空头。
4.为什么说对于处于实值状态的无收益资产欧式看跌期权和处于实值状态的附有很高利率的外汇的欧式看涨期权来说,Theta 可能为正?答:根据推导可得,对无收益资产的欧式看跌期权:210.5()2[1()]22()d r T t rXe N d T t π---Θ=-+--则当S<X 的时候,Θ有可能大于零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交割期间,期货价格高于现货价格的套利空间,如果交割时期货价低于现货价格呢?
如果在交割期间,期货价格高于现货价格。
套利者将买入现货,卖出期货合约,并立即交割,赚取价差。
如果在交割期间,期货价格低于现货价格,将不会存在同样完美的套利策略。
因为套利者买入期货合约,但不能要求立即交割现货,交割现货的决定是由期货空方作出的。
股价指数期货应大于还是小于未来预期的指数水平?
由于股价指数的系统性风险为正,其预期收益率大于无风险利率,因此股价指数期货价格()r T t F Se -=总是低于未来预期指数值()()y T t T E S Se -=。
互换头寸的结算方式之一是是对冲互换协议,这一方式完全抵消了违约风险。
这一说法是错误的。
如果该对冲交易是与原先的互换交易对手进行的,此种对冲又被称为“镜子互换”,等价于终止了原先的利率互换,抵消了违约风险。
如果是与其他交易对手进行镜子互换,只能在利息的现金流上实现对冲,但由于交易对手不同,仍然无法完全抵消对手方违约的风险。
协议签订后的利率互换定价和协议签订时的互换定价有何区别。
(1)运用利率互换转换资产的利率属性。
如果交易者原先拥有一笔固定利率资产,她可以通过进入利率互换的多头,所支付的固定利率与资产中的固定利率收入相抵消,同时收到浮动利率,从而转换为浮动利率资产;反之亦然。
(2)运用利率互换转换负债的利率属性。
如果交易者原先拥有一笔浮动利率负债,她可以通过进入利率互换的多头,所收到的浮动利率与负债中的浮动利率支付相抵消,同时支付固定利率,从而转换为固定利率负债;反之亦然。
(3)运用利率互换进行利率风险管理。
作为利率敏感性资产,利率互换与利率远期、利率期货一样,经常被用于进行久期套期保值,管理利率风险。
为什么美式期权价格至少不低于同等条件下的欧式期权价格。
因为美式期权和欧式期权相比具有提前执行的优势,所以美式期权价格不可能比同等条件下欧式期权的价格低。
为什么交易所向期权买房收取保证金而不向买方收取?
因为期权的买方在购买了期权后就只享有权利,而没有任何义务,因此买方没有违约风险。
而期权的卖方承担着履约的义务,而这种义务往往是对期权的卖方不利的,因此卖方有违约风险,必须缴纳保证金。
股本权证与备兑权证的差别主要在于: (1) 有无发行环节; (2) 有无数量限制; (3) 是否影响总股本。
股票期权与股本权证的区别主要在于: (1) 有无发行环节 (2) 有无数量限制。
证明布莱克-舒尔斯看涨期权和看跌期权定价公式符合看涨期权和看跌期权的平价公式
根据布莱克-舒尔斯看跌期权定价公式有:
21()()rT
p S Xe
N d SN d S
-+=---+
由于N (-d 1)=1-N(d 1),上式变为:
21()()rT
p S Xe
N d SN d -+=-+
同样,根据布莱克-舒尔斯看涨期权定价公式有:
12221()())1(),()()
rT
rT
rT
rT
rT
c Xe
SN d Xe
N d Xe
N N d c Xe
Xe
N d SN d -----+=-+=--+=--2由于(d 上式变为:
可见,rT p S c Xe -+=+,看涨期权和看跌期权平价公式成立。
是证明。
证明:(1)
()()(
)(
)(
)()()(
)()
1212()
1
2
11
2
1212()
112(1()()
r T t r T t i i r T t r T t c SN d X e N d N d N d d d c N d S
X e
S
d S
d S N d d d S S d N d N d c N d S X
e S
d d N d X e
--------=-∂∂∂∂∂∴=+-∂∂∂∂∂∂∂∂∂∂∂∂∂⎤∂=⎥∂∂∂⎦⎡
= 2
i 2
2
12d -2
d d --
2
2
其中,=且,因此
--(
)()(
)()()
(
)()
()2
2
2
12
1()12()1()
11
T t r T t d T t T t r T t T t d T t r T t N d S X e N d S X e N d S X e
N d
σσσσ
------+-------⎤
⎥⎥⎦
⎡=⎥⎥⎦
⎡
=⎥⎦
⎡=⎥⎦
2112
1122
11d d
-2d d --2d d ---
221e -e e -e e -e e 将d 代入最后一项,可得=()
1S S X N d X ⎡⎤⎥⎥⎦
2
2
11d d
--22e -e =
(2)在风险中性世界中,股票价格服从()2
ln ~[ln (),2
T t S S r T t σ
φσ
+-
-,这样S T 大于X 的概率就是ln ln T S X >的
概率:
()()
22ln (ln ())1t X S r T t N N N d σ⎛⎫-+-- ⎪-==⎝⎭⎝⎭。