矩阵行列式的概念与运算(标准答案)
矩阵和行列式基础

Copyrigah11t
2a0102 4=-2a01a1
Aspose -a a
Pty
Ltd.
a21 a22
11 22 21 12
求解二元一次方程组--- 用二阶行列式建立的克莱姆法则:
a11
当 a21
a12 a22
0 时,方程组有唯一的解:
b1 a12 Evaluation only. a11 b1
n 系C数o行py列rig式htD20≠040-,20则11方A程sp组ose(1P)t有y 唯Ltd一. 解。
n D=0,且Dj不全为零,则方程组(1)无解
n D=0且Dj=0,则方程组(1)有无穷多组解
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
表示这个元素所在的行数,称为行标,第二个下标 j 表示
这个元素所在的列数,称为列标。
二阶行列式D的计算可用对角线法帮助记忆:
主对角线上元素的E乘va积lua-ti次on对o角nl线y.上元素的乘积。
eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
D ai1 Ai1 ai2EAvia2luation oaninlAy.in (i 1,2,, n)
eated DwithaA1 jsAp1oj se.aS2lij dAe2sj for .NEaTnj 3A.n5j Cl(iejnt 1P,2ro,file, n5).2.0 Copyright 2004-2011 Aspose Pty Ltd.
的转置行列式。Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
总复习-1矩阵与行列式

I 矩阵、行列式一、矩阵的概念及其初等变换 矩阵概念矩阵与行列式的区别:矩阵(数表)行列式(数)记号:1111n m n m a a a a ⎛⎫⎪⎪ ⎪⎝⎭m n A ⨯ ()ij m n a ⨯1111n m nn a a a a n Aij na 化简:1111m n m n a a a a ⎛⎫⎪⎪ ⎪→⎝⎭1111nm nn a a a a =矩阵的初等变换理论定义:(看书) 结论一对任一m n ⨯矩阵A ,设()R A r =,有1,11,1000000000110r n r r rn m n c c c c A A ++⨯⎛⎫⎪ ⎪ ⎪−−−→ ⎪⎪ ⎪ ⎪ ⎪⎝⎭行变(的行最简形矩阵)应用1 高斯消元法解线性方程组增广矩阵A −−−→行变行最简形矩阵(可直接写出解)应用2 列摆行变法判定向量组的线性相关性及求最大无关组、秩和线性表示式1,1111,12100(,,,)(,,,)0000000011,,r n r r r n r n r n c c c c J J εαααε+++⎛⎫⎪⎪ ⎪−−−→=⎪ ⎪⎪⎪⎪⎝⎭行变设则12,,,n ααα 与11,,,,,r r n J J εε+ 有相同的线性相关性。
应用3 行初等变换法求逆矩阵A -1、A -1B1(,)(,)A E E A -−−−→行变1(,)(,)A B E A B -−−−→行变结论二对任一m n ⨯矩阵A ,设()R A r =,有000r m n E A A ⨯⎛⎫−−−−→ ⎪⎝⎭列行变和变(的相抵标准形)应用1 初等变换法求矩阵的秩(可作列变)应用2 标准形思路:,,000rEA P Q P Q ⎛⎫= ⎪⎝⎭其中是可逆矩阵. 结论三 初等变换与初等矩阵的转化关系:箭号等号关系(“左行右列”)二、矩阵的运算加法、数乘、乘法、转置 关于矩阵乘法,注意:(1) 矩阵乘法与数的乘法不同之处不满足交换律AB BA ≠222()2A B A AB B +≠++ 22()()A B A B A B -≠+- ()k k k AB A B ≠注意:,A B 设均为方阵,则错误!未找到引用源。
第一章 矩阵与行列式

第一章 矩阵与行列式第一节 矩阵及其运算一、矩阵的概念人们在从事经济活动、科学研究、社会调查时, 会获得许多重要的数据资料, 将这些数据排成一个矩形的数表111212122212n nm m mn a a a a a a a a a L L M M M L以便于进行储存、运算和分析, 这种矩形的数表就是矩阵.定义1 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==L L 排成m 行n 列的矩形 数表111212122212n n m m mn a a a a a a a a a ⎛⎫⎪ ⎪⎪⎪⎝⎭L L M M M L称为m 行n 列矩阵, 简称为m n ⨯矩阵, 其中ij a 称为矩阵的位于第i 行、第j 列的元素. 通常, 我们用大写字母,,A B L 表示矩阵. 例如, 记111212122212.n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭L L M M M L其中小括号“()” 也可用方括号“[]”代替. 有时, 矩阵也简记为()ij m nA a ⨯=或()ij A a =. 特别地, 当m n =时, 称A 为n 阶矩阵或n 阶方阵, 其中一阶方阵()a 是一个数, 括号可略去.元素全为实数的矩阵称为实矩阵, 元素全为复数的矩阵称为复矩阵. 本书主要在实数范围内讨论问题.对于由n 个未知量、m 个方程组成的线性方程组:11112211211222221122,,.n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.1.1) 称矩阵A 11121121222212n n m m mn m a a a b a a a b a a a b ⎛⎫⎪⎪= ⎪⎪⎝⎭LL M M M M L(1.1.2)为线性方程组(1.1.1)的增广矩阵;称矩阵A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪⎪⎪⎝⎭L L M M M L(1.1.3) 为线性方程组(1.1.1)的系数矩阵;矩阵12m b bB b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M (1.1.4)称为线性方程组(1.1.1)的常数项矩阵.显然, 线性方程组(1.1.1)由矩阵(1.1.2)完全地确定.下面介绍一些特殊的矩阵.(1) 零矩阵 元素都是零的矩阵称为零矩阵, 记为O . (2) 列矩阵、行矩阵 在矩阵A 中, 如果1n =, 则11211m a a A a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M , 称这种只有一列的矩阵为列矩阵;同样, 如果1m =, 则()11121n A a a a =L ,称这种只有一行的矩阵为行矩阵.我们也将列矩阵和行矩阵分别称为列向量和行向量. 列向量和行向量统称为向量. 向量的元素称为分量, 有n 个分量的向量称为n 维向量. 矩阵与 向量有密切的联系, 矩阵()ij m nA a ⨯=可以看成由n 个m 维列向量12,1,2,,j j mj a a j n a ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭L M 组成, 也可以看成由m 个n 维行向量()12,1,2,,i i in a a a i m =LL 组成.(3) 负矩阵 如果矩阵()ij m nA a ⨯=, 则()ij m nA a ⨯-=-称为矩阵A 的负矩阵.(4) 行阶梯形矩阵 如果矩阵每一行的第一个非零元素所在的列中, 其下方元素全为零, 则称此矩阵为行阶梯形矩阵. 例如矩阵10234023450056700018A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 12102032210003100000B --⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭均为行阶梯形矩阵, 而矩阵10232023450056700418C ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 则不是行阶梯形矩阵.(5) 行最简形矩阵 如果行阶梯形矩阵中, 非零行的第一个非零元素均为1, 且其所在列的其余元素均为0, 则称此矩阵为行最简形矩阵. 例如, 矩阵1060301205000110000⎛⎫⎪⎪⎪- ⎪⎝⎭是行最简形矩阵.(6) 上(下)三角矩阵 n 阶方阵的左上角到右下角元素的连线称为主对角线, 左下角到右上角元素的连线称为次(副)对角线. 如果方阵的主对角线下(上)方元素全为0, 则称此矩阵为上(下)三角矩阵. 矩阵11121222000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为上三角矩阵, 矩阵11212212000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭LL M M M L 为下三角矩阵.(7) 对角矩阵 如果方阵中除主对角线上的元素外, 其余元素全为0, 则称此矩阵为对角矩阵. 例如, 矩阵12000000n λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为对角矩阵.(8) 单位矩阵 在对角矩阵中, 如果()11,2,,i i n λ≡=L , 即为 100010001⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L, 则称此矩阵为单位矩阵. 单位矩阵一般用E 或I 表示.定义2 如果两个矩阵()ij A a =, ()ij B b =的行数相同、列数也相同, 则称矩阵A 与B 为同型矩阵.定义3 如果两个同型矩阵m n A ⨯, m n B ⨯的对应元素均相等, 即 ()1,2,,;1,2,,ij ij a b i m j n ===L L , 则称矩阵A 与B 相等, 记作A B =.二、矩阵的运算 1. 矩阵的加法定义4 由两个同型矩阵()m n ij m nA a ⨯⨯=, ()m n ij m nB b ⨯⨯=对应元素的和,即ij ij a b +()1,2,,;1,2,,i m j n ==L L 组成的m n ⨯矩阵称为矩阵A 与B 的和,记作A B +, 即111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫ ⎪+++ ⎪+= ⎪ ⎪+++⎝⎭L L M M M L . 由此定义及负矩阵的概念, 我们定义矩阵A 与B 的差为()A B A B -=+-.注 只有同型矩阵才能相加(减). 2. 数与矩阵相乘(简称数乘)定义5 数k 乘矩阵A 的每一个元素所得到的矩阵称为数k 与矩阵A 的积, 记作kA , 即111212122212.n n m m mn ka ka ka ka ka ka kA ka ka ka ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L L M M M L 矩阵的加法和数乘统称为矩阵的线性运算, 其满足如下性质:(1) A B B A +=+; (2) ()()A B C A B C ++=++; (3) ()()A A λμλμ=;(4) ()A A A λμλμ+=+; (5) ()A B A B λλλ+=+; (6) A O A +=; (7) 1A A =;(8) ()A A O +-=.上面的λ, μ都是任意常数.例1 设112034A -⎛⎫= ⎪⎝⎭, 403123B -⎛⎫= ⎪--⎝⎭, 求A B +和23A B -.解14102(3)5110(1)3(2)43117A B +-++---⎛⎫⎛⎫+== ⎪ ⎪+-+-+-⎝⎭⎝⎭;224120923068369A B --⎛⎫⎛⎫-=- ⎪ ⎪--⎝⎭⎝⎭102133121--⎛⎫= ⎪-⎝⎭.3. 矩阵与矩阵相乘(矩阵的乘法)n 个变量12,,,n x x x L 与m 个变量12,,,m y y y L 之间的关系式11111221221122221122,,.n n n nm m m mn n y a x a x a x y a x a x a x y a x a x a x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩L L L L L L L L L L L L (1.1.5) 表示一个从变量12,,,n x x x L 到变量12,,,m y y y L 的线性变换.设有两个线性变换11111221332211222233,.z a y a y a y z a y a y a y =++⎧⎨=++⎩ (1.1.6)和111112222112223311322,,.y b x b x y b x b x y b x b x =+⎧⎪=+⎨⎪=+⎩ (1.1.7) 若要求出从12,x x 到12,z z 的线性变换, 可将(1.1.7)代入(1.1.6), 得 111111221133111112122213322221112221233112112222223322()(),()().z a b a b a b x a b a b a b x z a b a b a b x a b a b a b x =+++++⎧⎨=+++++⎩ (1.1.8) 线性变换(1.1.8)可看作是先作线性变换(1.1.7)、再作线性变换(1.1.6)的结果, 我们称线性变换(1.1.8)为线性变换(1.1.6)与(1.1.7)的乘积, 相应地, 我们将线性变换(1.1.8)所对应的矩阵定义为(1.1.6)与(1.1.7)所对应的矩阵的乘积,即 111211121321222122233132bb a a a b b a a a b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭111112211331111212221332211122212331211222222332.a b a b a b a b a b a b a b a b a b a b a b a b ++++⎛⎫= ⎪++++⎝⎭一般地, 我们有:定义6 设有矩阵()ij m sA a ⨯=和()ij s nB b ⨯=, 规定矩阵A 与B 的乘积是一个m n ⨯矩阵()ij m nC c ⨯=, 记为C AB =. 其中11221,1,2,,;1,2,,.ij i j i j is sjsik kj k C a b a b a b a b i m j n ==+++===∑L L L注 只有当前一个矩阵的列数等于后一个矩阵的行数时, 两个矩阵才能相乘, 且乘积矩阵C 中的元素ij C 就是A 的第i 行与B 的第j 列的对应元素乘积的和.例2 设201131012A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 100221B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求AB .解AB 201101310201221-⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭2100(1)22002(1)11130121032110110(2)20012(2)1⨯+⨯+-⨯⨯+⨯+-⨯⎛⎫ ⎪=-⨯+⨯+⨯-⨯+⨯+⨯ ⎪ ⎪⨯+⨯+-⨯⨯+⨯+-⨯⎝⎭ 0117.40-⎛⎫ ⎪= ⎪ ⎪-⎝⎭例3 求矩阵1111A -⎛⎫= ⎪-⎝⎭与1111B --⎛⎫= ⎪⎝⎭的乘积AB 及BA .解111122;111122AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭111100.111100BA ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭由以上例题可以看出矩阵乘法与数的乘法有两点显著不同:(1) 矩阵乘法不满足交换律:AB 与BA 未必同时有意义(如例2, BA 没有意义);即使都有意义也未必相等(如例3). 因此为明确起见, 称AB 为A 左乘B , 或B 右乘A . 只有在一些特殊情况下才有AB BA =, 这时称A 与B 是乘法可交换的. 容易验证数量矩阵aE 与任何同阶方阵A 乘法可交换, 即()().aE A A aE aA ==(2) 矩阵乘法不满足消去律:由AB O =不能得出A O =或B O =(如例3), 即,A O B O ≠≠但AB 有可能为O .有了矩阵相等和乘法的定义, 我们可以把线性方程组(1.1.1)写成矩阵形式:AX B =, 其中A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪ ⎪⎪⎝⎭L L M M M L, 1122,.n m x b x b X B x b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M若B O =, 则称(1.1.1)为齐次线性方程组;若B O ≠, 则称(1.1.1)为非齐次线性方程组. 也可以把线性变换(1.1.5)写成矩阵形式:Y AX =, 其中12,m y y Y y ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭MA 与X 同上所设.可以证明矩阵的乘法有下列性质: (1) ()()AB C A BC =;(2) ()A B C AB AC +=+;()B C A BA CA +=+; (3) ()()()AB A B A B λλλ==, λ为任意常数; (4) ()().m m n m n m n n aE A aA A aE ⨯⨯⨯==定义7 设A 为n 阶方阵, k 为正整数, 称k 个A 的连乘积为方阵A 的k次幂, 记作k A , 即.k kA AA A =L 14243当,k l 都为正整数时, 由矩阵乘法的性质, 得(1) k l k l A A A +=;(2) ()lk kl A A =.注 由于矩阵乘法不满足交换律, 所以, 一般地()kk k AB A B ≠. 例4 设1101A ⎛⎫= ⎪⎝⎭, 求nA (n 为正整数).解1101A ⎛⎫= ⎪⎝⎭;2111112010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 3121113010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 一般地, 有101n n A ⎛⎫= ⎪⎝⎭.其正确性可由数学归纳法证得, 证明略.4. 矩阵的转置定义8 把m n ⨯矩阵A 的行与列互换得到的一个n m ⨯矩阵, 称为A 的转置矩阵, 记作T A . 例如, 矩阵120311A ⎛⎫= ⎪-⎝⎭的转置矩阵为1321.01T A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭矩阵的转置也是一种运算, 满足下述运算规律:(1) ()TT A A = ;(2) ()TT T A B A B +=+ ;(3) ()TT A A λλ=, λ为一个数;(4) ()TT T AB B A = .例5 已知201132A -⎛⎫= ⎪⎝⎭, 171423201B -⎛⎫⎪= ⎪ ⎪⎝⎭,求().T AB解法1 因为1712010143423132171310201AB -⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,所以()0171413310TAB ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 解法214221017()72003141313112310T T T AB B A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭.定义9 设A 为n 阶方阵, 如果满足T A A =, 即 ,,1,2,,.ij ji a a i j n ==L则称A 为对称矩阵. 对称矩阵的特点是:关于主对角线对称的对应元素相等.定义10 设A 为n 阶方阵, 如果满足T A A =-, 即ij ji a a =-, ,1,2,,.i j n =L则称A 为反对称矩阵. 反对称矩阵的特点是:主对角线上的元素全为0, 其余关于主对角线对称的对应元素则互为相反数.习题1-11. 设111210111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 120124051B -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭, 求23AB A -及T A B .2. 已知两个线性变换113212331232,232,45.x y y x y y y x y y y =+⎧⎪=-++⎨⎪=++⎩ 和 1122133233,2,.y z z y z z y z z =-+⎧⎪=+⎨⎪=-+⎩ 求从1z , 2z , 3z 到1x , 2x , 3x 的线性变换. 3. 计算下列乘积:(1) 401123520-⎛⎫ ⎪- ⎪ ⎪⎝⎭421⎛⎫⎪⎪ ⎪-⎝⎭;(2) ()123321⎛⎫ ⎪ ⎪ ⎪⎝⎭; (3) 321⎛⎫ ⎪⎪ ⎪⎝⎭()123;(4) 121232101110324-⎛⎫⎛⎫⎪⎪-- ⎪⎪ ⎪⎪⎝⎭⎝⎭.4. 设A =1203-⎛⎫ ⎪⎝⎭, B =2032⎛⎫⎪-⎝⎭, 问(1) AB BA =吗?(2) ()2A B +=2A +2AB +2B 吗? (3) ()A B +()A B -=2A 2B -吗? 5. 举反例说明下列命题是错误的: (1) 若2A O =, 则A O =; (2) 若2A A =, 则A O =或A E =; (3) 若AX AY =, 且A O ≠, 则X Y =.6. 设A =1111⎛⎫ ⎪-⎝⎭, 1111B ⎛⎫= ⎪⎝⎭, 求2()AB , 22A B .第二节 矩阵的初等变换与初等矩阵一、初等变换的概念中学里, 已经学过用加减消元法解二、三元线性方程组.例1 解三元线性方程组1231231232344,23,226 2.x x x x x x x x x --+=⎧⎪+-=-⎨⎪+-=-⎩ (1.2.1) 解 为叙述方便, 方程组的第i 个方程记为(1,2,3)i r i =. i j r r ↔表示对调第i 、第j 个方程, (0)i kr k ≠表示用k 乘第i 个方程的两边, i j r kr +表示第j 个方程的两边乘以k 然后加到第i 个方程上.方程组(1.2.1)12312r r r ↔⨯−−−→12312312323,2344,3 1.x x x x x x x x x +-=-⎧⎪--+=⎨⎪+-=-⎩ (1.2.2)21311232232323,22,2 2.r r r r x x x x x x x +-+-=-⎧⎪−−−→+=-⎨⎪--=⎩ (1.2.3)321232323,22,00.r r x x x x x ++-=-⎧⎪−−−→+=-⎨⎪=⎩(1.2.4)方程组(1.2.4)呈阶梯状(其增广矩阵为行阶梯形矩阵), 称为阶梯形方程组. 方程组(1.2.4)有3个未知量但有效方程只有2个, 因此有1个未知量可以任意取值, 称为自由未知量. 我们不妨取3x 为自由未知量. 先由方程组(1.2.4)中的2r 得:2322x x =--, 再代入(1.2.4)中的1r 得:1351x x =+.方程组(1.2.4)与方程组(1.2.1)是同解的, 由于3x 取值的任意性, 因此方程组(1.2.1)有无穷多组解, 其一般形式(通解)是13233351,22,.x x x x x x =+⎧⎪=--⎨⎪=⎩ 若令3x c =, 即得123x X x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭=5122c c c +⎛⎫ ⎪-- ⎪ ⎪⎝⎭=521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭,其中c 为任意常数.解方程组(1.2.1)的过程中施行了3种变换:(1) 换位变换 即互换两个方程的位置;(2) 倍乘变换 即用一个非零常数乘某一方程;(3) 倍加变换 即把一个方程乘以常数后加到另一个方程上去. 这三种变换统称为线性方程组的初等变换.首先, 我们用换位、倍乘和倍加变换得到的新方程组可以用同类型变换变回原方程组(例如方程组(1.2.2)1232r r r ↔⨯−−−→方程组(1.2.1)), 因此线性方程组 的初等变换是同解变换;其次, 可以证明:任何线性方程组都可以用初等变换化为阶梯形方程组, 而阶梯形方程组很容易判定是否有解, 且有解时容易通过自下而上的“回代”得到解.由于线性方程组AX B =和其增广矩阵A 相互唯一地确定, A 的每一行 对应AX B =中的一个方程, 因此线性方程组的初等变换就对应着其增广矩阵的相应行变换.定义1 对矩阵施行的下列3种变换统称为矩阵的初等行变换: (1) 换位变换 对调矩阵的第i 行和第j 行, 记为i j r r ↔; (2) 倍乘变换 用常数0k ≠乘第i 行, 记为i kr ;(3) 倍加变换 把第j 行的k 倍加到第i 行上去, 记为i j r kr +.把上述定义中的“行”换成“列”(所有记号只要把""r 换成""c )即为矩阵的初等列变换. 矩阵的初等行变换和初等列变换统称为矩阵的初等变换.回顾例1, 方程组(1.2.1)的初等变换(消元)过程可以用增广矩阵的初等行变换表示如下:234412132262A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭12312r r r ↔⨯−−−→121323441131--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭=A 121312r r r r +-−−−→121301220122--⎛⎫ ⎪- ⎪ ⎪--⎝⎭=A 232r r +−−−→121301220000--⎛⎫⎪- ⎪ ⎪⎝⎭=A 3 122r r -−−−→105101220000-⎛⎫⎪- ⎪ ⎪⎝⎭=A 4,A 3是行阶梯形矩阵, A 4是行最简形矩阵, A 4对应的方程组为132351,22,00.x x x x -=⎧⎪+=-⎨⎪=⎩取3x 为自由未知量, 并令3x c =, 即得1235122x c X x c x c +⎛⎫⎛⎫ ⎪ ⎪==--=⎪ ⎪ ⎪⎪⎝⎭⎝⎭521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭, 其中c 为任意常数.利用初等行变换, 把一个矩阵化为行阶梯形矩阵和行最简形矩阵, 是一种很重要的运算. 行阶梯形矩阵不是唯一的, 但其非零行的行数是唯一确定 的(第五节将给出证明). 在解线性方程组AX B =时, 将增广矩阵A 化为行阶梯形矩阵, 就可以看出原方程组中是否有矛盾方程, 从而判断AX B =是否有解;在有解时, 进一步地将A 化为行最简形矩阵, 即可写出方程组AX B =的解.例2 将矩阵A =212341352012⎛⎫ ⎪ ⎪ ⎪⎝⎭化为行阶梯形矩阵和行最简形矩阵.解A =212341352012⎛⎫ ⎪⎪ ⎪⎝⎭21312212301110111r r r r --⎛⎫⎪−−−→--- ⎪ ⎪---⎝⎭32212301110000r r -⎛⎫ ⎪−−−→--- ⎪ ⎪⎝⎭(行阶梯形矩阵)1212(1)r r ⨯⨯-−−−→13112201110000⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭12121101201110000r r -⎛⎫ ⎪ ⎪−−−→ ⎪ ⎪ ⎪⎝⎭. (行最简形矩阵)例3 求解方程组123423412341234231,41,234,23 6.x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩解11231011411231423116A ⎛⎫ ⎪-⎪= ⎪- ⎪---⎝⎭31412111231011410114301578r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪- ⎪---⎝⎭3242211231011410000200639r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪ ⎪---⎝⎭34311231011410063900002r r A ↔⎛⎫ ⎪-⎪−−−→= ⎪--- ⎪⎝⎭,矩阵3A 是行阶梯形矩阵, 其对应的方程组为123423434231,41,639,0 2.x x x x x x x x x +++=⎧⎪+-=⎪⎨--=-⎪⎪=⎩ 第四个方程为02=, 这是不可能的, 故原方程组无解.例4 求解方程组1234123412341234231,234,324,23 6.x x x x x x x x x x x x x x x x +++=⎧⎪++-=-⎪⎨---=-⎪⎪+--=-⎩ 解11231123143112423116A ⎛⎫ ⎪-- ⎪= ⎪---- ⎪---⎝⎭ 213141321112310114504711701578r r r r r r A ---⎛⎫ ⎪--⎪−−−→= ⎪---- ⎪---⎝⎭ 3242421123101145003272700633r r r r A +-⎛⎫⎪--⎪−−−→= ⎪---⎪---⎝⎭4323112310114500327270005151r r A -⎛⎫ ⎪-- ⎪−−−→= ⎪--- ⎪⎝⎭1331451()411231011450019900011r r A ⨯-⨯⎛⎫⎪--⎪−−−→= ⎪⎪⎝⎭34241494351120201101001000011r r r r r r A -+--⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭231312261000101001001000011r r r r r r A ----⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭,3A 是行阶梯形矩阵, 6A 是行最简形矩阵, 6A 对应的方程组为12341,1,0,1.x x x x =-⎧⎪=-⎪⎨=⎪⎪=⎩故原方程组有唯一解, 即12341101x x x x -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 二、初等矩阵定义2 将单位矩阵作一次初等变换所得的矩阵称为初等矩阵. 对应于三类初等行、列变换, 有下列三种类型的初等矩阵:(1) 初等换位矩阵 对调单位矩阵的第i , j 两行或第i , j 两列而得到的矩阵, 即为11011(,)11011E i j ⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭O L M O M L O i j ←←第行第行 (2) 初等倍乘矩阵 用常数0k ≠乘单位矩阵的第i 行或第i 列而得到的矩阵, 即为11(())11E i k k i ⎛⎫ ⎪⎪ ⎪ ⎪=← ⎪ ⎪ ⎪⎪⎪⎝⎭O O 第行(3) 初等倍加矩阵 把单位矩阵的第j 行的k 倍加到第i 行上而得到的矩阵, 即为11(,())11k i E i j k j ⎛⎫ ⎪ ⎪ ⎪← ⎪= ⎪⎪← ⎪⎪⎪⎝⎭O L O M O 第行第行 (,())E i j k 也可看作是把单位矩阵的第i 列的k 倍加到第j 列上而得到的矩阵.下面我们用一个初等矩阵左乘或右乘一个矩阵. 例如111211112121222313233132321222100001010n n n n n n a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L L L L L ; 111213111312212223212322123132100001010m m m m m m a a a a a a a a a a a a a a a aa a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M M M M M M .由此可见, 用三阶初等换位矩阵(2,3)E 左乘矩阵3n A ⨯, 相当于对矩阵3n A ⨯作一次相应的初等换位行变换(即对调矩阵3n A ⨯的第2,3两行);用三阶初等换位矩阵(2,3)E 右乘矩阵3m A ⨯, 相当于对矩阵3m A ⨯作一次相应的初等换位列变换(即对调矩阵3m A ⨯的第2,3两列).用初等倍乘矩阵或初等倍加矩阵左乘或右乘一个矩阵, 可得类似的结论.一般地, 有如下定理.定理 设A 是一个m n ⨯矩阵, 对A 施行一次初等行变换, 相当于在A 的左边乘一个相应的m 阶初等矩阵;对A 施行一次初等列变换, 相当于在A 的右边乘一个相应的n 阶初等矩阵.由定理可知, 对于同阶初等矩阵, 有(1) (,)(,);E i j E i j E ⋅= (1.2.5) (2) 1(());E i E i k E k ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭(1.2.6)(3) (,())(,()).E i j k E i j k E -⋅= (1.2.7)习题1-21. 把下列矩阵化为行阶梯形矩阵及行最简形矩阵:(1) 121131114302-⎛⎫ ⎪---- ⎪ ⎪⎝⎭;(2) 1111532114012211543314⎛⎫⎪⎪⎪⎪⎝⎭.2. 求解下面的方程组(1) 12341234123412343520,2350,7430,415790.x x x x x x x x x x x x x x x x -+-=⎧⎪+-+=⎪⎨-+-+=⎪⎪+-+=⎩(2) 123423412341234231,41,234,236,x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩(3) 123451234512345321,335432,2244 3.x x x x x x x x x x x x x x x +++-=⎧⎪+++-=⎨⎪+++-=⎩第三节 行 列 式一、n 阶行列式的定义 对于二元线性方程组11112212112222,.a x a x b a x a x b +=⎧⎨+=⎩ (1.3.1) 用消元法可得:当112212210a a a a -≠ 时, 存在唯一的解122212*********,b a b a x a a a a -=-211121*********b a b ax a a a a -=-.如果我们将方程组(1.3.1)的系数矩阵11122122a a A a a ⎛⎫= ⎪⎝⎭所对应的二阶行列式定义为1112112212211222a a D A a a a a a a ===-, (1.3.2) 并记1D =112222b a b a , 2D =111212ab a b , 则方程组(1.3.2)的解可写成如下形式11D x D =, 22Dx D=. (1.3.3)同样, 可以用行列式表示三元线性方程组111122133121122223323113223333,,.a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩ (1.3.4) 的解. 为此定义111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++--- (1.3.5)为系数矩阵所对应的三阶行列式, 用()1,2,3j D j =分别记用方程组(1.3.4)右端的常数列替换D 中的第j 列所得的三阶行列式, 则当0D ≠时, 方程组(1.3.4)的解可写为11D x D =, 22Dx D =, 33D x D=. (1.3.6)式(1.3.3)和式(1.3.6)分别用二、三阶行列式来表示方程组(1.3.1)、(1.3.4)的解. 这些公式形式简单, 便于记忆, 明显地表示出线性方程组的解与方程组的系数和常数项的关系. 这就启发我们考虑:如果含有n 个未知量、n 个方程的线性方程组有唯一解, 能否给出类似的求解公式?回答是肯定的 . 为此, 必须推广二、三阶行列式.二阶及三阶行列式的定义, 即公式(1.3.2)及(1.3.5), 可以用“对角线法则”来记忆(见下图):11122122a a a a 111213111221222321223132333132a a a a a a a a a a a a a a a (-) (+) (-) (-) (-) (+) (+) (+)二阶行列式等于主对角线元素的乘积减去副对角线元素的乘积.三阶行列式等于主对角线及与其平行的两条线上各 3 个元素的乘积之和, 减去副对角线及与其平行的两条线上各3 个元素乘积之和.例1 求行列式的值:12(1)34-, 102(2)211313---. 解 (1)1214(2)31034-=⨯--⨯=; (2) 1022113(4)0(6)012313--=-+-+----=--.例2 求解方程211123049x x =. 解 方程左端的三阶行列式2223418129256,D x x x x x x =++---=-+由2560x x -+=, 解得2x =或3x =.分析三阶行列式的定义, 我们发现第一, 式(1.3.5)的右端有3!项, 除去带有的正、负号外, 每项都是这个行列式中的每一行和每一列中任取1个且仅取1个元素的积. 如果把元素的第1个下标, 即行标(表示元素所在的行)按照123顺序排列, 则它的任意 一项可写成123123j j j a a a , 这里123,,j j j 是1, 2, 3 的一个排列(由1, 2, 3这三个数按某种次序所排成的一个有序数组), 元素的第2个下标, 即列标k j 表示 该元素所在的列.第二, 这6项中带有正号的那些项, 列标123,,j j j 形成3个排列: 123, 231, 312;带有负号的那些项的列标也形成3个排列:321, 213, 132.我们感兴趣的是, 这2组排列的区别是什么?为了回答这个问题, 我们给出下面几个定义.定义1 由1,2,,n L 这n 个数按某种次序所排成的一个有序数组12n j j j L 称为一个n 元全排列.显然, n 元全排列的个数为n !定义2 对于n 个不同元素, 若事先规定各元素之间有一个标准次序(例如n 个不同的自然数, 可规定由小到大为标准次序), 于是在这n 个元素的任一排列中, 当某两个元素的先后次序与标准次序不同时, 就说有1个逆序.定义3 一个排列中所有逆序的总数称为这个排列的逆序数, 用τ表示. 定义4 逆序数为奇数的排列称为奇排列, 递序数为偶数的排列称为偶排列.标准排列12n L 的逆序数(12)0n τ=L , 为偶排列. 可以证明:当2n ≥时,n 元全排列中奇 、偶排列各占一半, 即各有!2n 个.例3 求排列32514的逆序数, 并指明奇偶性. 解 在排列32514中, 3排在首位, 没有逆序;2的前面比2大的数有一个(3), 故有1个逆序; 5是最大数, 没有逆序;1的前面比1 大的数有三个(3, 2, 5), 故有3个逆序;4的前面比4大的数有一个(5), 故有1个逆序, 于是这个排列的逆序数为(32514)1315τ=++=. 从而排列32514是奇排列.现在回过来考察三阶行列式展开式中各项正负号的取法, 因为(123)0τ=, (231)2τ=, (312)2τ=, (321)3τ=, (213)1τ=, (132)1τ=,由此可见:任一项带正号或负号完全由它的行标为标准次序时, 列标形成的 排列123j j j 的奇偶性来决定, 即当列标形成的排列为偶排列时, 该项取正 号;列标形成的排列为奇排列时, 该项取负号. 因此, 我们有1231231112133!()212223123313233(1)j j j j j j a a a a a a a a a a a a τ=-∑, (1.3.7) 其中3!∑表示对1,2,3的所有排列求和, 共有3!6=项.二阶行列式也可以表示成和式12122!1112()122122(1)j j j j a a a a a a τ=-∑.定义5 设()ij n n A a ⨯=是一个n 阶方阵(2)n ≥, 称121211121!21222()1212(1)n n nn nj j j j j nj n n nna a a a a a a a a a a a τ=-∑L L L L M M M L (1.3.8)为n 阶行列式, 也可称为方阵A 的行列式, 记为A 或det A . 规定一阶行列式a a =(注意不要与绝对值混淆).下面是n 阶行列式的等价定义:121211121!21222()1212(1)n n nn ni i i i i i n n n nna a a a a a a a a a a a τ=-∑L L L L M M M L , (1.3.9)上式右端各项的n 个因子是按列标组成标准次序的.由行列式的定义知, 若行列式的某行(列)的元素都是零, 则此行列式为零.例4 证明对角行列式(对角线以外的元素均为0)(1)1212n nλλλλλλ=L O; (2)1(1)2212(1)n n n nλλλλλλ-=-L N.证明 (1) 由行列式的定义即得.(2) 若记,1i i n i a λ+-=则由行列式的定义可得1122,11nn nn a a a λλλ-=NN12,1112(1)(1)n n n n a a a ττλλλ-=-=-L L , 其中τ为排列(1)21n n -L 的逆序数, 故(1)12(1)2n n n τ-=+++-=L . 例5 证明行列式112122112212000nn n n nna a a D a a a a a a ==L L L M M M L. 证明 由于当j i >时, 0ij a =, 故D 中可能不为0的元素i i p a , 其下标应有i p i ≤, 即121,2,,n p p p n ≤≤≤L .在所有排列12n p p p L 中, 能满足上述关系的排列只有一个排列12n L , 其逆序数0τ=, 所以D 中可能不为0的项只有一项1122(1)nn a a a τ-L , 即1122nn D a a a =L . 对角线以下(上)的元素都为零的行列式称为上(下)三角行列式, 它们的值与对角行列式一样, 都等于主对角线上元素的乘积.二、行列式的性质 记111212122212n n n n nn a a a a a a A a a a =L L M M M L, 112111222212n n T n n nna a a a a a A a a a =L LM M M L, 行列式T A 称为行列式A 的转置行列式.性质1 行列式与它的转置行列式相等. 例如3421=--3241-=-5.由性质1可知, 行列式对行成立的性质, 对列也成立, 反之亦然. 以下叙述行列式性质时, 只对行叙述.性质2 互换行列式的两行, 行列式变号. 例如3421=--5, 2134--=5-.推论 若行列式有两行元素完全相同, 则此行列式为零.性质3 行列式中某一行的所有元素乘同一数k 等于用k 乘原行列式(第i 行乘以k , 记作:i r k ⨯).推论1 行列式中某一行的所有元素的公因子可提到行列式记号外. 由此推论及矩阵的运算, 设A 为n 阶方阵, λ为数, 则n A A λλ=. 例如, 若A 是三阶方阵且2A =, 则322216A =⋅=.推论2 行列式中如果有两行的元素对应成比例, 则此行列式为零. 性质4 若行列式的某一行元素都是两数之和, 例如11121112212n i i i i in inn n nna a a D a a a a a a a a a '''=+++L M M ML MM M L,则行列式D 等于下面的两个行列式之和:111211212n i i in n n nn a a a D a a a a a a =L M M M L M M M L 111211212ni i in n n nna a a a a a a a a '''+L M M M LM M M L. 注 行列式的加法与矩阵的加法不同.性质5 把行列式的某一行的各元素乘以同一个数, 然后加到另一行对应的元素上去, 行列式不变.以上性质不难由行列式的定义证得, 以性质4为例, 证明如下. 性质4的证明 由(1.3.8)式, 得 1212!()12(1)()n i i n n j j j j j ij ij nj D a a a a a τ'=-+∑L L L 1212!()12(1)n i n n j j j j j ij nj a a a a τ=-∑LL L1212!()12(1)n i n n j j j j j ijnj a a a a τ'+-∑L L L 111211212n i i in n n nn a a a a a a a a a =LM MM LM M M L111211212ni i in n n nna a a a a a a a a '''+L M M M L M M M L. 例6 计算行列式121024*********3D -=---. 解D21314123r r r r r r -++ 1210003202110213-- 23r r ↔ 1210021100320213--- 42r r - 1210021100320022---4323r r + 12100211003210003--10123203=-⨯⨯⨯=-.例7 计算行列式3111131111311111D =. 解 这个行列式的特点是各列4个数之和都是6. 将第2, 3, 4行同时加到第一行, 提出公因子6, 然后各行减去第一行, 得D121314r r r r r r +++ 6666131111311111 116r ⨯ 11111311611311111213141r r r rr r --- 1111020064800200002=. 例8 设2113A -⎛⎫= ⎪⎝⎭, 3452B -⎛⎫= ⎪⎝⎭, 求,A ,B AB .解 217,13A -== 342652B -==. 因为21341101352182AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以110182182AB -==.我们注意到:AB A B =. 一般地, 有下列结论:定理1 若A , B 为同阶方阵, 则AB A B =, 从而.AB BA =三、行列式按行(列)展开在三阶行列式的定义式(1.3.5)中, 如果把含111213,,a a a 的项分别合并, 并提出公因子, 则有1112132223212223113233313233a a a aa a a a a a a a a a = 2123123133aa a a a - 2122133132aa a a a +. (1.3.10) 据此, 一个三阶行列式的计算可转化为三个二阶行列式的计算. 自然有一个问题:一个n 阶行列式的计算能否转化为n 个1n -阶行列式的计算, 从而达到降阶的目的?下面讨论这个问题.定义6 在n 阶行列式A 中划去第i 行和第j 列后所剩下的2(1)n -个元素按原来的相对位置所构成的1n -阶行列式称为ij a 在A 中的余子式, 记为ij M , 而称(1)i j ij ij A M +=-为ij a 在A 中的代数余子式, 这里1,i j n ≤≤.例9 在行列式123456789A =中, 求23M , 33M , 23A , 33A . 解 2312678M ==-, 232323(1)6A M +=-=, 3312345M ==-, 333333(1)3A M +=-=-. 利用代数余子式, 式(1.3.10)可以写成111112121313A a A a A a A =++,将上式推广到一般情况, 有下面的结论:定理2 n 阶行列式(2n ≥)等于它的任一行(列)各元素与其代数余子式乘积之和, 即1122i i i i in in A a A a A a A =+++L 1nij ij j a A ==∑, 1,2,,i n =L . (1.3.11)或1122j j j j nj nj A a A a A a A =+++L 1nij ij i a A ==∑, 1,2,,j n =L . (1.3.12)推论 行列式的任一行(列)的元素与另一行(列)的元素的代数余子式乘积之和等于零. 即11220i j i j in jn a A a A a A +++=L , (1.3.13) 11220i j i j ni nj a A a A a A +++=L , (1.3.14)其中i j ≠.定理1按行(列)展开计算行列式的方法称为降阶法. 计算行列式时, 将行列式按行(列)展开与行列式的性质结合起来用, 常常能够达到事半功倍的效果.例10 计算行列式 (即本节例6)1210241210213423D -=---.解 利用行列式的性质, 将行列式的某行(列)除某个元素外的其余元素化为0, 再按该行(列)展开.D21312c cc c-+1000203212113213---1r 按展开110321(1)211213+⨯--32r r -032211022-1c 按展开21322(1)22+⨯--21020=-⨯=-.例11 证明123213132222123111()()()x x x x x x x x x x x x =---. 证明123222123111x x x x x x 2131c c c c --121312222212131100x x x x x x x x x x ---- 213111212131311(1)()()()()x x x x x x x x x x x x +--=⨯--+-+2131213111()()x x x x x x x x =--++213132()()()x x x x x x =---.上例中的行列式称为三阶范得蒙德行列式. 类似可证n 阶范得蒙德行列式1222212111112111()n n n i j j i nn n n n x x x x x x D x x x x x ≤<≤---==-∏L L L M M M L . 四、克拉默法则下面介绍利用行列式求含有n 个未知量、n 个方程的线性方程组解的公式. 设方程组为11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.3.15) 由各方程中的未知量的系数构成的行列式111212122212n nn n nna a a a a a D a a a =L L M M M L(1.3.16) 称为方程组(1.3.15)的系数行列式, 用常数项12,,,n b b b L 替换D 中第j 列的相应元素得行列式记为j D , 即111,111,11212,122,121,1,1j j n j j nj n n j n n j nna ab a a a a b a a D a a b a a -+-+-+=L L L L M M M M M LL. 定理3 (克拉默法则)如果n 元线性方程组(1.3.15)的系数行列式0D ≠, 则方程组有唯一解,1,2,,j j D x j n D ==L .。
矩阵与行列式的运算与特性总结

矩阵与行列式的运算与特性总结矩阵与行列式是线性代数中重要的概念,它们在许多数学和科学领域中都有广泛的应用。
本文将对矩阵与行列式的运算法则和特性进行总结。
一、矩阵的定义与运算矩阵是一个按照矩形排列的数的集合,常用大写字母表示。
一个m×n 的矩阵 A 可以表示为:A = [a[ij]](m×n),其中 a[ij] 表示矩阵 A 的第 i 行第 j 列的元素。
常见的矩阵运算有加法、减法和数乘运算。
1. 矩阵的加法:两个相同大小的矩阵相加,只需对应元素相加。
A +B = [a[ij] + b[ij]](m×n)2. 矩阵的减法:两个相同大小的矩阵相减,只需对应元素相减。
A -B = [a[ij] - b[ij]](m×n)3. 矩阵的数乘:将矩阵的每个元素都乘以一个实数 k。
kA = [ka[ij]](m×n)二、矩阵的乘法矩阵的乘法是一个重要的运算,不同于加法和减法,矩阵的乘法需要满足一定的条件。
设 A 是一个 m×n 的矩阵,B 是一个 n×p 的矩阵,则矩阵 A 与矩阵B 的乘积 C 是一个 m×p 的矩阵,记作 C = AB。
矩阵乘法的计算方法是,C 中第 i 行第 j 列的元素等于矩阵 A 的第 i 行与矩阵 B 的第 j 列对应位置的元素乘积之和。
即 C 的元素 c[ij] 等于 a[i1]×b[1j] + a[i2]×b[2j] + ... + a[in]×b[nj]。
三、行列式的定义、特性与运算行列式是一个与矩阵对应的数,它在线性代数中有广泛的应用,常用竖线括起来表示。
一个 n 阶行列式的定义如下:D = |a[ij]|(n×n),其中 a[ij] 表示行列式 D 的第 i 行第 j 列的元素。
行列式具有以下的特性与运算法则:1. 行列式的性质:(1) 互换行列式的两行(列),行列式的值变号。
矩阵运算中的行列式与特征值

矩阵运算中的行列式与特征值矩阵是线性代数中的重要概念,它在各个领域中都有广泛的应用。
在矩阵运算中,行列式和特征值是两个重要的概念,它们在解决线性方程组、矩阵相似性等问题中起着重要的作用。
本文将重点介绍矩阵运算中的行列式和特征值的概念、性质及其在实际问题中的应用。
一、行列式的概念和性质行列式是一个与矩阵相关的标量值,它可以用来判断矩阵是否可逆、计算矩阵的秩等。
对于一个n阶方阵A,其行列式记作det(A)或|A|,其计算公式为:det(A) = a11*a22*...*ann - a11*a23*...*an(n-1) + a12*a23*...*an(n-2) - ... + (-1)^(n+1)*a1n*a2(n-1)*...*ann-1其中aij表示矩阵A的第i行第j列的元素。
行列式有以下几个重要的性质:1. 行列式的值与矩阵的行列互换无关,即det(A) = det(A^T)。
2. 如果矩阵A的某一行(列)全为0,则det(A) = 0。
3. 如果矩阵A的两行(列)互换,则det(A)的值改变符号。
4. 如果矩阵A的某一行(列)与另一行(列)成比例,则det(A) = 0。
5. 如果矩阵A的某一行(列)元素乘以一个数k,行列式的值也乘以k。
6. 如果矩阵A的两行(列)相等,则det(A) = 0。
行列式的计算可以通过展开定理来简化,展开定理是利用代数余子式的概念,通过将矩阵按某一行(列)展开为多个子矩阵的行列式之和。
通过递归地应用展开定理,可以将一个n阶矩阵的行列式计算化简为n-1阶矩阵的行列式计算,直至化简为1阶矩阵的行列式,即矩阵中的一个元素。
行列式的值可以判断矩阵是否可逆,当且仅当矩阵的行列式不等于0时,矩阵可逆。
可逆矩阵的逆矩阵可以通过行列式的值和伴随矩阵来求解,即A^(-1) =(1/det(A)) * adj(A),其中adj(A)表示矩阵A的伴随矩阵。
二、特征值和特征向量特征值和特征向量是矩阵运算中另一个重要的概念,它们描述了矩阵在线性变换下的性质。
线性代数下的行列式和矩阵

线性代数下的行列式和矩阵线性方程组一般有 m 个常数项,n 个未知数,m * n 个系数。
若常数项全为 0 ,则为齐次线性方程组;若未知数全为0 ,则称为零解。
于是我们考虑的问题是:齐次方程组:1.是否存在非零解,以及存在的条件2.通解的结构与性质3.解法非齐次方程组:1.是否有解,以及有解的条件是什么2.有多少解以及对应解数量的条件是什么3.多解的结构与性质4.解法行列式二,三阶行列式行列式的初始作用是解线性方程组!例如:最简单的二元线性方程组\left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{aligned} \right.\Rightarrow 消元 \Rightarrow \left\{ \begin{aligned}x_1 = \frac{b_1a_{22} - b_2a_{12}}{a_{11}a_{22} -a_{12}a_{21}} \\ x_1 = \frac{b_2a_{21} -b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} \end{aligned} \right.可以得出结论,答案是由方程的四个系数和常数决定的。
所以记住四个系数作为行列式,指定行列式的值是上式的分母:\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}于是有了这么一个行列式之后,我们就可以得到:D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \ D_1 = \begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{bmatrix} \ D_2 = \begin{bmatrix}a_{21} & b_1 \\ a_{21} & b_2 \end{bmatrix} \\Rightarrow \\ x_1 = \frac{D_1}D, x_2 = \frac{D_2}D同理可以推广到三元线性方程组,定义三阶行列式。
线性代数习题参考答案

第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。
(2) i= ,j= 时,排列1274i56j9为偶排列。
(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。
若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。
(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。
2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。
(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。
3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。
证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。
对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。
4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式(1)201141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。
(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式(1) ()33ax by ay bzaz bx x y z D ay bzaz bx ax by a b yz x az bx ax by ay bzzxy+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2)()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n n n n n x x x a x a x a x a a a a x a ------=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。
矩阵与行列式的基本概念与运算

矩阵与行列式的基本概念与运算矩阵和行列式是线性代数中基本的概念和工具。
在数学和工程领域中,它们广泛应用于解方程组、描述线性映射和计算变换等问题。
本文将介绍矩阵和行列式的基本概念,并讨论它们的运算规则和性质。
一、矩阵的基本概念矩阵是由一组排列成矩形的数按照一定规律排列组成的数表。
具体地,一个 m×n 的矩阵由 m 行和 n 列构成,其中每个元素可以是任意实数或复数。
通常用大写字母表示矩阵,如 A、B、C,矩阵元素用小写字母表示,如 aij,表示矩阵 A 的第 i 行第 j 列的元素。
例如,一个 2×3 的矩阵可以表示为:A = [a11 a12 a13][a21 a22 a23]二、矩阵的运算1. 矩阵的加法与减法设有两个 m×n 的矩阵 A 和 B,它们可以相加或相减,其结果仍为一个 m×n 的矩阵。
加法运算的规则是将对应位置的元素相加,减法运算的规则是将对应位置的元素相减。
例如,设有两个 2×2 的矩阵 A 和 B:A = [a11 a12][a21 a22]B = [b11 b12][b21 b22]则矩阵 A 与 B 的和为:A +B = [a11+b11 a12+b12][a21+b21 a22+b22]2. 矩阵的数乘矩阵与数的乘积为将矩阵的每个元素与该数分别相乘。
例如,设有一个 2×2 的矩阵 A 和一个数 k:A = [a11 a12][a21 a22]则矩阵 A 与数 k 的乘积为:kA = [ka11 ka12][ka21 ka22]3. 矩阵的乘法设有两个矩阵 A 和 B,若矩阵 A 的列数等于矩阵 B 的行数,则可以进行矩阵乘法运算。
矩阵乘法的规则是将矩阵 A 的每一行与矩阵 B 的每一列对应位置元素相乘,并将结果相加。
例如,设有两个 2×3 的矩阵 A 和 B:A = [a11 a12 a13][a21 a22 a23]B = [b11 b12 b13][b21 b22 b23][b31 b32 b33]则矩阵 A 与 B 的乘积为一个 2×3 的矩阵 C:C = [a11b11+a12b21+a13b31 a11b12+a12b22+a13b32a11b13+a12b23+a13b33][a21b11+a22b21+a23b31 a21b12+a22b22+a23b32a21b13+a22b23+a23b33]三、行列式的基本概念行列式是一个由矩阵中元素按一定规则组合而成的标量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵、行列式的概念与运算知识点总结: 一、矩阵的概念与运算 1、 矩阵111213212223a a a a a a ⎛⎫⎪⎝⎭中的行向量是()111213a a a a =,()212223b a a a =;2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++⎛⎫⎛⎫+== ⎪ ⎪++⎝⎭⎝⎭,111112211112122211131223211122212112222221132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++⎛⎫=⎪+++⎝⎭矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有:,()()A B B A A B C A B C+=+++=++。
同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。
实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。
矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB ==()()AB C A BC =3、 矩阵乘法不满足交换率,如1111111122222222.a b c d c d a b a b c d c d a b ⎛⎫⎛⎫⎛⎫⎛⎫≠⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。
二、行列式概念及运算 1.用记号2211b a b a 表示算式1221b a b a -,即2211b a b a =1221b a b a -,其中2211b a b a 叫做二阶行列式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线2211b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a (其中2121,,,b b a a 不全为零);记2211b a b a 叫做方程组的系数行列式;记=x D 2211b c b c ,2211c a c a D y =即用常数项分别替换行列式D 中x 的系数或y 的系数后得到的.(1) 若D ,0≠则方程组有唯一一组解,DD y D D x y x==, ; (2) 若0=D ,且y x D D ,中至少有一个不为零,则方程组无解;(3) 若0===y x D D D ,则方程组有无穷多解. 3。
三阶行列式及对角线法则用333222111c b a c b a c b a 表示算式;其结果是231312123213132321c b a c b a c b a c b a c b a c b a ---++. 我们把333222111c b a c b a c b a 叫做三阶行列式; 231312123213132321c b a c b a c b a c b a c b a c b a ---++叫做三阶行列式的展开式.其计算结果叫做行列式的值;i i i c b a ,,(3,2,1=i )都叫做三阶行列式的元素.4. 三阶行列式按一行(或一列)展开把行列式中某一元素所在的行和列去后,剩下的元素保持原来的位置关系组成的二阶行列式叫做该元素的余子式;余子式前添上相应的正负号叫做该元素的代数余子式;其中第i 行与第j 列的代数余子式的符号为j i +-)1(.三阶行列式可以按其一行或一列)展开成该行(或该列)元素与其对应的代数余子式的乘积之和.三阶行列式有有两种展开方式:(1)按对角线法则展开,(2)按一行(或一列)展开. 5.三元一次方程组的解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333322221111dz c y b x a d z c y b x a d z c y b x a );)3,2,1(,,((不全为零其中=i c b a i i i记333222111c b a c b a c b a D =为方程组的系数行列式;记333222111c b d c b d c b d D x =,333222111c d a c d a c d a D y =333222111d b a d b a d b a D z =,即用常数项分别替换行列式D 中z y x 或或的系数后得到的. (1) 当0≠D 时,方程组有惟一解⎪⎪⎪⎩⎪⎪⎪⎨⎧===DD z D D y D D x z y x(2) 当0=D 时,方程组有无穷多组解或无解.举例应用: 一、填空题:1、已知314012212.341241211A B ⎛⎫⎛⎫ ⎪ ⎪=--=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,则3A B -= ;解:3A B -=92103758112⎛⎫ ⎪-- ⎪ ⎪⎝⎭;2、已知1223,2131A B -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则AB = ;BA =解:122381213175AB --⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭;4157BA -⎛⎫= ⎪⎝⎭3、已知1558534,,10672246A B C ⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭,则()AB C = ;()A BC = 解:155********()()10;6722412926AB C ⎛⎫⎛⎫⎛⎫⎛⎫⎪== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭155********()(10)6722412926A BC ⎛⎫⎛⎫⎛⎫⎛⎫⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭4。
矩阵的一种运算,⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫⎝⎛dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵⎪⎪⎭⎫ ⎝⎛d c b a 的作用下变换成点124),,(22=++++y xy x dy cx by ax 若曲线在矩阵⎪⎪⎭⎫ ⎝⎛11b a 的作用下变换成曲线b a y x +=-则,1222的值为 .解:由题意11a x x a y b y b x y +⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,代入2221x y -=,整理可得令''x a y xb x y y+=⎧⎨+=⎩,22()2()1x ay bx y ∴+-+=, 2222(12)2(2)(2)1b x a b x y a y ∴-+-+-=,用待定系数法2212122(2)42022b a a b a b b a ⎧-==⎧⎪-=⇒⇒+=⎨⎨=⎩⎪-=⎩二、选择题5、给出下列三个式子: (1)11121112111211122122212221222122a a b b b b a a a a b b b b a a ⎛⎫⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)()111112132111111221133131b a a a b a b a b a b b ⎛⎫⎪=++ ⎪ ⎪⎝⎭(3)()()111111121321111213213131.b b a a a b a a a b b b λλλ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中正确的式子的个数是( ) A.0个 B.1个 C.2个 D.3个 解:由于上面各命题都不对,所以选择(A ) 6.下面给出矩阵的一些性质中正确的是( )A.AB=BAB.若AB=(0),则A=(0)或B=(0)C.若AB=AC,则B=CD.(AB)C=A(BC) 解:根据矩阵的性质,知道(A ),(B ),(C )都不对,所以选取(D )7、已知34,,211x y A B y x +-⎛⎫⎛⎫==⎪ ⎪--⎝⎭⎝⎭若A=2B,则x,y 的值分别为( ).A.1,2B.32,2C.2,1D.不存在 解:由23438222321121222x x y x y A B y x y x y =⎧+-+=-⎛⎫⎛⎫⎧⎪=⇒=⇒∴⎨⎨ ⎪ ⎪---=-=⎝⎭⎝⎭⎩⎪⎩ 8、下列说法正确的是( ). A.任意两个矩阵都可以相加 B.任意两个矩阵都可以相乘C.一个m k ⨯阶矩阵与一个k n ⨯阶矩阵相乘得到一个m n ⨯阶矩阵D.一个k m ⨯阶矩阵与一个n k ⨯阶矩阵相乘得到一个m n ⨯阶矩阵 解:根据矩阵的乘法性质,得到(C )成立。
三、解答题9、已知矩阵305211,214221A B -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,求矩阵X ,使23A X B -=解:设111213212223a a a X a a a ⎛⎫=⎪⎝⎭,则11121321222363310323432383a a a A X a a a ---⎛⎫-= ⎪----⎝⎭由23A X B -=,得111112121313212122222323836321318133103133343272203232083173a a a a a a X a a a a a a ⎧=⎪-=-⎧⎪-⎪⎪-==⎛⎫⎪⎪- ⎪⎪-=⎪⎪=⇒∴= ⎪⎨⎨--= ⎪⎪⎪=--⎪⎪⎪⎝⎭-==⎪⎪-=⎪⎪⎩⎪=⎩。
10.给出方程组232610ax y x y -=-⎧⎨++=⎩有唯一解的充要条件解:由23261ax y x y -=-⎧⎨+=-⎩即对应823230232326123082308a a aa a a ⎛⎫-------⎛⎫⎛⎫ ⎪⇒⇒+ ⎪ ⎪ ⎪-+ ⎪⎝⎭⎝⎭+⎝⎭ 即82323(23)8a y a a x ⎧-=--⎪+⎨⎪+=⎩,所以当且仅当22303a a +≠∴≠-时有唯一解。
11.(1)求231111,0101⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值;(2)求11(2,)01nn n N *⎛⎫≥∈ ⎪⎝⎭解:(1)2311121113;;01010101⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)由此猜想:1110101nn ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,下面用数学归纳法加以证明证明:(1)当2n =时,等式成立:(2)当(2,)n k k k N *=≥∈时,等式成立,即1110101kk ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,那么111111111111010101010101k kk k ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭则当1n k =+时,等式成立。