基于机器视觉的表面缺陷检测系统设计.

合集下载

基于机器视觉的表面缺陷检测研究综述

基于机器视觉的表面缺陷检测研究综述

研究现状与发展趋势
1、研究现状
1、研究现状
基于机器视觉的表面缺陷检测技术在许多领域都得到了广泛的应用。在智能 制造领域,表面缺陷检测技术被广泛应用于半导体芯片、太阳能电池、汽车零部 件等产品的检测中;在安全检测领域,表面缺陷检测技术被应用于食品安全、药 品安全、交通安全等领域;在医疗领域,表面缺陷检测技术被应用于医学图像分 析、病灶检测等方面。
相关技术综述
基于机器视觉的表面缺陷检测技术主要包括图像处理、特征提取和机器学习 等方法。
1、图像处理
1、图像处理
图像处理是表面缺陷检测的重要环节,主要包括图像预处理、图像增强和图 像分割等步骤。图像预处理包括去噪、平滑、滤波等,以改善图像质量,减少干 扰噪声;图像增强用于突出图像特征,如对比度增强、拉伸等;图像分割是将图 像分成若干个区域或对象的过程,以进一步提取缺陷特征。
2、发展趋势
(2)多维度的缺陷检测:目前大多数表面缺陷检测方法主要针对二维平面进 行检测,但在某些领域,如半导体芯片制造中,需要检测三维表面的缺陷。因此, 未来的研究方向将包括如何实现多维度的表面缺陷检测。
2、发展趋势
(3)智能化的缺陷分类:目前许多表面缺陷检测方法只能简单地识别出缺陷 类型,而不能对缺陷进行更精细化的分类。未来的研究方向将包括如何利用深度 学习等机器学习方法对缺陷进行精细化的分类。
2、特征提取
2、特征提取
特征提取是在图像处理之后进行的,主要是从图像中提取出与缺陷相关的特 征,包括形状、纹理、颜色等。形状特征主要包括缺陷的面积、周长、形状因子 等;纹理特征主要包括粗糙度、对比度、方向性等;颜色特征主要包括缺陷的色 调、饱和度、亮度等。
3、机器学习
3、机器学习
机器学习在表面缺陷检测中起着至关重要的作用,主要包括分类器和识别算 法两个方面的内容。分类器是将提取的特征与已知缺陷类型进行匹配,以识别和 分类缺陷的过程。常用的分ቤተ መጻሕፍቲ ባይዱ器包括SVM、神经网络、决策树等;识别算法主要 是基于深度学习的卷积神经网络(CNN),通过训练模型对输入图像进行自动检 测和分类。

基于机器视觉的表面缺陷检测技术研究

基于机器视觉的表面缺陷检测技术研究

基于机器视觉的表面缺陷检测技术研究随着制造业的发展,表面缺陷对于产品质量的影响越来越大。

为了确保生产出高质量的产品,表面缺陷检测成为了制造业的重要环节。

传统的表面缺陷检测方式主要依靠人工目视检测,但这种方式存在诸多不足,例如效率低、费时费力,而且还可能存在漏检或误检等问题。

因此,基于机器视觉的表面缺陷检测技术被越来越多地应用于工业生产中。

本文将深入探讨机器视觉技术在表面缺陷检测中的应用及其研究进展。

一、机器视觉技术概述机器视觉技术是指利用计算机和相关光学设备对目标进行自动识别、跟踪、分析和处理的一种技术。

机器视觉技术包括图像采集、图像预处理、特征提取与分析、分类识别等步骤。

通过这些步骤,机器视觉可以实现对各种目标的快速、准确、自动化的识别和处理。

在表面缺陷检测中,机器视觉技术主要应用于图像采集和特征提取与分析等方面。

利用机器视觉技术采集样品的图像后,通过对图像进行预处理和特征提取与分析,可以得到样品的表面特征,进而对样品的缺陷进行识别和分析。

二、机器视觉在表面缺陷检测中的应用1.图像采集图像采集是机器视觉技术在表面缺陷检测中的第一步。

通常使用的设备有相机、扫描仪等。

在采集图像时,需要注意光线和背景的影响。

为了能够得到清晰的图像,可以采用适当的光源和背景色。

此外,还可以利用特殊的滤镜或反光板等工具来提高图像质量。

2.图像预处理在采集图像后,需要对图像进行预处理,以便更好地分析和处理图像。

图像预处理包括图像滤波、增强、去噪等步骤。

其中,图像滤波可以去除图像中的噪声和不必要的细节,图像增强可以提高图像的对比度和清晰度,而图像去噪则可以去除图像中的干扰信号和虚假特征。

3.特征提取与分析特征提取和分析是机器视觉技术中最关键的步骤之一。

特征提取与分析主要是通过对图像的边缘、纹理、颜色和形状等特征进行分析和提取,从而确定样品的缺陷。

特征提取与分析的关键在于如何选择和提取有效的特征。

常用的特征提取方法有基于颜色、纹理、形状和边缘等方法,这些方法可以在一定程度上提高特征的效果和准确率。

基于机器视觉的自动外观缺陷检测系统设计

基于机器视觉的自动外观缺陷检测系统设计

基于机器视觉的自动外观缺陷检测系统设计自动外观缺陷检测系统是在现代工业制造中起着至关重要的作用。

机器视觉技术的应用使得自动化的外观缺陷检测成为可能,提高了产品质量和生产效率。

本文将详细介绍基于机器视觉的自动外观缺陷检测系统的设计原理和实施方法。

一、系统设计原理基于机器视觉的自动外观缺陷检测系统通过摄像头捕捉产品的图像,并利用计算机视觉算法进行分析和处理,最终识别和判断产品是否存在缺陷。

其设计原理如下:1. 图像采集:系统的第一步是通过摄像头采集产品的图像。

摄像头的选择应该考虑产品的尺寸、形状和检测速度等因素。

高分辨率和快速采集速度的摄像头通常能够提供更好的图像质量和检测精度。

2. 图像预处理:采集到的图像往往包含噪声和光线的干扰,因此需要进行预处理。

预处理的主要目标是降低噪声、增强图像的对比度和清晰度。

一些常用的图像预处理方法包括滤波、平滑和直方图均衡化等。

3. 特征提取:在预处理完图像后,需要提取图像中与缺陷相关的特征。

特征提取可以通过各种计算机视觉算法来实现,如边缘检测、角点检测和纹理分析等。

特征提取的目标是将图像中的关键信息提取出来,并用于缺陷检测和分类。

4. 缺陷检测:在特征提取的基础上,使用分类算法来实现缺陷检测。

常见的分类算法包括支持向量机(SVM)、人工神经网络(ANN)和卷积神经网络(CNN)等。

这些算法可以根据特征的不同组合进行训练,以实现对不同缺陷类别的识别。

5. 结果判断:根据分类算法的输出结果,判断产品是否存在缺陷。

如果系统检测到缺陷,则需要标记并通知操作员进行处理。

同时,系统还应具备故障检测和故障排除的功能,确保系统的稳定和可靠性。

二、系统实施方法基于机器视觉的自动外观缺陷检测系统的实施方法涉及到硬件和软件两方面的内容。

具体步骤如下:1. 硬件系统设计:根据产品的特点和生产环境的要求,设计合适的硬件系统。

这包括选择适当的摄像头、光源和图像处理设备等。

还需要考虑摄像头的布置位置和角度,以及光源的类型和亮度调节等。

基于机器视觉的钢丝绳表面缺陷检测

基于机器视觉的钢丝绳表面缺陷检测

基于机器视觉的钢丝绳表面缺陷检测机器视觉技术的应用在各个领域都得到了广泛的认可和应用。

在工业领域中,钢丝绳的表面缺陷检测一直是一个重要而困难的问题。

传统的人工检测方法不仅费时费力,而且准确性也存在一定的问题。

基于机器视觉的钢丝绳表面缺陷检测技术的出现,为解决这一问题提供了新的思路和方法。

一、机器视觉在钢丝绳表面缺陷检测中的优势相比传统的人工检测方法,机器视觉技术具有以下几个显著优势:1. 高效性:机器视觉系统能够高速地处理图像信息,具备较强的计算和处理能力,能够实时地对钢丝绳表面进行检测,大大提高了工作效率。

2. 准确性:机器视觉系统能够精确地捕捉和分析图像中的细节和特征,对钢丝绳表面缺陷进行准确的检测和分类,避免了人为因素对检测结果的影响。

3. 自动化:机器视觉系统能够自动地完成图像采集、处理和分析等一系列操作,无需人工干预,提高了工作效率和减少了人力成本。

二、基于机器视觉的钢丝绳表面缺陷检测方法1. 图像采集:使用高分辨率的工业相机对钢丝绳表面进行图像采集。

采集时需注意光照条件、背景干扰等因素对图像质量的影响。

可采用多角度、多方位的方式进行图像采集,以获取更全面的表面信息。

2. 图像预处理:采集到的图像可能存在噪声、模糊等问题,需要进行预处理以提高后续处理的准确性和稳定性。

常用的图像预处理方法包括去噪、图像增强、边缘检测等。

3. 特征提取:通过对图像进行特征提取,提取钢丝绳表面的纹理、颜色、形状等特征信息。

常用的特征提取方法包括灰度共生矩阵、小波变换、形态学处理等。

4. 缺陷检测:通过对提取的特征进行分析和处理,检测出钢丝绳表面的缺陷。

可以采用传统的机器学习算法,如支持向量机、随机森林等,也可以借助深度学习算法,如卷积神经网络、循环神经网络等进行缺陷检测。

5. 结果评估:对检测结果进行评估和分析,判断钢丝绳表面的缺陷类型和严重程度。

可以采用准确率、召回率、F1值等指标进行评估,根据评估结果进行进一步的优化和改进。

基于机器视觉的表面缺陷检测系统的算法研究及软件设计

基于机器视觉的表面缺陷检测系统的算法研究及软件设计

基于机器视觉的表面缺陷检测系统的算法研究及软件设计一、本文概述随着工业制造技术的飞速发展,产品质量与生产效率日益成为企业竞争力的核心要素。

表面缺陷检测作为产品质量控制的重要环节,其准确性和效率直接影响到产品的整体质量和企业的生产效益。

传统的表面缺陷检测方法往往依赖于人工目视检测,这种方法不仅效率低下,而且容易受到人为因素的影响,导致漏检和误检的情况时有发生。

因此,开发一种基于机器视觉的表面缺陷检测系统,实现对产品表面缺陷的快速、准确检测,已成为当前研究的热点和难点。

本文旨在研究基于机器视觉的表面缺陷检测系统的算法,并设计相应的软件系统。

通过对图像采集、预处理、特征提取、缺陷识别与分类等关键算法进行深入研究,构建一套高效、稳定的表面缺陷检测系统。

本文还将探讨如何结合机器学习、深度学习等先进算法,提高系统的自适应能力和检测精度。

本文还将关注软件系统的架构设计、界面设计、用户交互等方面的内容,确保系统的易用性和可维护性。

通过本文的研究,旨在为表面缺陷检测领域的实际应用提供理论支持和技术指导,推动机器视觉技术在工业制造领域的广泛应用,为企业提高产品质量和生产效率提供有力保障。

二、机器视觉技术基础机器视觉是一门涉及、图像处理、模式识别、计算机视觉等多个领域的交叉学科。

它利用计算机和相关设备模拟人类的视觉功能,实现对目标对象的识别、跟踪和测量,进而完成相应的自动化处理任务。

在表面缺陷检测领域,机器视觉技术发挥着至关重要的作用。

机器视觉系统主要由图像采集、图像处理、特征提取和缺陷识别等模块组成。

图像采集模块负责获取待检测物体表面的图像信息,其性能直接影响到后续处理的准确性和效率。

图像处理模块则是对采集到的图像进行预处理,如去噪、增强、滤波等操作,以提高图像质量,为后续的特征提取和缺陷识别提供有利条件。

特征提取是机器视觉系统中的关键环节,它通过对处理后的图像进行特征分析和提取,将关键信息从海量数据中筛选出来。

在表面缺陷检测中,特征提取的主要任务是提取出缺陷区域的形状、大小、颜色、纹理等关键特征,为后续的缺陷识别提供有效依据。

基于机器视觉的风机叶片表面缺陷检测

基于机器视觉的风机叶片表面缺陷检测

基于机器视觉的风机叶片表面缺陷检测在本文中,我们将探讨基于机器视觉的风机叶片表面缺陷检测技术。

机器视觉是一种应用图像处理和模式识别等技术的方法,通过摄像机和计算机视觉算法的组合,实现对物体的自动识别、检测和分析。

一、引言风机叶片是风力发电机组的核心部件之一,其表面的缺陷或损坏会对风力发电系统的性能和寿命产生重大影响。

传统的风机叶片检测方法主要依靠人工目测,效率低下且存在主观误差。

基于机器视觉的风机叶片表面缺陷检测技术能够提高检测效率和准确性,因此具有重要的应用前景。

二、风机叶片缺陷检测原理基于机器视觉的风机叶片表面缺陷检测技术主要基于以下原理:1. 图像获取:使用高分辨率的摄像机对风机叶片进行拍摄,获取叶片表面的图像数据。

2. 图像预处理:对叶片图像进行去噪、灰度化、二值化等预处理,提高后续处理的效果。

3. 特征提取:采用图像处理算法,在叶片图像中提取与缺陷相关的特征信息,如纹理、形状、颜色等。

4. 缺陷检测:基于提取的特征信息,使用机器学习或深度学习算法对叶片图像进行分类或目标检测,判断是否存在缺陷。

5. 结果输出:将检测结果以图像、文本或报警等形式输出,供操作员或系统进行分析和处理。

三、关键技术在基于机器视觉的风机叶片表面缺陷检测中,以下关键技术是至关重要的:1. 图像处理算法:包括边缘检测、纹理分析、图像分割等算法,用于对叶片图像进行预处理和特征提取。

2. 机器学习算法:如支持向量机(SVM)、随机森林(Random Forest)等,用于分类和识别叶片图像中的缺陷。

3. 深度学习算法:如卷积神经网络(Convolutional Neural Network,CNN)等,通过训练大量数据集,实现对叶片图像的自动学习和识别。

4. 实时性要求:为了满足风力发电系统的实时监测需求,对算法和系统的实时性能提出了更高的要求。

四、应用前景基于机器视觉的风机叶片表面缺陷检测技术在风力发电领域具有广阔的应用前景:1. 提高检测效率:相比传统的人工检测方法,机器视觉技术可以大大提高风机叶片缺陷的检测效率,降低人力成本。

测控毕业设计题目

测控毕业设计题目

测控毕业设计题目
测控技术毕业设计题目可以涵盖多个领域,包括但不限于:
1. 基于机器视觉的表面缺陷检测系统设计
2. 基于物联网的智能家居控制系统设计
3. 无线传感器网络在环境监测中的应用研究
4. 智能仪表的嵌入式系统设计
5. 实时信号处理算法在雷达系统中的应用研究
6. 基于FPGA的数字信号处理系统设计
7. 基于机器学习的智能控制系统设计
8. 远程监控系统的设计与实现
9. 基于物联网的智能农业灌溉系统设计
10. 嵌入式系统在智能机器人中的应用研究
以上题目仅供参考,具体题目应根据学生兴趣、专业方向和导师指导情况来确定。

基于机器视觉的FPC表面缺陷智能检测系统

基于机器视觉的FPC表面缺陷智能检测系统
DO I : 1 0 . 1 9 5 5 7  ̄. c n k i . 1 0 0 1 - 9 9 4 4 . 2 0 1 7 . 0 7 . 0 0 7
基 于机 器 视 觉 的 F P C 表 面缺 陷智 能检 测 系统
於 文欣 , 陈 广锋
( 东华大学 机械J - 程学院 , 上海 2 0 1 6 2 0 )
度 达 到 设 计 要 求
关键词 : 表 面缺 陷检 测 系统 : 机器视觉; 柔 性 印制 电 路 板 ; 自动 化 检 测
中图 分 类 号 : T P 2 7 7 ; T P 3 9 1 . 4 1 文献标志码 : B 文章编号 : 0 0 1 — 9 9 4 4 ( 2 0 1 7 ) 0 7 — 0 ( 1 3 0 — 0 4
I n t e l l i g e n t I ns pe c t i o n Sy s t e m o f FPC S ur f a c e De f e c t Ba s e d o n Ma c h i n e Vi s i o n
YU W e n — x i n, CHEN Gua n g — f e ng
( C o l l e g e o f Me c h a n i c a l E n g i n e e r i n g , D o n g h u a U n i v e r s i t y , S h a n g h a i 2 0 1 6 2 0 ,ቤተ መጻሕፍቲ ባይዱC h i n a )
摘要 : 针 对 精 密 电子 设 备 中 对 柔 性 电 路 板 质 量 的 高精 度 要 求 , 该 文 设 计 了基 于 机 器视 觉 的 柔性 印制 电路 板 F P C表 面缺 陷检 测 系统 ,实现 对 生 产 线 的产 品质 量 自动化 检 测 与监 控 : 设 计 并搭 建视 觉检 测 硬 件 平 台 以获 取 优 质 图像 : 开 发 缺 陷 自动 识 别 与分 类 的软 件 系统 , 设 计 缺 陷识 别 与 分 类 算 法 , 对 表 面 的 焊 点 异 常 与 划 痕 两 类 典 型 缺 陷进 行 处 理 。试 验 结 果 表 明 , 开发 的软 件 系统 与 缺 陷 识 别 算 法 实现 了对 缺 陷 的 准确 识 别 , 准确率达到9 0 %以上 , 检 测 精
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号本科生毕业设计基于机器视觉的表面缺陷检测系统设计Surface defect detection system design based on machinevision学生姓名专业电子信息工程学号指导教师学院电子信息工程学院二〇一三年六月毕业设计(论文)原创承诺书1.本人承诺:所呈交的毕业设计(论文)《基于机器视觉的表面缺陷检测系统设计》,是认真学习理解学校的《长春理工大学本科毕业设计(论文)工作条例》后,在教师的指导下,保质保量独立地完成了任务书中规定容,不弄虚作假,不抄袭别人的工作内容。

2.本人在毕业设计(论文)中引用他人的观点和研究成果,均在文中加以注释或以参考文献形式列出,对本文的研究工作做出重要贡献的个人和集体均已在文中注明。

3.在毕业设计(论文)中对侵犯任何方面知识产权的行为,由本人承担相应的法律责任。

4.本人完全了解学校关于保存、使用毕业设计(论文)的规定,即:按照学校要求提交论文和相关材料的印刷本和电子版本;同意学校保留毕业设计(论文)的复印件和电子版本,允许被查阅和借阅;学校可以采用影印、缩印或其他复制手段保存毕业设计(论文),可以公布其中的全部或部分内容。

以上承诺的法律结果将完全由本人承担!作者签名:年月日中文摘要为了不断提高产品质量和生产效率,金属工件表面缺陷在线自动检测技术在生产过程中显得日益重要。

针对金属工件表面的多种缺陷,本文设计了一套基于机器视觉能够实现对金属工件表面缺陷进行实时在线、无损伤的自动检测系统。

该系统采用面阵CCD和多通道图像采集卡作为图像采集部分,提高了检测系统的速度并降低了对CCD的性能要求,使系统在现有的条件下比较容易实现实时在线检测;采用自动选取图像分割阈值,根据实际应用的阈值把工件信息从图像中提取出来并扫描工件图像中的信息,实现了系统的自动测量;根据扫描得到的工件信息去除掉工件边缘的光圈,利用自动选取的阈值对金属工件表面的图像进行二值化分割,从而实现各种缺陷的自动提取及识别。

关键词:机器视觉表面缺陷CCD 图像处理缺陷检测AbstractIn order to continually promote the quality of product and efficiency of production, the on-line automatic inspection technology of surface defect of metal workpiece has become more and more important in the process of production. This paper designs an automatic system based on machine vision, which can inspect surface defect of metal workpiece timely without any damage on it.Firstly, using CCD and multi-channel image acquisition card to acquire images, the system has accelerated the inspection speed and reduced the requirements of CCD on the performance to do the timely on-line inspection more easily under the current condition; secondly, according to the practical application of threshold, the system has used the segmentation threshold of selecting an image automatically to select the workpiece information from images and scan that information to realize the automatic measurement of the system; finally, the system has removed the aperture on the edge of workpiece in accordance with the workpiece information of scan and conducted the binarization segmentation on the image of the metal workpiece surface by using the automatic selection threshold to automatically select and identify varied defects. Keywords:machine vision; surface defect; CCD; image processing; defect inspecting目录中文摘要 (3)Abstract (4)第1章引言 (7)1.1研究背景及意义 (7)1.2国内外研究现状 (7)第2章图像技术及机器视觉简介 (9)2.1图像处理技术 (9)2.1.1图像和数字图像 (9)2.1.2图像技术和图像工程 (9)2.2数字图像处理系统 (10)2.2.1图像处理和分析系统 (10)2.2.2图像采集模块 (10)2.2.3图像的数据编码和传输 (11)2.3机器视觉技术 (11)2.3.1机器视觉技术简介 (11)2.3.2机器视觉系统的概念、组成及特点 (12)2.4机器视觉系统的应用及发展动向 (13)2.4.1机器视觉检测应用 (13)2.4.2机器视觉系统的发展动向 (13)第3章系统总体设计 (15)3. 1 CCD摄像头 (15)3. 2图像采集卡 (15)3.2.1视频输入信号及采样频率 (16)3.2.2视频输入窗口和显示窗口 (16)3. 3软件设计 (16)第4章缺陷检测软件设计 (17)4. 1图像实时采集模块 (17)4. 2图像预处理模块 (17)4. 3阈值选取模块 (18)4. 4图像测量模块 (18)4. 5缺陷检测模块 (26)4.5.1二值图像区域标记 (27)4.5.2二值图像的小区域消除 (28)4. 6缺陷识别模块 (28)第5章实验结果及分析 (31)5.1实验数据 (31)5.2实验分析 (32)全文总结 (35)参考文献 (36)致谢 (38)第1章引言1.1研究背景及意义传统的产品表面质量检测主要采用人工检测的方法。

人工检测不仅工作量大,而且易受检测人员主观因素的影响,容易对产品表面缺陷造成漏检,尤其是变形较小、畸变不大的夹杂缺陷漏检,极大降低了产品的表面质量,从而不能够保证检测的效率与精度。

近年来,迅速发展的以图像处理技术为基础的机器视觉技术恰恰可以解决这一问题。

机器视觉主要是采用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。

基于机器视觉技术的缺陷检测系统,由于其非接触检测测量,具有较高的准确度、较宽的光谱响应范围,可长时间稳定工作,节省大量劳动力资源,极大地提高了工作效率。

可对工件表面的斑点、凹坑、划痕、色差、缺损等缺陷进行检测。

所以,人工检测难以达到降低消耗、提高产品质量的目的,采用机器视觉的表面缺陷检测成为迫切需要。

针对这种现状,课题组决定自行开发工件表面缺陷在线检测系统,确保各类缺陷及时准确检出,从根本上解决人工检测效率低、精度低的问题,同时,还可以降低原材料消耗、能耗和人力成本,该课题还可以推广到其他需要表面质量检测的行业中,如印刷、包装等行业,因此具有重要的实际应用价值和现实意义。

然而,本课题要对各种形状、不同大小的金属片在线检测,必然对检测方法和处理速度有很高的要求,图像处理与模式识别领域中的许多新算法目前很难应用到实际工程项目中。

因此,机器视觉技术在这类在线检测任务中的应用,仍然是一个难题。

本论文的目标就是以己有的图像处理理论为基础,通过大量的实际实验,设计适合本产品表面缺陷检测的算法。

1.2国内外研究现状在国外,机器视觉的应用主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。

具体如PCB印刷电路:各类生产印刷电路板组装技术、设备,单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。

再流焊机、波峰焊机及自动化生产线设备。

电子生产加工设备:电子元件制造设备、半导体及集成电路制造设备、元器件成型设备、电子工模具。

机器视觉系统还在质量检测的各个方面已经得到了广泛的应用,并且其产品在应用中占据着举足轻重的地位。

除此之外,机器视觉还用于其他各个领域。

而在中国,以上行业本身就属于新兴的领域,再加之机器视觉产品技术的普及不够,导致以上各行业的应用几乎空白,即便是有,也只是低端方面的应用。

目前在我国随着配套基础建设的完善,技术、资金的积累、各行各业对采用图像和机器视觉技术的工业自动化、智能化需求开始广泛出现,国内有关大专院校、研究所和企业近两年在图像和机器视觉技术领域进行了积极思索和大胆的尝试,逐步开始了工业现场的应用。

其主要应用于制药、印刷、矿泉水瓶盖检测等领域。

真正高端的应用还很少,因此,以上相关行业的应用空间还比较大。

当然,其他领域如指纹检测等等领域也有着很好的发展空间。

第2章图像技术及机器视觉简介2.1图像处理技术机器视觉系统中,视觉信息的处理技术主要依赖于图像处理方法,它包括图像增强、数据编码和传输、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。

经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于计算机对图像进行分析、处理和识别。

2.1.1图像和数字图像从广义上说,图像是自然界景物的客观反映,是人类认识世界和人类本身的重要源泉。

图像对我们并不陌生。

它是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视知觉的实体。

人的视觉系统就是一个观测系统,通过它得到的图像就是客观景物在人眼中形成的影像。

图像信息不仅包含光通量分布,而且也还包含人类视觉的主观感受。

随着计算机技术的迅速发展,人们还可以人为地创造出色彩斑斓、千姿百态的各种图像。

客观世界在空间上是三维(3-D)的,但一般从客观景物得到的图像是二维(2-D)的。

相关文档
最新文档