「精品」河北省石家庄市2018届高三数学下学期4月一模考试试题文
河北省石家庄市2018届高考一模考试数学(理)试题(A)含解析AlUKlK

石家庄市2018届高中毕业班模拟考试(一)理科数学(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】故选A.2. 已知为虚数单位,,其中,则()A. B. C. 2 D. 4【答案】A【解析】,其中,解得,,故选3. 函数,其值域为,在区间上随机取一个数,则的概率是()A. B. C. D.【答案】B【解析】函数的值域为,即,则在区间上随机取一个数的概率.故选B.4. 点是以线段为直径的圆上的一点,其中,则()A. 1B. 2C. 3D. 4【答案】D【解析】故选5. ,满足约束条件:,则的最大值为()A. -3B.C. 3D. 4【答案】C【解析】依题意可画出可行域如下:联立,可得交点(2,-1),如图所示,当经过点(2,-1)时,z最大为3.故选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.6. 程序框图如图所示,该程序运行的结果为,则判断框中可填写的关于的条件是()A. B. C. D.【答案】C【解析】第一次运行,第二次运行,第三次运行,第四次运行,第五次运行,此时,输出25,故选C7. 南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:,),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为()A. 82平方里B. 83平方里C. 84平方里D. 85平方里【答案】C【解析】由题意可得:代入:则该三角形田面积为平方里故选8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】D【解析】由图可知,几何体为半圆柱挖去半球体几何体的表面积为故选9. 已知是定义在上的偶函数,且在上为增函数,则的解集为()A. B. C. D.【答案】B【解析】是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选10. 在中,,,则的最大值为()A. B. C. D.【答案】D【解析】有正弦定理可得,故当时,的最大值为.故选D.11. 过抛物线焦点的直线交抛物线于,两点,点在直线上,若为正三角形,则其边长为()A. 11B. 12C. 13D. 14【答案】B【解析】如图:设,则:,取中点,分别作垂直于直线,连接则有,相减可得:即故设则,解得故,解得故选12. 设,为两个平面直角坐标系,它们具有相同的原点,正方向到正方向的角度为,那么对于任意的点,在下的坐标为,那么它在坐标系下的坐标可以表示为:,.根据以上知识求得椭圆的离心率为()A. B. C. D.【答案】A【解析】则故可化为方程表示为椭圆化简得:代入方程得:,,,故故选点睛:本题主要考查了三角函数的计算问题,以平面直角坐标系为载体,新定义坐标系,建立两坐标之间的关系,代入化简,由题意中的椭圆求出的值,再次代入求出结果,计算量比较大,有一定的难度。
河北省石家庄市高三数学下学期4月一模考试试题 理-人教版高三全册数学试题

河北省石家庄市2018届高三数学下学期4月一模考试试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5,6,7}U =,{|3,}A x x x N =≥∈,则U C A =( ) A .{1,2} B .{3,4,5,6,7} C .{1,3,4,7} D .{1,4,7}2.已知i 为虚数单位,(1)2i x yi +=+,其中,x y R ∈,则x yi +=( ) A .22 B .2 C .2 D .43.函数()2(0)xf x x =<,其值域为D ,在区间(1,2)-上随机取一个数x ,则x D ∈的概率是( ) A .12 B .13 C .14 D .234.点B 是以线段AC 为直径的圆上的一点,其中2AB =,则AC AB ⋅=( ) A .1 B .2 C .3 D .45. x ,y 满足约束条件:11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .-3B .32C .3D .4 6.程序框图如图所示,该程序运行的结果为25s =,则判断框中可填写的关于i 的条件是( )A .4?i ≤B .4?i ≥C .5?i ≤D .5?i ≥7.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:2222221[()]42c a b S c a +-=-,a b c >>),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A .82平方里B .83平方里C .84平方里D .85平方里 8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .83π+B .84π+C .85π+D .86π+ 9.已知()f x 是定义在[2,1]b b -+上的偶函数,且在[2,0]b -上为增函数,则(1)(2)f x f x -≤的解集为( )A .2[1,]3- B .1[1,]3- C .[1,1]- D .1[,1]310.在ABC ∆中,2AB =,6C π=,则3AC BC 的最大值为( )A 7B .27C .37.711.过抛物线214y x =焦点F 的直线交抛物线于A ,B 两点,点C 在直线1y =-上,若ABC ∆为正三角形,则其边长为( )A .11B .12C .13D .14 12.设xOy ,''x Oy 为两个平面直角坐标系,它们具有相同的原点,Ox 正方向到'Ox 正方向的角度为θ,那么对于任意的点M ,在xOy 下的坐标为(,)x y ,那么它在''x Oy 坐标系下的坐标(',')x y 可以表示为:'cos sin x x y θθ=+,'cos sin y y x θθ=-.根据以上知识求得椭圆223'''5'10x y y -+-=的离心率为( )AD二、填空题:本大题共4小题,每题5分,共20分.13.命题p :01x ∃≥,200230x x --<的否定为 .14.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 . 15.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 .16.已知函数31()1x x f x x -+=-,ln ()xg x x =,若函数(())y f g x a =+有三个不同的零点1x ,2x ,3x (其中123x x x <<),则1232()()()g x g x g x ++的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知等比数列{}n a 的前n 项和为n S ,且满足122()n n S m m R +=+∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足211(21)log ()n n n b n a a +=+⋅,求数列{}n b 的前n 项和n T .18.四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD ∆为正三角形.(Ⅰ)点M 为棱AB 上一点,若//BC 平面SDM ,AM AB λ=,求实数λ的值; (Ⅱ)若BC SD ⊥,求二面角A SB C --的余弦值.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式; (Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在2(1)2(,]1010n n-(1,2,3,4,5)n =时,日平均派送量为502n +单. 若将频率视为概率,回答下列问题:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出甲、乙两种方案的日薪X 的分布列,数学期望及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:20.60.36=,21.4 1.96=,22.6 6.76=,23.411.56=,23.612.96=,24.621.16=,215.6243.36=,220.4416.16=,244.41971.36=)20.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,,M为椭圆上任意一点,当1290F MF ∠=时,12F MF ∆的面积为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线1AF ,2AF 分别与椭圆交于点B ,D ,设直线BD 的斜率为1k ,直线OA 的斜率为2k ,求证:12k k ⋅为定值.21.已知函数()()()xf x x b e a =+-,(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=.(Ⅰ)求a ,b ;(Ⅱ)若方程()f x m =有两个实数根1x ,2x ,且12x x <,证明:21(12)11m e x x e--≤+-.(二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()13πρθ-=,若直线l 与曲线C 相切;(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.23.[选修4-5:不等式选讲]已知函数()f x =R ;(Ⅰ)求实数m 的取值范围;(Ⅱ)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.答案一、选择题1-5: AABDC 6-10: CCDBD 11、12:BA 二、填空题13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙15. 22,0e e ⎛⎫- ⎪-⎝⎭三、解答题 17解:(1) 法一:由122()n n S m m R +=+∈得122()nn S m m R -=+∈,当当2n ≥时,12222nn n n a S S -=-=,即12(2)n n a n -=≥,又1122m a S ==+,当2m =-时符合上式,所以通项公式为12n n a -=. 法二:由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩,从而有2213322,4a S S a S S =-==-=, 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=. (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-,1111()(21)(21)22121n b n n n n ∴==-+--+,12111111(1)2335212121n n nT b b b n n n ∴=+++=-+-++-=-++. 18.(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM 平面ABCD=DM , 所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形, 又CD AB2=,所以M 为AB 的中点. 因为AB AM λ=,12λ∴=.(2)因为BC ⊥SD , BC ⊥CD , 所以BC ⊥平面SCD , 又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD , 平面SCD平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E , 则SE ⊥平面ABCD , 在Rt SEA 和Rt SED 中, 因为SA SD =,所以AE DE ==,又由题知45EDA ∠=, 所以AE ED ⊥所以1AE ED SE ===, 以下建系求解.以点E 为坐标原点,EA 方向为X 轴,EC 方向为Y 轴,ES 方向为Z 轴建立如图所示空间坐标系,则(0,0,0)E ,(0,0,1)S ,(1,0,0)A ,(1,2,0)B ,(0,2,0)C ,(1,0,1)SA =-,(0,2,0)AB =,(0,2,1)SC =-,(1,0,0)CB =,设平面SAB 的法向量1(,,)n x y z =,则110n SA n AB ⎧⋅=⎪⎨⋅=⎪⎩,所以020x z y -=⎧⎨=⎩,令1x =得1(1,0,1)n =为平面SAB 的一个法向量,同理得2(0,1,2)n =为平面SBC 的一个法向量,12121210cos ,5||||n n n n n n ⋅<>==⋅,因为二面角A SB C --为钝角, 所以二面角A SB C --余弦值为5-.19.解:(1)甲方案中派送员日薪y (单位:元)与送单数n 的函数关系式为: N ,100∈+=n n y , 乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y , (2)①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格: 单数 52 54 56 58 60 频率0.20.30.20.20.1所以X 甲的分布列为:X 甲152 154 156 158 160 P0.20.30.20.20.1所以()=1520.21540.31560.21580.21600.1155.4E X ⨯+⨯+⨯+⨯+⨯=甲,()()()()()222222=0.2152155.4+0.3154155.4+0.2156155.4+0.2158155.4+0.1160155.4=6.44S ⨯-⨯-⨯-⨯-⨯-甲,所以X 乙的分布列为:X 乙140 152 176 200 P0.50.20.20.1所以()=1400.51520.21760.22000.1=155.6E X ⨯+⨯+⨯+⨯乙,()()()()22222=0.5140155.6+0.2152155.6+0.2176155.6+0.1200155.6=404.64S ⨯-⨯-⨯-⨯-乙,②答案一:由以上的计算可知,虽然()()E X E X <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日工资收入波动相对较小,所以小明应选择甲方案. 答案二:由以上的计算结果可以看出,()()E X E X <乙甲,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题122221212224112c e a r r ar r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩,解得1a c ==,则21b =,∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x y C x y , 当直线1AF的斜率不存在时,设(1,2A -,则(1,)2B --, 直线2AF的方程为1)4y x =--代入2212x y +=,可得25270x x --= 275x ∴=,210y =-7(,510D -∴直线BD的斜率为1(10276(1)5k ==--,直线OA的斜率为22k =-,121()626k k ∴⋅=⋅-=-,当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-. 当直线1AF 、2AF 的斜率存在时,10±≠x设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得:22222200000[(1)2]422(1)0x y x y x y x ++++-+=,又220012x y +=,则220022y x =-,代入上述方程可得2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++ 000034(,)2323x y B x x +∴--++,设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x ---, ∴直线BD 的斜率为000000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+, 直线OA 的斜率为020y k x =, ∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e ⎛⎫-=-+-=⎪⎝⎭,又()()1x f x x b e a '=++-,所以1(1)1b f a e e'-=-=-+, 若1a e=,则20b e =-<,与0b >矛盾,故1a =,1b =. (Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-, (0)0,(1)0f f =-=, 设)(x f 在(-1,0)处的切线方程为)(x h ,易得,()1()11h x x e ⎛⎫=-+ ⎪⎝⎭,令()()()F x f x h x =-即()()()1()1111xF x x e x e ⎛⎫=+---+⎪⎝⎭,()1()2x F x x e e '=+-,当2x ≤-时,()11()20x F x x e e e'=+-<-< 当2x >-时,设()1()()2x G x F x x e e'==+-, ()()30x G x x e '=+>, 故函数()F x '在()2,-+∞上单调递增,又(1)0F '-=,所以当(),1x ∈-∞-时,()0F x '<,当()1,x ∈-+∞时,()0F x '>, 所以函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增, 故0)1()(=-≥F x F ,11()()f x h x ≥,设()h x m =的根为1x ',则111mex e'=-+-, 又函数()h x 单调递减,故111()()()h x f x h x '=≥,故11x x '≤, 设()y f x =在(0,0)处的切线方程为()y t x =,易得()t x x =, 令()()()()()11xT x f x t x x e x =-=+--,()()22x T x x e '=+-,当2x ≤-时,()()2220x T x x e '=+-<-<, 当2x >-时,故函数()T x '在()2,-+∞上单调递增,又(0)0T '=,所以当(),0x ∈-∞时,()0T x '<,当()0,x ∈+∞时,()0T x '>, 所以函数()T x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,0)0()(=≥T x T , 22()()f x t x ≥ ,设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故222()()()t x f x t x '=≥,故22x x '≥, 又11x x '≤,2121(12)1111me m e x x x x m e e -⎛⎫''-≤-=--+=+ ⎪--⎝⎭. 选作题22(1)由题意可知直线l 的直角坐标方程为32y x =+,曲线C 是圆心为(3,1),半径为r 的圆,直线l 与曲线C 相切,可得:331222r ⋅-+==;可知曲线C 的方程为22(3)(1)4x y -+-=,所以曲线C 的极坐标方程为223cos 2sin 0ρρθρθ--=,即4sin()3ρθπ=+.(2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>) 6sin 21πON OM S MON =∆.当12πθ=时, 32+≤∆MON S ,所以△MON面积的最大值为223. 【解析】(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-,去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-; (2)由(1)可知2229a b c ++=,所以22212315a b c +++++=, 222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++ 22222222222221313239312132315155b ac a c b a b a c b c ++++++++++++++++++=≥=, 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.答案一、选择题 (A 卷答案)1-5AABDC 6-10CCDBD 11-12 BA (B 卷答案)1-5BBADC 6-10CCDAD 11-12 AB 二、填空题13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙15. 22,0e e ⎛⎫-⎪-⎝⎭三、解答题(解答题仅提供一种或两种解答,其他解答请参照此评分标准酌情给分) 17解:(1) 法一:由122()n n S m m R +=+∈得122()n n S m m R -=+∈………………2分当当2n ≥时,12222nn n n a S S -=-=,即12(2)n n a n -=≥………………4分又1122m a S ==+,当2m =-时符合上式,所以通项公式为12n n a -=………………6分 法二:由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩ ………………2分从而有2213322,4a S S a S S =-==-= ………………4分 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=………………6分 (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-…………………8分1111()(21)(21)22121n b n n n n ∴==-+--+………………………10分12111111(1)2335212121n n nT b b b nn n ∴=+++=-+-++-=-++……………12分18(1)因为//BC 平面SDM,BC ⊂平面ABCD,平面SDM 平面ABCD=DM,所以DM BC //……………………2分因为DC AB //,所以四边形BCDM 为平行四边形,又,CD AB 2=,所以M 为AB 的中点。
河北省2018届高三一模数学试卷(含答案)

高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 复数(2)i i +的虚部为2. 设函数2log ,0()4,0x x x f x x >⎧=⎨≤⎩,则((1))f f -= 3. 已知{||1|2,}M x x x R =-≤∈,1{|0,}2x P x x R x -=≥∈+,则M P =4. 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为 5. 已知无穷数列{}n a 满足112n n a a +=*()n N ∈,且21a =,记n S 为数列{}n a 的前n 项和, 则lim n n S →∞= 6. 已知,x y R +∈,且21x y +=,则xy 的最大值为7. 已知圆锥的母线10l =,母线与旋转轴的夹角30α︒=,则圆锥的表面积为 8. 若21(2)n x x +*()n N ∈的二项展开式中的第9项是常数项,则n = 9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是11. 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =; ③1x y π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3x y =C. 13y x = D. lg ||y x = 14. 设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要15. 如图,已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A. 221255x y +=B. 2213010x y += C. 2213616x y += D. 2214525x y +=16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b +、ab 按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列B. 可能是等差数列,但不可能是等比数列C. 不可能是等差数列,但可能是等比数列D. 不可能是等差数列,也不可能是等比数列三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱柱111ABC A B C -中,1AB =,12BB =,求:(1)异面直线11B C 与1A C 所成角的大小;(2)四棱锥111A B BCC -的体积;18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距402海里的位置B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+ (其中26sin 26θ=,090θ︒︒<<)且与点A 相距1013海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由;19. 已知点1F 、2F 为双曲线222:1y C x b -=(0)b >的左、右焦点,过2F 作垂直于x 轴的 直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求 12PP PP ⋅的值;20. 设12()2x x a f x b+-+=+,,a b 为实常数; (1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c , 都有2()33f x c c <-+成立?若存在,试找出所有这样的D ;若不存在,说明理由;21. 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和; (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式;(3)在(2)的条件下,设n n na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;参考答案一. 填空题1. 22. 2-3. [1,1]-4. 345. 46. 187. 75π8. 129. 833 10. 96 11. ②③ 12. 423二. 选择题13. C 14. B 15. C 16. D三. 解答题17.(1)5arccos 10;(2)33; 18.(1)155;(2)357d =<,会进入警戒水域;19.(1)2212y x -=;(2)29; 20.(1)(1)(1)f f -≠-;(2)12a b =⎧⎨=⎩,12a b =-⎧⎨=-⎩;(3)当121()22x x f x +-+=+,D R =; 当121()22x x f x +--=-,(0,)D =+∞,25(,log ]7D =-∞;21.(1)12n b =;(2)1n a n =+;(3)略;。
【数学】河北省石家庄市2018届高三下学期一模考试数学(理)(A卷)试题 扫描版含答案

石家庄市2017-2018学年高中毕业班第一次模拟考试试题理科数学答案一、选择题(A 卷答案)1-5AABDC 6-10CCDBD 11-12 BA(B 卷答案)1-5BBADC 6-10CCDAD 11-12 AB二、填空题13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙15. 22,0e e ⎛⎫- ⎪-⎝⎭三、解答题(解答题仅提供一种或两种解答,其他解答请参照此评分标准酌情给分) 17解:(1)法一:由122()n n S m m R +=+∈得122()n n S m m R -=+∈………………2分当当2n ≥时,12222n n n n a S S -=-=,即12(2)n n a n -=≥………………4分 又1122m a S ==+,当2m =-时符合上式,所以通项公式为12n n a -=………………6分 法二: 由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩ ………………2分从而有2213322,4a S S a S S =-==-= ………………4分 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=………………6分 (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-…………………8分1111()(21)(21)22121n b n n n n ∴==-+--+………………………10分 12111111(1)2335212121n n n T b b b nn n ∴=+++=-+-++-=-++……………12分18(1)因为//BC 平面SDM,BC ⊂平面ABCD,平面SDM 平面ABCD=DM,所以DM BC //……………………2分因为DC AB //,所以四边形BCDM 为平行四边形,又,CD AB 2=,所以M 为AB 的中点。
2018届河北省石家庄市高三下学期一模考试理科数学试题及答案 精品

2018年石家庄市高中毕业班第一次模拟考试高三数学(理科答案) 一、 选择题(A 卷)1-5 CBACD 6-10 BADCB 11-12BA 一、选择题(B 卷)1-5 DBADC 6-10 BACDB 11-12BA 二、 填空题14 815 []1,2- 16 2a π三、 解答题(阅卷时发现的正确解答,请教师参阅此评分标准酌情给分) 17解:(1)解法1∵11(),n n a S n N λ*+=+∈ ∴11n n a S λ-=+(2)n ≥∴1n n n a a a λ+-=,即1(1)n n a a λ+=+(2),10n λ≥+≠, 又1211,11,a a S λλ==+=+∴数列{}n a 为以1为首项,公比为1λ+的等比数列,…………………………………2分 ∴23(1)a λ=+, ∴24(1)1(1)3λλ+=+++,整理得2210λλ-+=,得1λ= (4)分∴12n n a -=,13(1)32n b n n =+-=- (6)分解法2:∵111,1(),n n a a S n N λ*+==+∈∴2111,a S λλ=+=+2321(11)121,a S λλλλλ=+=+++=++ ∴24(1)1213λλλ+=++++,整理得2210λλ-+=,得1λ= (2)分∴11(),n n a S n N *+=+∈ ∴11n n a S -=+(2)n ≥∴1n n n a a a +-=,即12n n a a +=(2)n ≥, 又121,2a a ==∴数列{}n a 为以1为首项,公比为2的等比数列,………………………………………4分 ∴12n n a -=,13(1)32n b n n =+-=-………………………………………………………………………6分 (2)1(32)2n n n a b n -=-g ∴121114272(32)2n n T n -=⋅+⋅+⋅++-⋅L L L ………………………① ∴12312124272(35)2(32)2n nn T n n -=⋅+⋅+⋅++-⋅+-⋅L ………②…………8分 ① —②得12111323232(32)2n n n T n --=⋅+⋅+⋅++⋅--⋅L12(12)13(32)212n nn -⋅-=+⋅--⋅-…………………………………10分整理得:(35)25n n T n =-⋅+…………………………………………………………12分18解:(Ⅰ)三个电子元件能正常工作分别记为事件,,A B C ,则112(),(),()223p A p B p C ===.依题意,集成电路E 需要维修有两种情形: ①3个元件都不能正常工作,概率为11111()()()()22312p p ABC p A p B p C ===⨯⨯=; …………2分②3个元件中的2个不能正常工作,概率为2()()()()p p ABC ABC ABC p ABC p ABC p ABC =++=++11111111241223223223123=⨯⨯+⨯⨯+⨯⨯== ……………5分所以,集成电路E 需要维修的概率为1211512312p p +=+=. ……………6分(Ⅱ)设ξ为维修集成电路的个数,则5(2,)12B ξ:,而100X ξ=,2257(100)()()(),0,1,2.1212k k kP X k P k C k ξ-=====…………9分X 的分布列为:………………10分4935252500100200144721443EX ∴=⨯+⨯+⨯=或52501001002123EX E ξ==⨯⨯=. …………12分 19解:(1)证明一连接AC BD ,交于点F ,在平面PCA 中做EF ∥PC 交PA 于E ,因为PC ⊄平面BDE ,EF ⊂平面BDE PC ∥平面BDE ,---------------2AD 因为∥,BC 1,3AF AD FCBC ==所以因为EF ∥PC ,1=.3AE AF EP FC =所以-------------4证明二在棱PA 上取点E ,使得13AE EP=,------------2连接AC BD ,交于点F ,AD 因为∥,BCC1,2,AF AD FC BC AE AF EP FC ===所以所以 所以,EF ∥PC因为PC ⊄平面BDE ,EF ⊂平面BDE所以PC ∥平面BDE -------------4(2)取BC 上一点G使得BG =连结DG ,则ABGD 为正方形.过P 作PO ⊥平面ABCD ,垂足为O . 连结,,,OA OB OD OG .0,60AP AD AB PAB PAD ==∠=∠=,所以PAB ∆和PAD ∆都是等边三角形,因此PA PB PD ==, 所以OA OB OD ==,即点O 为正方形ABGD 对角线的交点,---------------7(或取BC 的中点G ,连结DG ,则ABGD 为正方形. 连接,AG BD 交于点O ,连接PO ,0,60AP AD AB PAB PAD ==∠=∠=,00,,,90,90.PAB PAD PA PB PD OD OB POB POD POB POD POA POB POA PO ABCD ∆∆===∆≅∆∠=∠=∆≅∆∠=⊥所以和都是等边三角形,因此又因为所以得到,同理得,所以平面-----------7),,OG OB OP 因为两两垂直,以O 坐标原点,分别以,,OG OB OP u u u u r u u u r u u u r的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系O xyz -.000001100010010100O P A B D G --则(,,),(,,),(,,),(,,),(,,)(,,)设棱BC 的长为t ,则 ,1,0)C ,(1,0,1),(0,1,1),(,1,1),(0,1,1)22PA PB PC PD =--=-=--=--u u u r u u u r u u u r u u u r --------------9,111(,,),00,001,(1,1,1)PAB x y z PA x z y z PB x PAB =⎧=--=⎧⎪⎨⎨-==⎩⎪⎩=-=-u u u r g u u u r g 设平面的法向量则即不妨令可得为平面的一个法向量.m m m m-----------10222(,,),0(1)0,001,(1,1,1)PCD x y z PC y z PD y z y PCD t =⎧=+-=⎪⎨=⎪⎪⎩--=⎩==--u u u r g u u u r g 设平面的法向量则即不妨令可得为平面的一个法向量.n n n n-----------110,=g m n 解得t=BC 即棱的长为20解:(1)由题意可知圆心到1(,0)2的距离等于到直线12x =-的距离,由抛物线的定义可知,圆心的轨迹方程:22y x = (4)分(2)设00(,)P x y ,(0,),(0,)B b C c , 直线PB 的方程为:000()0y b x x y x b --+=, 又圆心(1,0)到PB 的距离为1,1=,整理得:2000(2)20x b y b x -+-=, (6)分同理可得:2000(2)20x c y c x -+-=,所以,可知,b c是方程2000(2)20x x y x x -+-=的两根,所以:00002,,22y x b c bc x x --+==--……………………8分依题意0bc <,即02x >,则22200020448()(2)x y x b c x +--=-,因为2002y x =,所以:0022x b c x -=-,………………10分所以00014(2)482(2)S b c x x x =-=-++≥-, 当04x =时上式取得等号,所以PBC∆面积最小值为8.………………………12分 解二:(2)设00(,)P x y ,直线PB :00()y y k x x -=-与圆D 相切,则1=,整理得:22200000(2)2(1)10x x k x y k y -+-+-=,……………………6分20001212220002(1)1,22x y y k k k k x x x x--+=-=--,………………………8分依题意02x > 那么010020120()()B C y y y k x y k x k k x -=---=-,由韦达定理得:12022k k x -=-,则022B Cx y y x -=-,…………………10分所以00014()(2)482(2)B C S y y x x x =-=-++≥-当04x =时上式取得等号,所以PBC∆面积最小值为8.…………………12分 21. 解:(1)由()22ln f x x a x x=++,得()'222af x x x x =-+.因为()f x 在区间[]2,3上单调递增,则()'2220af x x x x=-+≥在[]2,3上恒成立,………………2分即222a x x≥-在[]2,3上恒成立,设22()2g x x x =-,则22()40g x x x '=--<,所以()g x 在[]2,3上单调递减,故max ()(2)7g x g ==-,所以7a ≥-. (4)分(2) 解法一:12121212()()11()()f x f x k f x f x x x x x ''-''>⇔>⇔->--而()()12f x f x ''-=122211222222a a x x x x x x⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x ax x x x x x +-⋅+-故欲证()()''1212f x f x x x ->- ,只需证()12221212221x x ax x x x ++->…………………6分即证()1212122x x a x x x x +<+成立∵()121212122x x x x x x x x ++>…………………8分设t =,()()240u t t t t=+>,则()242u t t t'=- 令()0u t '=得t =,列表如下:()4u t a ≥=>≥ (10)分 ∴()1212122x x x x a x x ++> ∴()()''1212f x f x x x ->-, 即1212()()1f x f x x x ''->-∴当4a ≤时,1k >…………………12分解法二:对于任意两个不相等的正数1x 、2x 有()1212122x x x x x x ++>12x x=12x x3≥=3 4.5a >> …………………8分∴ ()12221212221x x a x x x x ++-> 而()'222a f x x x x =-+∴()()12f x f x ''-=122211222222a a x x x x x x⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x ax x x x x x +-⋅+-12x x >-…………………10分故:()()''1212f x f x x x ->- , 即1212()()1f x f x x x ''->- ∴当4a ≤时,1k >………12分22. 证明:(1)连结AB ,AC , ∵AD 为M e 的直径,∴090ABD ∠=,∴AC为Oe 的直径,∴0=90CEF AGD ∠=∠,∵DFG CFE ∠=∠,∴ECF GDF ∠=∠, ∵G 为弧BD 中点,∴DAG GDF ∠=∠, ∴DAG ECF ∠=∠,ADG CFE ∠=∠ ∴CEF ∆∽AGD ∆,……………3分 ∴CE AG EFGD=,∴GD CE EF AG ⋅=⋅。
高三数学河北省石家庄市2018届高三下学期一模考试试题(A卷)理科数学及参考答案及参考答案

河北省石家庄市2018届高三下学期一模考试数学试题(理)(A卷)【参考答案】1-5AABDC 6-10CCDBD 11-12 BA13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙15. 16. 22,0e -e ⎛⎫- ⎪⎝⎭17.解:(1)法一:由122()n n S m m R +=+∈得122()n n S m m -=+∈R ,当当2n ≥时,12222n n n n a S S -=-=,即12(2)n n a n -=≥, 又1122m a S ==+,当2m =-时符合上式,所以通项公式为12n n a -=, 法二: 由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩ ,从而有2213322,4a S S a S S =-==-=, 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=, (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-,1111()(21)(21)22121n b n n n n ∴==-+--+, 12111111(1)2335212121n n n T b b b n n n ∴=+++=-+-++-=-++. 18.解:(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM 平面ABCD =DM ,所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形,又,CD AB 2=,所以M 为AB 的中点,因为AB AM λ=,12λ∴=; (2)因为BC ⊥SD , BC ⊥CD ,所以BC ⊥平面SCD ,又因为BC ⊂平面ABCD ,所以平面SCD ⊥平面ABCD ,平面SCD 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD ,在Rt SEA 和Rt SED 中,因为SA SD =,所以AE DE ==,又由题知45EDA ∠=,所以AE ED ⊥所以1AE ED SE ===,以下建系求解.以点E 为坐标原点,EA 方向为X 轴,EC 方向为Y 轴,ES 方向为Z 轴建立如图所示空间坐标系,则(0,0,0)E ,(0,0,1)S ,(1,0,0)A ,(1,2,0)B ,(0,2,0)C ,(1,0,1)SA =-,(0,2,0)AB =,(0,2,1)SC =-,(1,0,0)CB =,设平面SAB 的法向量1(,,)n x y z =,则1100n SA n AB ⎧⋅=⎪⎨⋅=⎪⎩,所以020x z y -=⎧⎨=⎩, 令1x =得1(1,0,1)n =为平面SAB 的一个法向量,同理得2(0,1,2)n =为平面SBC 的一个法向量, 12121210cos ,||||n n n n n n ⋅<>==⋅,因为二面角A SB C --为钝角,所以二面角A SB C --余弦值为5-. 19.解:(1)甲方案中派送员日薪y (单位:元)与送单数n 的函数关系式为: N ,100∈+=n n y ,乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y . ①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:所以X 甲的分布列为:所以()=1520.21540.31560.21580.21600.1155.4E X ⨯+⨯+⨯+⨯+⨯=甲, ()()()()()222222=0.2152155.4+0.3154155.4+0.2156155.4+0.2158155.4+0.1160155.4=6.44.S ⨯-⨯-⨯-⨯-⨯-甲所以X 乙的分布列为: 所以()=1400.51520.21760.22000.1=155.6E X ⨯+⨯+⨯+⨯乙.()()()()22222=0.5140155.6+0.2152155.6+0.2176155.6+0.1200155.6=404.64.S ⨯-⨯-⨯-⨯-乙②答案一: 由以上的计算可知,虽然()()E X E X <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.答案二:由以上的计算结果可以看出,()()E X E X <乙甲,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题122221212224112c e a r r a r r cr r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩,解得1a c ==,则21b =, ∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x y C x y , 当直线1AF 的斜率不存在时,设(1,2A -,则(1,2B --, 直线2AF的方程为(1)4y x =--代入2212x y +=,可得25270x x --= 275x ∴=,210y =-则7(,510D - ∴直线BD的斜率为1(1027(1)5k -==--,直线OA的斜率为22k =-121(6k k ∴⋅==-, 当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-. 当直线1AF 、2AF 的斜率存在时,10±≠x设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得: 22222200000[(1)2]422(1)0x y x y x y x ++++-+=,又220012x y +=,则220022y x =-,代入上述方程可得 2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++ 000034(,)2323x y B x x +∴--++ 设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x --- , ∴直线BD 的斜率为000000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+, 直线OA 的斜率为020y k x =, ∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e ⎛⎫-=-+-= ⎪⎝⎭, 又()()1x f x x b e a '=++-,所以1(1)1b f a e e'-=-=-+, 若1a e=,则20b e =-<,与0b >矛盾,故1a =,1b =; (Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-, (0)0,(1)0f f =-=, 设)(x f 在(-1,0)处的切线方程为)(x h ,易得,()1()11e h x x ⎛⎫=-+ ⎪⎝⎭,令()()()F x f x h x =-即()()()1()1e 111e x F x x x ⎛⎫=+---+ ⎪⎝⎭,()1()2e ex F x x '=+-, 当2x ≤-时,()11()2e 0e ex F x x '=+-<-< 当2x >-时,设()1()()2e ex G x F x x '==+-, ()()3e 0x G x x '=+>, 故函数()F x '在()2,-+∞上单调递增,又(1)0F '-=,所以当(),1x ∈-∞-时,()0F x '<,当()1,x ∈-+∞时,()0F x '>,所以函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增, 故0)1()(=-≥F x F ,11()()f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-, 又函数()h x 单调递减,故111()()()h x f x h x '=≥,故11x x '≤,设()y f x =在(0,0)处的切线方程为()y t x =,易得()t x x =令()()()()()1e 1x T x f x t x x x =-=+--,()()2e 2xT x x '=+-, 当2x ≤-时,()()2220x T x x e '=+-<-<当2x >-时,故函数()T x '在()2,-+∞上单调递增,又(0)0T '=,所以当(),0x ∈-∞时,()0T x '<,当()0,x ∈+∞时,()0T x '>,所以函数()T x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增, 0)0()(=≥T x T ,22()()f x t x ≥ ,设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故222()()()t x f x t x '=≥,故22x x '≥,又11x x '≤,2121e (12e)111e 1e m m x x x x m -⎛⎫''-≤-=--+=+ ⎪--⎝⎭. 选作题22.解:(1)由题意可知直线l的直角坐标方程为2y =+, 曲线C是圆心为,半径为r 的圆,直线l 与曲线C 相切,可得:2r =;可知曲线C的方程为22((1)4x y +-=,所以曲线C的极坐标方程为2cos 2sin 0ρθρθ--=, 即4sin()3ρθπ=+ ; (2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>)6πS MON =∆ ,, 当12πθ=时, 32+≤∆MO N S , 所以△MON面积的最大值为2+.23. 解:(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-, 去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-;(2)由(1)可知2229a b c ++=,所以22212315a b c +++++=,222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++22222221313239312132315155b a c a c b a b a c b c ++++++++++++++++++=≥= 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.。
2018年4月石家庄市一模数学试卷及答案

Word资料Word资料Word资料Word资料Word资料Word资料Word 资料2018年初中毕业班教学质量检测数学试题参考答案及评分参考说明:1.在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分. 3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分) 二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.)19.(23,23-),(1009,0), 17.12-18. 6π三、解答题(本大题有7个小题,共68分)20.解:(1)原式=ab b a ab -+++1=1++b a …………………………………………………………(2分)∵4=+b a ,∴原式=4+1=5.……………………………………………………(4分) (2)∵b a b ab a 22222+++-=)(2)(2b a b a ++-, ………………………(6分) 由题意得,42)(2⨯+-b a =17,∴2)(b a -=9,∴b a -=±3.……………………………………………………………………(8分)Word 资料21.(1)40;………………………………………………………………………(1分)补全图形如图1所示:………………………………………………………(3分)(2)90,90;……………………………………………………………………(5分) (3)列表法:……………………………………………………………………(7分)∵第二象限的点有(−2,2)和(−1,2)奖项祖冲之奖刘徽奖赵爽奖 杨辉奖图1Word 资料∴P (点在第二象限)=92……………………………………………………(9分)22.解:(1)如图2F ⊥BD ,垂足为F . ……………………………………(1分)∵AC ⊥BD , ∴∠ACB=∠FB=90°;在RtFB 中,∠1+∠3=90°;B ⊥AB ,∴∠1+∠2=90°,∴∠2=∠3; ……………………………………………………………………(2分) 在△ACB 和△∴△ACB ≌△(AAS );∴F=BC ,……………………………………………………………………(4分)∵AC ∥DE 且CD ⊥AC ,AE ⊥DE ,∴CD=AE=1.8;…………………………………………………………………(5分) ∴BC=BD -CD=3-1.8=1.2, ∴F=1.2到BD 的距离是1.2m .………………………………………(6分)HD 图2Word 资料(2)由(1)知:△ACB ≌△∴BF=AC=2m ,………………………………………………………………(7分)H ⊥DE ,垂足为H . ∵F ∥DE,……………………………………………………(8分)∴H=BD -BF=3-2=1,即到地面的距离是1m .……………………(9分)23.解:(1)此时点A 在直线l 上; …………………………………………………(1分)∵BC =AB =2,点O 为BC 中点,∴点B (−1,0),A (−1,2),……………………………………………………(3分) 把点A 的横坐标x=−1代入解析式42+=x y ,得4)1(2+-⨯=y =2,等于点A 的纵坐标2,∴此时点A 在直线l 上. …………………………………………………………(5分) (2)由题意可得,点D (1,2),及点M (−2,0), 当直线l 经过点D 时,设l 的解析式为t kx y +=(k ≠0),∴⎩⎨⎧=+=+-202t k t k ,解得⎪⎪⎩⎪⎪⎨⎧==3432t k ,…………………………………………………(7分)Word 资料∴当直线l 与AD 边有公共点时,t 的取值围是34≤t ≤4. ………………(9分) 24.解:(1)5 ………………………………(1分)(2)设AE =x ,∵AB =4,∴BE =4﹣x ,在矩形ABCD 中,根据折叠的性质知:Rt △FDE ≌Rt △ADE ,∴ FE =AE =x ,FD =AD =BC =3,∴ BF =BD ﹣FD =5﹣3=2, 在Rt △BEF 中,根据勾股定理,得FE 2+BF 2=BE 2,即x 2+4=(4﹣x )2,解得:x =32, ∴AE 的长为32. ……………………………………………(4分) (3)存在, ……………………………………………(5分)如图3,延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,则点P 即为所求(画出点P 即可). ………………………………(6分)此时有:PC =PG ,∴PF +PC =GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH ∥DC ,∴△BFH ∽△BDC , A E BC D F G P H 图3Word 资料 ∴FH BF BH DC BD BC ==,即2453FH BH ==, ∴8655FH BH ==,, ………………………………………………………(8分) ∴GH =BG +BH 6213,55=+= 在Rt △GFH 中,根据勾股定理,得∴GF === 即PF +PC 的最小值为…………………………………………………(10分) 25.解:(1)设b kx q +=(k ,b 为常数且k ≠0),当x =2时,q =12,当x =4时,q =10,代入解析式得,⎩⎨⎧=+=+104122b k b k ,解得:⎩⎨⎧=-=141b k , …………………………………………………(2分) ∴14+-=x q . ……………………………………………………………………(3分)(2)当产量小于或等于市场需求量时,有p ≤q , ∴821+x ≤14+-x ,解得x ≤4, ………………………………………………(5分) 又2≤x ≤10,∴2≤x ≤4.…………………………………………………………(6分)Word 资料(3)①当产量大于市场需求量时,可得4<x ≤10,由题意得,厂家获得的利润是:p qx y 2-= ………………………………………………………………………(7分)=16132-+-x x =4105)213(2+--x .……………………………………………………………(9分) ②∵当x ≤213时,y 随x 的增加而增加, 又∵产量大于市场需求量时,有4<x ≤10,∴当4<x ≤213时,厂家获得的利润y 随销售价格x 的上涨而增加.……(11分)26.解:【发现】(1)3π.………………………………………………………………………(1分) (2)设⊙P 半径为r ,则有r =4-3=1, 当t =2时,如图4,点N 与点A∴ PA =r =1,设MP 与AB 相交于点Q ,在Rt △∵∠OAB =30°,∠MPN =60°,Word 资料 ∵∠PQA =90°.∴11,22PQ PA ==∴cos30AQ PA =︒=g∴111222PQA S PQ AQ ==⨯=V g 即重叠部分的面积为83.………………………………………………(4分) 【探究】: ① 如图5,当⊙P 与直线AB 相切于点C连接PC ,则有PC ⊥AB ,PC =r =1,∵∠OAB =30°,∴AP =2,∴OP =OA -AP =3-2=1;∴点P 的坐标为(1,0);…………(6② 如图6,当⊙P 与直线OB 相切于点D 连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD =PD OP,OP =33230cos 1=ο图6∴点P的坐标为(332,0);………(8分)③如图7,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP=332;∴点P的坐标为(-332,0)……………………………………………(10分)【拓展】t的取值围是2 <t≤3,4≤t<5 ………………………………………(12分)(提示:当点N运动到与点A重合时,¼MN与Rt△ABO的边有一个公共点,此时t=2 ;当t>2 直到⊙P运动到与AB相切时(t=3 ),¼MN与Rt △ABO的边有两个公共点,∴2 <t≦3 . 当⊙P运动到PM与OB重合时,¼MN与Rt△ABO的边有两个公共点,此时t=4 ;直到⊙P运动到点N与点O重合时,¼MN与Rt△ABO的边有一个公共点,此时t=5;∴4 ≦t<5. )xWord资料。
河北省石家庄市2018届高三毕业班模拟考试(二)数学(文)试题Word版含答案

石家庄市2018届高中毕业班模拟考试(二)
文科数学
第Ⅰ卷(共60分)
一、选择题:本大题共
12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的
. 1.已知集合
2|log (2)A x y x ,|33,B x x x R ,则A B ()A .(2,3)B .[2,3)C .(3,)D .(2,
)2.若复数z 满足
(1)2z i i ,其中i 为虚数单位,则共轭复数z ()A .1i B .1i C .1i D .
1i 3.已知命题
p :13x ,q :31x ,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件 D .既不充分也不必要条件
4.函数2sin ()
1x f x x 的部分图像可能是()
5.已知双曲线22221x
y a
b (0a ,0b )与椭圆221124x y 有共同焦点,且双曲线的一条渐近线方程为3y
x ,则该双曲线的方程为()A .221412x y B .22
1124x y C .22
162x y D .22
1
26x y 6.三国时期吴国的数学家创造了一副“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示“勾股圆方图”中由四个全等的正三角形(直角边长之比为1:3)围成的一个大正方形,中间部分是一个小正方形,如果在大正方形内随机取一点,则此点取自中间
的小正方形部分的概率是()
A .32
B .3
4C .3
12D .314
7.执行如图所示的程序框图,则输出的S 值为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品资料 值得拥有 1 河北省石家庄市2018届高三数学下学期4月一模考试试题 文 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1,2,3,4,5,6,7}U,{|3,}AxxxN,则UCA( ) A.{1,2} B.{3,4,5,6,7} C.{1,3,4,7} D.{1,4,7} 2.复数121ii( ) A.i B.i C.132i D.332i 3.已知四个命题: ①如果向量a与b共线,则ab或ab; ②3x是3x的必要不充分条件; ③命题p:0(0,2)x,200230xx的否定p:(0,2)x,2230xx; ④“指数函数xya是增函数,而1()2xy是指数函数,所以1()2xy是增函数” 此三段论大前提错误,但推理形式是正确的. 以上命题正确的个数为( ) A.0 B.1 C.2 D.3
4.若数列{}na满足12a,111nnnaaa,则2018a的值为( )
A.2 B.-3 C.12 D.13 5.函数()2(0)xfxx,其值域为D,在区间(1,2)上随机取一个数x,则xD的概率是( ) A.12 B.13 C.14 D.23 6. 程序框图如图所示,该程序运行的结果为25s,则判断框中可填写的关于i的条件是( ) 精品资料 值得拥有
2 A.4?i B.4?i C.5?i D.5?i 7. 南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,
开方得积.”(即:2222221[()]42cabSca,abc),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( ) A.84平方里 B.108平方里 C.126平方里 D.254平方里 8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )
A.23 B.43 C.2 D.83 9.设()fx是定义在[2,3]bb上的偶函数,且在[2,0]b上为增函数,则(1)(3)fxf的解集为( ) A.[3,3] B.[2,4] C.[1,5] D.[0,6]
10.抛物线C:214yx的焦点为F,其准线l与y轴交于点A,点M在抛物线C上,当2MAMF时,AMF的面积为( ) 精品资料 值得拥有 3 A.1 B.2 C.22 D.4 11.在ABC中,2AB,6C,则3ACBC的最大值为( ) A.7 B.27 C.37 D.47 12.已知1F,2F分别为双曲线22221(0,0)xyabab的左焦点和右焦点,过2F的直线l与双曲线的右支交于A,B两点,12AFF的内切圆半径为1r,12BFF的内切圆半径为2r,若122rr,则直线l的斜率为( ) A.1 B.2 C.2 D.22 二、填空题:本大题共4小题,每题5分,共20分. 13.设向量(1,2)am,(1,1)bm,若ab,则m .
14.x,y满足约束条件:11yxxyy,则2zxy的最大值为 . 15.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 . 16.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分 17.已知{}na是公差不为零的等差数列,满足37a,且2a、4a、9a成等比数列. (Ⅰ)求数列{}na的通项公式;
(Ⅱ)设数列{}nb满足1nnnbaa,求数列1nb的前n项和nS. 18.四棱锥SABCD的底面ABCD为直角梯形,//ABCD,ABBC,222ABBCCD,SAD为正三角形. 精品资料 值得拥有 4 (Ⅰ)点M为棱AB上一点,若//BC平面SDM,AMAB,求实数的值; (Ⅱ)若BCSD,求点B到平面SAD的距离. 19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元. (Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式; (Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格: 日均派送单数 52 54 56 58 60 频数(天) 20 30 20 20 10 回答下列问题: ①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出这100天中甲、乙两种方案的日薪X平均数及方差; ②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:20.60.36,21.41.96,22.66.76,23.411.56,23.612.96,24.621.16,215.6243.36,220.4416.16,244.41971.36
)
20.已知椭圆C:22221(0)xyabab的左、右焦点分别为1F,2F,且离心率为22,M为椭圆上任意一点,当1290FMF时,12FMF的面积为1. (Ⅰ)求椭圆C的方程; (Ⅱ)已知点A是椭圆C上异于椭圆顶点的一点,延长直线1AF,2AF分别与椭圆交于点B,D,精品资料 值得拥有 5 设直线BD的斜率为1k,直线OA的斜率为2k,求证:12kk为定值. 21.已知函数()()()xfxxbea,(0)b,在(1,(1))f处的切线方程为(1)10exeye.
(Ⅰ)求a,b; (Ⅱ)若0m,证明:2()fxmxx. (二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,曲线C的参数方程为3cos1sinxryr(0r,为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin()13,若直线l与曲线C相切; (Ⅰ)求曲线C的极坐标方程; (Ⅱ)在曲线C上取两点M,N与原点O构成MON,且满足6MON,求面积MON的最大值. 23.选修4-5:不等式选讲 已知函数()23fxxxm的定义域为R; (Ⅰ)求实数m的取值范围; (Ⅱ)设实数t为m的最大值,若实数a,b,c满足2222abct,求222
111
123abc的最小值. 精品资料 值得拥有
6 答案 一、选择题 1-5: ACDBB 6-10: CABBB 11、12:DD 二、填空题 13. 13 14. 3 15. 乙 16. 23 三、解答题
17. 解:(1)设数列na的公差为d,且0d由题意得242937aaaa,
即21(7)(7)(76)27dddad,解得13,1da, 所以数列na的通项公式32nan. (2)由(1)得1(32)(31)nnnbaann 1111()33231nbnn
,
12111111111......(1)34473231nnSbbbnn
11(1)33131nnn.
18.(1)因为//BC平面SDM, BC
平面ABCD,
平面SDM 平面ABCD=DM, 所以DMBC//, 因为DCAB//,所以四边形BCDM为平行四边形,又CDAB2,所以M为AB的中点. 因为ABAM, 12
. 精品资料 值得拥有
7 (2)因为BCSD, BCCD, 所以BC平面SCD, 又因为BC平面ABCD, 所以平面SCD平面ABCD, 平面SCD平面ABCDCD, 在平面SCD内过点S作SE直线CD于点E,则SE平面ABCD, 在RtSEA和RtSED中,
因为SASD,所以2222AESASESDSEDE, 又由题知45EDA, 所以AEED, 由已知求得2AD,所以1AEEDSE,
连接BD,则111133SABDV三棱锥,
又求得SAD的面积为32, 所以由BASDSABDVV三棱锥三棱锥点B 到平面SAD的距离为233. 19.解:(1)甲方案中派送员日薪y(单位:元)与送货单数n的函数关系式为: N,100nny, 乙方案中派送员日薪y(单位:元)与送单数n的函数关系式为:
N),55(,52012N),55(,140nnnnn
y,