函数的概念及其表示和函数性质总结

合集下载

函数的概念与基本性质

函数的概念与基本性质

函数的概念与基本性质函数是数学中的一个重要概念,它在数学和其他领域中都有广泛的应用。

本文将介绍函数的概念以及其基本性质,包括定义域、值域、对应关系、单调性等。

一、函数的概念函数是两个集合之间的一种特殊关系,一般表示为 f(x),其中 x 是自变量,f(x) 是因变量。

函数的定义域是指所有可能的自变量的集合,而值域则是函数在定义域内可以取得的所有因变量的值的集合。

函数在定义域内的每个自变量都对应一个唯一的因变量。

二、函数的基本性质1. 定义域和值域:函数的定义域和值域是函数的两个基本性质。

定义域决定了函数的有效输入范围,而值域则表示函数可能的输出范围。

在函数中,定义域和值域可以是有限的集合,也可以是无限的区间。

2. 对应关系:函数的一个重要性质是具有确定的对应关系。

即在定义域内的每个自变量都对应唯一的因变量。

这种一一对应的关系使得函数具有明确的输入和输出。

3. 单调性:函数的单调性描述了函数随自变量变化时的趋势。

如果函数在定义域内的任意两个自变量 x1 和 x2 满足 x1 < x2,则有 f(x1) <f(x2),则称该函数是单调递增的。

反之,如果 f(x1) > f(x2),则称该函数是单调递减的。

4. 奇偶性:函数的奇偶性是指函数关于原点对称的性质。

如果对于定义域内的任意自变量 x,有 f(-x) = -f(x),则称函数是奇函数。

而如果有 f(-x) = f(x),则称函数是偶函数。

5. 周期性:函数的周期性表示在一定范围内,函数的图像会随着自变量的周期性变化而重复出现。

如果存在一个正数 T,使得对于定义域内的任意自变量 x,有 f(x+T) = f(x),则称函数具有周期 T。

三、函数的应用函数的概念和性质在数学和其他领域中都有广泛的应用。

在数学中,函数被用于解决各种数学问题,包括方程求解、函数图像绘制和曲线分析等。

在物理、经济学和工程学等应用领域,函数被用于建立模型和描述现象,帮助我们理解和解释自然界中的规律。

高中数学函数知识点总结

高中数学函数知识点总结

函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值X围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

2019新版高中数学人教A版必修一第三章 函数的概念与性质 第1节 函数的概念及其表示

2019新版高中数学人教A版必修一第三章  函数的概念与性质  第1节  函数的概念及其表示

2019新版高中数学人教A 版必修一 第1节 函数的概念及其表示一.知识点: 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f: A→B 为从集合A 到集合B 的一个函数,记作y =f(x),x ∈A. 2.函数的定义域与值域在函数y =f(x),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域.如果自变量x =a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作y =f(a)或y|x =a .所有函数值构成的集合{y|y =f(x),x ∈A}叫做这个函数的值域. 3.区间及表示设a ,b 是两个实数,而且a<b.(1) 满足不等式a≤x≤b 的实数x 的集合叫做闭区间,表示为[a ,b]; (2) 满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a ,b); (3) 满足不等式a≤x<b 或a<x≤b 的实数x 的集合叫做半开半闭区间,分别 表示为[a ,b),(a ,b];(4)实数集R 可以用区间表示为(-∞,+∞) 二.考点突破 考点一:函数的概念例1:下列各式中,函数的个数是( )①y =1;②y =x 2;③2y x =;④y =.A .4B .3C .2D .1答案:C练习:下列图象中,表示函数关系y =f (x )的是( )A .B .C .D .解:根据函数的定义知,一个x 有唯一的y 对应,由图象可看出,只有选项D 的图象满足这一点.故选:D . 作业:1.下列式子中能确定y 是x 的函数的是________. ①x 2+y 2=1;②y =x -2+1-x ; ③y =12gx 2(g =9.8 m/s 2);④y =x.解析:①中每一个x 对应两个y ,故①不是函数. ②中满足式子有意义的x 取值范围是⎩⎪⎨⎪⎧x -2≥0,1-x≥0即x≤1且x≥2,∴为∅,故②也不是,而③④可以确定y 是x 的函数. 答案:③④考点二:函数的定义域 例2:求下列函数的定义域: (1)y =2+3x -2; (2)y =3-x ·x -1; (3)y =(x -1)0+2x +1. 解:(1)当且仅当x -2≠0,即x≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x|x≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x≥0,x -1≥0.解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0.解得x>-1,且x≠1,所以这个函数的定义域为{x|x>-1,且x≠1}. 练习:求下列函数的定义域: (1)y =x +12x +1-1-x ;(2)y =x +1|x|-x.解:(1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x≥0,即⎩⎪⎨⎪⎧x≠-1,x≤1,所以函数的定义域为{x|x≤1,且x≠-1}. (2)要使函数有意义,需满足 |x|-x≠0,即|x|≠x, ∴x<0.∴函数的定义域为{x|x<0}. 作业:2.求下列函数的定义域: (1)f(x)=1x +1;(2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1. 解:(1)要使函数有意义,即分式有意义,需x +1≠0,x≠-1.故函数的定义域为{x|x≠-1}.(2)要使函数有意义,需⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x|x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x|x ∈R}.(4)因为当x 2-1≠0,即x≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x|x≠±1,x ∈R}.例3:已知函数y=f (x )定义域是{x|-2≤x ≤3},则y=f (2x ﹣1)的定义域是( ) A .{x|0≤x ≤52}B .{x|-1≤x ≤4}C{x|12-≤x ≤2} D . {x|-5≤x ≤5} 解:∵函数y=f (x )定义域是-2≤x ≤3, ∴由﹣2≤2x ﹣1≤3, 解得﹣≤x ≤2,即函数的定义域为12≤x≤2,故选:C .练习:已知函数y=f(x+1)的定义域是{x|-2≤x≤3},则y=f(x2)的定义域是()A.{x|-1≤x≤4} B.{x|0≤x≤16} C.{x|-2≤x≤2} D.{x|1≤x≤4} 解:∵函数y=f(x+1)的定义域是{x|-2≤x≤3},即﹣2≤x≤3,∴﹣1≤x+1≤4,即函数y=f(x)的定义域为{x|-1≤x≤4},由﹣1≤x2≤4,得﹣2≤x≤2.∴y=f(x2)的定义域是{x|-2≤x≤2}.故选:C.作业:3. 已知函数y=f(x+1)定义域是{x|-2≤x≤1} ,则y=f(2x﹣1)的定义域()A.{x|0≤x≤32} B.{x|-1≤x≤4} C.{x|-5≤x≤5} D.{x|-3≤x≤7}解:∵函数y=f(x+1)定义域是{x|-2≤x≤1},∴-2≤x≤1,∴-1≤x+1≤2,∴-1≤2x﹣1≤2,∴0≤x≤3 2∴y=f(2x﹣1)的定义域为{x|0≤x≤32}.故答案为:A考点三:函数值例4:若f(x)=1-x1+x(x≠-1),求f(0),f(1),f(1-a)(a≠2),f[f(2)].解:f(0)=1-01+0=1;f(1)=1-11+1=0;f(1-a)=1-1-a1+1-a=a2-a(a≠2);f[f(2)]=1-f21+f2=1-1-21+21+1-21+2=2.练习: 设函数f(x)=41-x,若f(a)=2,则实数a=________.解析:由题意知,f(a)=41-a=2,得a=-1. 答案:-1作业:4.已知f(x)=11+x(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f[g(2)],g[f(2)]的值. 解:(1)f(2)=11+2=13,g(2)=22+2=6; (2)f[g(2)]=f(6)=11+6=17,g[f(2)]=g(13)=(13)2+2=199. 考点四:简单的求函数的值域 例5:求下列函数的值域: (1)y =2x +1,x ∈{1,2,3,4,5}; (2)y =x +1;(3)y =-x 2-2x +3(-1≤x≤2); (4)y =1-x21+x2.解:(1)将x =1,2,3,4,5分别代入y =2x +1,算得函数的值域为{3,5,7,9,11}. (2)∵x ≥0,∴x +1≥1,即函数的值域为[1,+∞).(3)y =-x 2-2x +3=-(x +1)2+4.∵-1≤x≤2,∴0≤x+1≤3,∴0≤(x+1)2≤9.∴-5≤-(x +1)2+4≤4.∴函数的值域为[-5,4].(4)∵y =1-x 21+x 2=-1+21+x 2,∴函数的定义域为R.∵x 2+1≥1,∴0<21+x2≤2.∴y ∈(-1,1]. ∴函数的值域为(-1,1].练习:(1)已知函数y=2x+1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( ) A .{y|1≤y <7} B .{y|1≤y ≤7} C .{1,3,5,7} D .{1,3,5} 解:函数y=2x+1,x ∈{x ∈Z|0≤x <3}={0,1,2}. 当x=0时,y=1,当x=1时,y=3,当x=2时,y=5. ∴函数的值域为{1,3,5}.故选D .(2)函数y=x 2﹣4x+1,x ∈[1,5]的值域是( ) A .{y|1≤y ≤6} B .{y|-3≤y ≤1}C .{y|y ≥-3}D .{y|-3≤y ≤6}解:对于函数f (x )=x 2﹣4x+1,是开口向上的抛物线. 对称轴x=,所以函数在区间[1,5]上面是先减到最小值再递增的.所以在区间上的最小值为f (2)=﹣3.又f (1)=﹣2<f (5)=6,,所以最大值为6.故选D .作业:5.求下列函数的值域:(1)f(x)=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f(x)=(x -1)2+1,x ∈R ; (3)y =1-x 2,x ∈R ; (4)y =2x +1x,x≠0. 解:(1)函数的定义域为{-1,0,1,2,3},∵f(-1)=5, f(0)=2,f(1)=1,f(2)=2,f(3)=5, ∴这个函数的值域为{1,2,5}.(2)函数的定义域为R ,∵(x -1)2+1≥1, ∴这个函数的值域为{y|y≥1}. (3)函数的定义域为R ,∵1-x 2≤1, ∴函数y =1-x 2的值域为{y|y≤1}. (4)y =2x +1x =2+1x ,∵x≠0,∴1x≠0, ∴y =2+1x ≠2,∴函数的值域为{y|y≠2}.考点五:判断两函数是否相等例6:下列各组函数表示相等函数的是( ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x≠0)与y =1(x≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z解析:选C A 中两函数定义域不同,B 、D 中两函数对应法则不同,C 中定义域与对应法则都相同.练习:下列四组函数中,表示同一函数的是( ) A .f (x )=|x|,g (x )=B .f (x )=|x|,g (x )=()2C .f (x )=,g (x )=x+1D .f (x )=,g (x )=解:要判断两个函数是否是同一个函数,需要从三个方面来分析,即定义域,对应法则和值域,B 选项两个函数的定义域不同,前面函数的定义域为R ,后面函数的定义域为[0,+∞),C 选项两个函数的定义域不同,前面函数的定义域为{x|x ≠1},后面函数的定义域为R ,D 选项两个函数的定义域不同,前面函数的定义域为[1,+∞),后面函数的定义域为(﹣∞,﹣1]∪[1,+∞),故选:A . 作业:6. 下列四组函数中,表示同一函数的是( ) A .y =,y =()2B .y =|x|,y =C .y =,y =x+1D .y =x ,y =解:对于A ,y ==|x|(x ∈R ),与y ==t (t ≥0)的定义域不同,对应关系也不同,不是同一函数; 对于B ,y =|x|(x ∈R ),与y ==|t|(t ∈R )的定义域相同,对应关系也相同,是同一函数; 对于C ,y ==x+1(x ≠1),与y =x+1(x ∈R )的定义域不同,不是同一函数;对于D ,y =x (x ∈R ),与y ==x (x ≠0)的定义域不同,不是同一函数.故选:B .考点六:区间及其表示例7:集合{x|-12≤x<10,或x>11}用区间表示为________. 答案:[-12,10)∪(11,+∞)练习:已知函数y =1-x 2x 2-3x -2,则其定义域为( )A .(-∞,1]B .(-∞,2]C .(-∞,-12)∪(-12,1)D .(-∞,-12)∪(-12,1]解析:选D 要使式子1-x2x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x≥0,2x 2-3x -2≠0即⎩⎪⎨⎪⎧x≤1,x≠2且x≠-12,所以x≤1且x≠-12,即该函数的定义域为(-∞,-12)∪(-12,1],故选D.作业: 7. 函数y=+1的值域为( ) A .(0,+∞) B .(1,+∞)C .[0,+∞)D .[1,+∞)解:函数y=+1,定义域为[1,+∞),当x=1时,函数y 取得最小值为1, 函数y=+1的值域为[1,+∞),故选D。

高考数学函数的定义和性质

高考数学函数的定义和性质

高考数学函数的定义和性质函数是高中数学中的重要概念之一。

它在高考数学中占有重要的地位,理解和掌握函数的定义和性质对于解题至关重要。

本文将从函数的定义、基本性质以及一些常见函数的性质等方面来进行阐述。

1. 函数的定义函数是一种特殊的关系,可以将一个集合中的每个元素与另一个集合中的唯一一个元素相关联。

用数学语言描述就是,对于集合A和B,如果存在一种规律,使得对于A中的每个元素a,都能找到B中唯一一个元素b与之对应,那么我们就可以说集合A和B之间存在一个函数f。

2. 函数的基本性质函数有一些基本的性质,包括定义域、值域、单调性、奇偶性以及周期性等。

2.1 定义域和值域定义域是指函数能够取值的所有实数的集合,常用符号表示为D;值域是指函数所有可能取得的值的集合,常用符号表示为R。

2.2 单调性单调性指函数在定义域上的增减性质。

如果在定义域内任取两个实数a和b,并且a小于b,那么函数f(x)在a处的函数值f(a)和在b处的函数值f(b)之间的大小关系可以判断函数的单调性。

2.3 奇偶性函数的奇偶性是指函数关于原点(0,0)的对称性。

如果对于定义域上的任何实数x,有f(-x) = -f(x)成立,则称函数是奇函数;如果对于定义域上的任何实数x,有f(-x) = f(x)成立,则称函数是偶函数。

2.4 周期性周期性指函数在一定区间上具有重复性质。

如果存在一个正数T,使得对于定义域上的任何实数x,有f(x+T) = f(x)成立,则称函数具有周期性。

3. 常见函数的性质在高考数学中,有许多常见的函数,其中包括一次函数、二次函数、指数函数、对数函数、三角函数等。

每个函数都有其独特的性质,掌握这些性质对于解题非常有帮助。

3.1 一次函数一次函数的一般形式为f(x) = ax + b,其中a和b为常数。

一次函数的图像是一条直线,其特点是斜率恒定。

3.2 二次函数二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不为零。

3.1 函数的概念及其表示(学生版)

3.1 函数的概念及其表示(学生版)

第三章《函数概念与性质》3.1函数的概念及其表示【知识梳理】知识点一函数的有关概念函数的定义设A ,B 是非空的实数集,如果对于集合A 中任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数函数的记法y =f (x ),x ∈A定义域x 叫做自变量,x 的取值范围A 叫做函数的定义域值域函数值的集合{f (x )|x ∈A }叫做函数的值域知识点二同一个函数一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数是同一个函数.特别提醒:两个函数的定义域和对应关系相同就决定了这两个函数的值域也相同.知识点三区间1.区间概念(a ,b 为实数,且a<b )定义名称符号数轴表示{x |a ≤x ≤b }闭区间[a ,b ]{x |a <x <b }开区间(a ,b ){x |a ≤x <b }半开半闭区间[a ,b ){x |a <x ≤b }半开半闭区间(a ,b ]2.其他区间的表示定义R {x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }区间(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )知识点四函数的表示方法知识点五分段函数1.一般地,分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.3.作分段函数图象时,应分别作出每一段的图象.【基础自测】1.若函数f(x)=ax2-1,a为一个正数,且f(f(-1))=-1,那么a的值是()A.1B.0C.-1D.22.已知函数f(2x+1)=6x+5,则f(x)的解析式是()A.f(x)=3x+2B.f(x)=3x+1C.f(x)=3x-1D.f(x)=3x+43.函数y=x1+x的大致图象是()4.函数y=6-x|x|-4的定义域用区间表示为________.5.已知f (n )-3,n ≥10,n +5),n <10,则f (8)=________.【例题详解】一、函数关系的判断例1(1)下列各式中,表示y 是x 的函数的有()①()3y x x =--;②y =;③1,01,0x x y x x -≤⎧=⎨+≥⎩;④1,0,x y x ⎧=⎨⎩为有理数为无理数A .4个B .3个C .2个D .1个(2)设{|04}M x x =≤≤,{|40}N y y =-≤≤,函数()f x 的定义域为M ,值域为N ,则()f x 的图象可以是()A .B .C .D .跟踪训练1下列对应中:(1)x y →,其中{}21,1,2,3,4y x x =+∈,{}10,y x x x N ∈<∈;(2)x y →,其中2y x =,[)0,x ∈+∞,R y ∈;(3)x y →,其中y 为不大于x 的最大整数,x R ∈,y Z ∈;(4)x y →,其中1y x =-,*x ∈N ,*y N ∈.其中,是函数的是()A .(1)(2)B .(1)(3)C .(2)(3)D .(3)(4)二、求函数的定义域、函数值命题角度1求函数的定义域例2(1)函数y =)A .[]3,1-B .[]1,3-C .][(),31,-∞-⋃+∞D .][(),13,∞∞--⋃+(2)已知函数()1f x +的定义域为[1,7],则函数()(2)h x f x =)A .[4,16]B .(,1][3,)-∞⋃+∞C .[1,3]D .[3,4]跟踪训练2(1)函数0()(3)f x x =+的定义域是()A .(,3)(3,)-∞-⋃+∞B .(,3)(3,3)-∞--C .(,3)-∞-D .(,3)-∞(2)已知函数()f x ,则函数()()13y f x f x =--的定义域为()A .()2,11B .()2,13C .()2,15D .()4,11命题角度2求函数值例3(1)已知函数()1f x x x=+,则()()1010f f -+的值是().A .20-B .0C .1D .20(2)已知2211x f x x ⎛⎫=- ⎪+⎝⎭,则(3)f =_________.跟踪训练3(1)已知定义域为R 的函数()23f x x =-,()3g x x =,则()()1f g -=________.(2)已知函数3()3=+++cf x ax bx x,若()4f t =,则()f t -=()A .4-B .2-C .2D .0三、同一个函数的判定例4(1)下列四组函数,表示同一函数的是()A .()1f x x =+,()1,11,1x x g x x x +≥-⎧=⎨--<-⎩B .()f x =()g x x=C .()f x x =,()2x g x x=D .()f x =,()g x 跟踪训练4和函数2()f x x =是同一函数的是()A .2()(1)f x x =+B .()f x x =C .3()x f x x=D .(){,0,(0)()x x x x x x f x -≤>=四、求函数解析式命题角度1换元法例5(1)已知1111f x x⎛⎫+=- ⎪⎝⎭,则()f x =________________.(2)若函数11x f x x -⎛⎫= ⎪+⎝⎭,则()f x =____________.跟踪训练5(1)已知21,1x f x x ⎛⎫= ⎪-⎝⎭求()f x =____________.(2)已知()21232f x x x +=++,求()f x 的解析式.命题角度2配凑法例6(1)若1)f x +=+,则()f x 的解析式为()A .2()f x x x =-B .2()1(0)f x x x =-≥C .2()1(1)f x x x =-≥D .2()f x x x=+(2)已知3311()f x x x x+=+,则()f x =_____.(3)已知f (x -1x )=x 2+21x ,则f (x +1x)=________.跟踪训练6(1)已知2112f x x x x ⎛⎫+=+ ⎪⎝⎭,求()f x .(2)已知22111(x x f x x x++=+,求()f x 的解析式.命题角度3待定系数法例7(1)已知f (x )是一次函数,且满足()()3121217f x f x x +--=+,求f (x ).(2)已知()f x 是二次函数,且满足(0)1f =,(1)()2f x f x x +-=,求()f x 解析式.跟踪训练7(1)已知()f x 是一次函数,且()332f x x -=-,求()f x .(2)已知一次函数()f x 满足()()312237f x f x x =+--+,求函数()f x 的解析式.(3)已知()f x 是二次函数,且满足(0)1,(1)()2f f x f x x =+=+,求函数()f x 的解析式.命题角度4构造方程组法例8(1)若函数()f x 满足()1221f x f x x ⎛⎫+=+ ⎪⎝⎭,则()2f =()A .13-B .23C .83D .12(2)已知()f x 满足()()23f x f x x +-=,求()f x 的解析式.跟踪训练8(1)已知()1221f x f x x ⎛⎫⎪⎝=⎭+-+,求函数()f x 的解析式.(2)已知2()2()f x f x x x +-=-,求函数()f x 的解析式.五、函数的图象例9作出下列函数的图象.(1)1({21012})y x x =-∈--,,,,;(2)211x y x +=-;(3)2|2|1y x x =-+.(4)已知函数()22,23,2x f x x x x ⎧≥⎪=⎨⎪-<⎩.(i)在所给坐标系中作出()y f x =的简图;(ii)解不等式()12f x <.跟踪训练9作出函数()|2||5|f x x x =+--的图像.六、分段函数求值例10(1)已知函数()21,0x x f x x ⎧-≤⎪=>,若()3f a =,则a 的值为()AB .2C .9D .-2或9(2)已知函数()f x 的解析式22,1(),122,2x x f x x x x x +≤⎧⎪=<<⎨⎪≥⎩,(i)求12f f ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭;(ii)若()2f a =,求a 的值;跟踪训练10(1)已知函数()2,0,2,0.x x a x f x x ⎧+≤=⎨>⎩若()14f f ⎡⎤-=⎣⎦,且1a >-,则=a ()A .12-B .0C .1D .2(2)已知函数()223,11,1111,1x x f x x x x x⎧⎪+<-⎪=+-≤≤⎨⎪⎪+>⎩.(i)求((2))f f -的值;(ii)若()032f x =,求0x 的值.七、解分段函数不等式例11(1)已知()222,02,0x x x f x x x x ⎧-+≥=⎨+<⎩,满足()()f a f a <-,则a 的取值范围是()A .()(),20,2-∞-B .()(),22,∞∞--⋃+C .()()2,00,2-⋃D .()()2,02,-+∞ (2)设函数()22,,,.x x a f x x x a ⎧<=⎨≥⎩若()11>f ,则a 的取值范围为______.跟踪训练11(1)已知函数22,1,()11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩,则使得()1f x ≥的x 的取值范围为()A .[]1,1-B .()1,1-C .()1,-+∞D .[)1,-+∞(2)已知函数242,1()23,1x x x f x x x ⎧-+<=⎨-≥⎩,则满足不等式()()21f a f a <+的a 的取值范围是___________.八、分段函数的实际应用例12某企业投资生产一批新型机器,其中年固定成本为2000万元,每生产()*Nx x ∈百台,需另投入生产成本()R x 万元.当年产量不足46百台时,()23260R x x x =+;当年产量不小于46百台时,()4900501483020R x x x =+-+.若每台设备售价5万元,通过市场分析,该企业生产的这批机器能全部销售完.(1)求该企业投资生产这批新型机器的年利润所()W x (万元)关于年产量x (百台)的函数关系式(利润=销售额-成本);(2)这批新型机器年产量为多少百台时,该企业所获利润最大?并求出最大利润.跟踪训练12电子厂生产某电子元件的固定成本是4万元,每生产x 万件该电子元件,需另投入成本()f x 万元,且2132,04,4()64938,420.x x x f x x x x ⎧+-<≤⎪⎪=⎨⎪+-<≤⎪⎩已知该电子元件每件的售价为8元,且该电子加工厂每月生产的这种电子元件能全部售完.(1)求该电子厂这种电子元件的利润y (万元)与生产量x (万件)的函数关系式;(2)求该电子厂这种电子元件利润的最大值.【课堂巩固】1.(多选)给出下列四个对应,其中构成函数的是()A .B .C .D .2.(多选)下列对应关系f ,能构成从集合M 到集合N 的函数的是()A .13,1,22M ⎧⎫=⎨⎩⎭,{6,3,1}N =--,162f ⎛⎫=- ⎪⎝⎭,(1)3f =-,312f ⎛⎫= ⎪⎝⎭B .{|1}M N x x ==≥-,()21f x x =+C .{1,2,3}M N ==,()21f x x =+D .M =Z ,{1,1}N =-,1,,()1,.x f x x -⎧=⎨⎩为奇数为偶数3.若函数()f x =()21f x -的定义域为()A .()0,2B .[)(]2,00,2-U C .[]22-,D .[]0,24.(多选)下列各组函数中,两个函数是同一函数的有()A .()f x x =与()g x =B .()1f x x =+与()211x g x x -=-C .()xfx x =与()1,01,0x g x x >⎧=⎨-<⎩D .()1f t t =-与()1g x x =-5.已知函数()246,06,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()3f x >的解集是()A .()()3,13,-+∞B .()(),12,3-∞-C .()()1,13,-+∞ D .()(),31,3-∞- 6.(多选)下列选项中正确的有()A .2()21f x x x =-+与2()21g t t t =-+是同一函数B .||()x f x x =与1,0()1,0x g x x >⎧=⎨-≤⎩表示同一函数C .函数()y f x =的图象与直线2x =的交点最多有1个D .若()|||1|f x x x =--,则102f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭7.(多选)已知函数25,1(),12x x f x x x +<-⎧=⎨-<⎩,关于函数()f x 的结论正确的是()A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .()11f -=D .若()3f x =,则x8.(多选)已知函数()35,0,1,0,x x f x x x x +≤⎧⎪=⎨+>⎪⎩若()()2f f a =,则实数a 的值为()A .2-B .43-C .-1D .19.求函数()f x +=______________________10.已知函数()f x 是一次函数且(())2()2f f x f x x +=--,则函数()f x 的解析式为_________.11.若()211f x x -=+,则()0f =____________,()f x =_____________.12.已知2111x f x x+⎛⎫=+ ⎪⎝⎭,则()f x 的值域为______.13.设函数21,2()1(2),2x x f x f x x ≥=⎨⎪+<⎪⎩,则(3)f -=________.14.已知函数()(4),f x x x x R =-∈.(1)把函数()f x 写成分段函数的形式;(2)在给定的坐标系内作函数()f x 的图象.15.已知函数()2,0,2,0,x x f x x x +≤⎧=⎨-+>⎩解不等式2()f x x ≤16.已知函数f (x )=222x x x +⎧⎪⎨⎪⎩(1)(12)(2)x x x ≤--<<≥(1)求{}f f f ⎡⎤⎣⎦的值;(2)求()3f a =,求a 的值;(3)画出函数的图像.【课时作业】1.下列函数中,相同的一组是()A.y =2y =B.y =,y =C .21y x =+,4211x y x -=-D .21y x =-,4211x y x -=+2.已知函数)22f x +=+,则()f x 的最小值是()A .1-B .2C .1D .03.设函数1121f x x ⎛⎫+=+ ⎪⎝⎭,则()f x 的表达式为()A .()111x xx +-≠B .()111x xx +-≠C .()111xxx +≠--D .()211xx x ≠-+4.已知一次函数()f x 满足(2)2(21)94f x f x x +-+=--,则()f x 解折式为()A .()24f x x =--B .()23f x x =-+C .()34=+f x x D .()32f x x =-+5.一次函数()f x 满足:()23f f x x ⎡⎤⎣⎦-=,则()1f =()A .1B .2C .3D .56.设22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩.若()3f x =,则x 的值为().A .1BC.D .327.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为()A .f (x )=x 2-12x +18B .f (x )=213x -4x +6C .f (x )=6x +9D .f (x )=2x +38.已知函数2,(){2,0x x f x x x +≤=-+>,则不等式2()f x x ≥的解集是()A .[1,1]-B .[2,2]-C .[2,1]-D .[1,2]-9.(多选)若函数()()221120x f x x x--=≠,则下列结论正确的是()A .1152f ⎛⎫= ⎪⎝⎭B .()324f =-C .()()()2411f x x x =≠-D .()221411x f x x ⎛⎫=- ⎪⎝⎭-(0x ≠且1x ≠)10.(多选)已知函数2+2,<1()=+3,1x x f x x x -≥⎧⎨⎩,则()A .3f f ⎡⎤=⎣⎦B .若()1f x =-,则=2x 或3x =-C .()2f x <的解集为()(),01,-∞⋃+∞D .x ∀∈R ,()a f x >,则3a ≥11.若函数()1f x +的定义域为[]2,3-,则函数()()g x f x =______.12.已知集合0|A x y ⎧⎫⎪==⎨⎪⎩,2|0,1x B x x Z x +⎧⎫=≤∈⎨⎬-⎩⎭,则A B = ________.13.已知()()()22112,0x g x x f g x x x -=-=≠⎡⎤⎣⎦,则12f ⎛⎫= ⎪⎝⎭_________14.若一次函数()f x 满足:对任意x 都有()()221221xf x f x x x ++=++,则()f x 的解析式为______________.15.已知函数24,0(),0x x f x x x -+≤⎧=⎨>⎩,若()4f m =,则m =___________.16.设1,()2(1),1,x f x x x <<=-≥⎪⎩若()(1)f a f a =+,则()f a =________.17.设定义在()0,∞+上的函数()g x 满足()11g x g x ⎛⎫=- ⎪⎝⎭,则()g x =___________.18.已知()1,11x x f xx +≤⎧⎪=>,若()()1f x f x >+,则x 的取值范围是___________.19.求下列函数的定义域(1)y ;(2)y =(3)y x x=-(0a >).20.根据下列条件,求()f x 的解析式.(1)已知)225fx =+(2)已知()()2232f x f x x x+-=-(3)已知()f x 是二次函数,且满足()()()01,12f f x f x x=+-=21.已知函数()()211x x f x x -=-;(1)作出该函数的图象;(2)写出该函数的值域.22.已知函数()21,02,036,3x x f x x x x x x ⎧<⎪⎪=-≤<⎨⎪-+≥⎪⎩(1)求()()1f f 的值;(2)若()2f a =,求a 的值;(3)请在给定的坐标系中画出此函数的图象,并根据图象写出函数()f x 的定义域和值域.。

函数的概念及性质

函数的概念及性质

函数的概念及性质函数是数学中的重要概念之一,它在数学领域和其他学科中都有着广泛的应用。

函数的概念是描述一个变量与另一个变量之间关系的数学工具。

本文将对函数的概念及其基本性质进行探讨,从而帮助读者更好地理解和应用函数。

一、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

通常用f(x)来表示函数,其中x是函数的自变量,f(x)是函数的因变量。

例如,我们可以定义一个函数f(x)=2x,其中x是实数集合中的任意一个数,f(x)表示x的两倍。

这个函数可以描述一个数与它的两倍之间的关系。

二、函数的性质1. 定义域和值域:函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。

函数的定义域和值域取决于函数的性质和条件。

例如,对于函数f(x)=2x,定义域是实数集合,值域也是实数集合。

2. 单调性:函数的单调性是指函数在定义域内的变化趋势。

函数可以是递增的(单调递增)或递减的(单调递减)。

例如,函数f(x)=2x 是递增函数,而函数g(x)=2-x是递减函数。

3. 奇偶性:函数的奇偶性是指函数关于y轴(x=0)的对称性。

如果对于定义域内的任意x,有f(-x)=f(x),则函数是偶函数;如果对于定义域内的任意x,有f(-x)=-f(x),则函数是奇函数。

例如,函数f(x)=x^2是偶函数,函数g(x)=x^3是奇函数。

4. 周期性:函数的周期性是指函数在定义域内以一定的间隔重复的特性。

如果存在一个正数T,使得对于定义域内的任意x,有f(x+T)=f(x),则函数具有周期性。

例如,正弦函数sin(x)和余弦函数cos(x)都是周期为2π的函数。

5. 反函数:如果存在一个函数g,使得对于定义域内的任意x,有g(f(x))=x,且f(g(x))=x,则g称为f的反函数。

反函数可以将函数的输入与输出进行互换。

例如,函数f(x)=2x的反函数为g(x)=x/2。

三、函数的应用函数在数学、物理、经济学等学科中都有着重要的应用。

函数概念与知识点总结

函数概念与知识点总结

函数概念与知识点总结一、函数的概念1.1 函数的定义函数是数学中的一个基本概念,它描述了一种对应关系,将一个或多个输入参数映射到一个输出结果。

在数学中,函数通常表示为f(x),其中x是输入参数,f(x)是输出结果。

函数也可以表示为y=f(x),其中y是输出结果,x是输入参数。

函数还可以表示为y=f(x1,x2, ..., xn),其中x1, x2, ..., xn是多个输入参数。

1.2 函数的特性函数具有一些特性,包括单值性、有限性、定义域和值域。

单值性表示对于每个输入参数,函数有且只有一个输出结果。

有限性表示函数的定义域和值域都是有限的。

定义域是函数能接受的输入参数的集合,而值域是函数输出结果的集合。

1.3 函数的分类函数可以根据其形式、性质和用途进行分类。

常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数、双曲函数等。

函数还可以根据其定义域和值域的不同进行分类,如有界函数、无界函数、周期函数等。

二、函数的性质与图像2.1 函数的奇偶性函数可以根据其图像的对称性来判断奇偶性。

若函数的图像关于原点对称,则函数是奇函数;若函数的图像关于y轴对称,则函数是偶函数。

2.2 函数的增减性函数的增减性描述了函数在定义域内的增加和减少情况。

若对于定义域内的任意两个值x1和x2,若x1<x2,则f(x1)<f(x2),则函数是单调递增的;若x1<x2,则f(x1)>f(x2),则函数是单调递减的。

2.3 函数的最值函数的最值指在定义域内的最大值和最小值。

函数的最值可以通过求导数或利用一阶导数的性质进行判断。

2.4 函数的图像函数的图像是函数在平面直角坐标系中的表示。

通过绘制函数的图像,可以直观地理解函数的性质和变化规律。

例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线。

三、函数的运算3.1 函数的加减运算当两个函数f(x)和g(x)相加或相减时,可以将它们的对应项相加或相减,得到一个新的函数h(x)=f(x)±g(x)。

第三章 函数的概念与性质 章节复习(解析版).

第三章 函数的概念与性质 章节复习(解析版).

故选: A .
【例 2】函数 f (x) x x 2 的值域是 (
)
A.[2 , )
B.[7 , ) 4
C.[0 , )
【解答】解: f (x) x x 2 的定义域为 x 2 ,
函数 y x 在[2 , ) 上为单调递增函数,
D. (2, )
函数 y x 2 在 [2 , ) 上为单调递增函数,
2. 函数的构成要素为:定义域.对应关系.值域. 3. 区间:闭区间、开区间、半开半闭区间 4. 函数的三种表示方法:解析法、图象法、列表法. 5. 分段函数 知识点二:函数的基本性质 单调性与最大(小)值 1.函数单调性的定义:
设函数 f (x) 的定义域为 I ,区间 D I ,如果 x1、x2 D, 当 x1 x2 时,都有: f (x1) f (x2 ) 或 f (x1) f (x2 ) 0,就称f (x)在区间D 上单调递增;
C. (0 , 4]
D. (0, 4)
【解答】解: 函数 f (x) ax2 ax 1 的定义域为 R , ax2 ax 1 0 恒成立. 当 a 0 时,显然满足 ax2 ax 1 0 恒成立. 当 a 0 时, ax2 ax 1 0 不可能恒成立, 当 a 0 时,应有△ a2 4a 0 ,求得 0 a 4 . 综上可得, a [0 , 4] ,
奇函数图象关于原点对称. 2.奇函数的性质:
若奇函数 f x 的定义域为 I , 如果 0 I ,则有 f (0) 0 .
3.奇偶性与单调性:
奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反. 知识点四:幂函数
1.幂函数的解析式: y x , x 是自变量, 是常数.
2.几种幂函数的图象:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三练:函数的概念及其表示!
知识点:
1. 函数概念:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,
在集合B中都有唯一确定的数(fx)和它对应,那么称:f:A→B 为从集合A到集合B的一个函数(function),记作:y=f(x),x属于A。

.符号y=f(x),x属于A 表示 y是x的函数
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的取值集合{fx (x)| x属于A} 叫值域(range).
2. 区间及写法:
①概念:设a、b是两个实数,且a<b,则:
{x|a≤x≤b}=[a,b] 叫闭区间; {x|a<x<b}=(a,b) 叫开区间; {x|a≤x<b}=[a,b) ; {x|a<x≤b}=(a,b] ;都叫半开半闭区间。

②符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”③区间表示:R=(-∞,+∞)、 {x|x≥a}=[a,+∞]、 {x|x>a}=(a,+ ∞)、 {x|x ≤b}=(-∞,b]、 {x|x<b}=(-∞,b) 3. 求函数定义域
定义域:一般情况下,定义域就是自变量使函数解析式有意义的实数的集合。

(1)若f(x)是整式,则定义域为全体实数
(2)若f(x)是分式,则定义域为使分式的分母不为零的全体实数
(3)若f(x)是偶次根式,则定义域是使被开方数不小于零的全体实数
(4)零取零次方没有意义;
(5)复合函数:由初等函数复合而成的复杂的函数
求复合函数定义域由复合的各个基本函数的定义域组成的不等式组确定,如:f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域由不等式a≤g(x) ≤b解出。

(6)由实际问题确定的函数,其定义域还要考虑自变量的实际意义
(7)定义域一般用集合或区间表示
步骤:列不等式→解不等式→写出定义域。

4.求函数值问题
f(a)表示函数中当自变量x=a时的函数值。

计算方法是直接把x=a代入函数解析式计算 f(a)和f(x)的区别:
f(a)表示函数f(x)中当自变量x=a时的函数值,是一个常量;而f(x)是自变量x的一个函数,一般情况下是一个变量。

f(a)是f(x)的一个特殊值。

5.函数三要素:定义域、对应法则、值域
(1)函数的定义域和对应法则一旦给出,它的值域就被完全确定,所以确定一个函数就只需两个要素:定义域和对应法则,这二者缺一不可。

(2)判断两个函数是否同一函数的方法:定义域和对应法则是否相同,只有定义域和对应法则完全相同,这两个函数才是同一个函数。

a、定义域不同,两个函数就不相同 b、对应法则不同,两个函数就不相同
c、即使定义域和值域都相同,但两个函数也不一定相同
d、因为函数表示的是两个数集之间的对应关系,所以至于用什么字母无关紧要。

如:f(x)=2x和f(t)=2t表示相同的函数 6.求值域的问题求函数值域的方法
①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②配方法:利用配方的方法来求值域,适合二次函数
③换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;④图象法:二次函数分段函数必画草图求其值域;
⑤分离常数:适合分子分母皆为一次式(x有范围限制时要画图);
⑥判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且x ∈R的分式
函数的基本性质
一、函数的单调性
函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。

定义:(略)
1.函数单调性的判断(证明)
(1)作差法(定义法) (2)作商法 (3)导数法
2.复合函数的单调性的判定
对于函数y=f(u)和u=g(x),如果函数u=g(x)在区间(a,b)上具有单调性,当,x属于(a,b)时
u属于(m,n),且函数y=f(u )在区间(m,n)上也具有单调性,则复合函数y=f(g(x))在区间(a,b)具有单调性。

为减函数。

4.奇偶函数的单调性
奇函数在其定义域内的对称区间上的单调性相同,偶函数在其定义域内的对称区间上的单调性相反
二、函数的对称性
.函数y=f(x)的图象的对称性(自身):
三、函数的周期性
(二)奇偶函数性质。

相关文档
最新文档