2019-2020学年九年级数学上册《1.2 直角三角形(一)》教案2 北师大版.doc
2019-2020学年九年级数学上册《1.2.2 矩形的判定》导学案(新版)北师大版.doc

2019-2020学年九年级数学上册《1.2.2 矩形的判定》导学案(新版)北师大版学习目标:1.理解并掌握矩形的判定方法.2.能应用矩形定义、判定等知识,解决简单的证明题和计算题.学习重点:矩形的判定.学习难点:矩形的判定及性质的综合应用.预习导学:1、复习引入:______________________________叫做平行四边形。
___________________________叫做矩形。
矩形的性质有:___________________、______________________、____________________。
2、事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?强调:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.4、例题分析:例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形.()强调:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,例2 (补充)已知求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:例3 (补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,可选用“三个角是直角的四边形是矩形”来证明.因为该四边形是由平行四边形内角平分线形成的,由平行四边形邻角互补易得该四边形各内角为90°。
2012北师大版九上1.2《直角三角形》word教案

§1.2直角三角形(第一课时)教学目标:1、进一步掌握推理证明的方法,发展演绎推理能力。
2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL ”判定定理。
3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。
教学过程:引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。
实际上,利用公理及其推导出的定理,我们能够证明勾股定理。
定理:直角三角形两条直角边的平方和等于斜边的平方。
如图,在△ABC 中,∠C=90°,BC=a ,AC=b ,AB=c ,延长CB 至点D ,使BD=b ,作∠EBD=∠A ,并取BE=c ,连接ED 、AE ,则△ABC ≌△BED 。
∴∠BDE=90°,ED=a (全等三角形的对应角相等,对应边相等)。
∴四边形ACDE 是直角梯形。
∴S 梯形ACDE =12 (a+b)(a-b)= 12(a+b)2 ∴∠ABE=180°-∠ABC-∠EBD=180°- 90°=90°AB=BE∴S △ABC = 12c 2 ∵S 梯形ACDE = S △ABE +S △ABC + S △BED ,∴12 (a+b)2=12 c 2+12 ab+12 ab 即12 a 2+ab+12 b 2=12 c 2+12 ab+12 ab∴a 2+b 2=c 2反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?已知:如图,在△ABC,AB2+AC2=BC2,求证:△ABC是直角三角形。
证明:作出Rt△A’B’C’,使∠A=90°,A’B’=AB,A’C’=AC,则A’B’2+A’C’2=B’C’2(勾股定理)∵AB2+AC2=BC2,A’B’=AB,A’C’=AC,∴BC2= B’C’2∴BC=B’C’∴△ABC≌△A’B’C’(SSS)∴∠A=∠A’=90°(全等三角形的对应角相等)因此,△ABC是直角三角形。
2019-2020学年八年级数学上册 1.2 一定是直角三角形吗导学案(新版)北师大版(6).doc

2019-2020学年八年级数学上册 1.2 一定是直角三角形吗导学案(新版)北师大版(6)【学习目标】1、掌握直角三角形的判别条件,并能进行简单的应用。
2、掌握勾股数的概念,探索常用勾股数的规律。
【学习方法】自主探究与合作交流相结合.【学习重难点】重点:掌握勾股定理的逆定理及简单应用。
难点:勾股定理的逆定理的证明。
【学习过程】模块一预习反馈一、知识回顾1、勾股定理:直角三角形两直角边的等于斜边的.2、如果a、b和c分别表示直角三角形两直角边和斜边,则有。
二、自主学习1、已知:三角形A BC的三边长分别为a、b、c,且满足a2+b2=c2;求证:三角形ABC是直角三角形。
证明:画一个直角三角形A1B1C1,使B1C1=a, A1C1=b,∠C1=90°,在Rt△A1B1C1中,A1B12= B1C12+ A1C12= ,又a2+b2=c2∴A1B1= ,在△ABC和△A1B1C1中,AB=c=A1B1, BC=a=B1C1,AC=b=A1C1∴△ABC △A1B1C∴∠C= = 。
归纳:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是。
实践练习:下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15;②15,36,39;③12,35,36;④12,18,22。
解:2、满足22c2+的三个正整数,称为。
a=b常见的勾股数有:①3,4,5;②9,40,41;③8,15,17;④7,24,25;⑤5,12,13;⑥9,12,15。
勾股数有无数组。
一组勾股数中,各数的相同整数倍得到一组新的勾股数。
注意:(1)勾股数必须都是正整数;(2)判断一组数是不是勾股数,看较小两个数的平方和是否等于最大数的平方。
实践练习:.判断下列各组数,哪些是勾股数?①15、36、39;②3、-4、5;③8、15、17;④10、20、26;⑤0.3、0.4、0.5。
是勾股数有:。
3、一个零件的形状如图1所示,按规定这个零件中边尺∠,都应是直角。
2019-2020学年八年级数学上册1.2一定是直角三角形吗教案新版北师大版.doc

2019-2020学年八年级数学上册1.2一定是直角三角形吗教案新版北师大版●教学目标:知识与技能目标:1.了解直角三角形判定的探索方法和探索过程;2.理解勾股定理及直角三角形的判定之间的关系;3.掌握直角三角形的判定,并能利用其判断一个三角形是直角三角形;过程与方法目标1. 在猜想、证明等数学活动中,发展合情推理的能力。
2. 通过直角三角形的判定的探索及其应用,体会数形结合法在问题解决中的作用,并能运用其解决相关问题.情感与态度目标1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受互逆之间的关系;2.在探究直角三角形的判定的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.●重点:直角三角形的判定及其应用.●难点:直角三角形的判定的探索过程.●教学流程:一、课前回顾在一个直角三角形中三条边满足什么样的关系呢?勾股定理:直角三角形两直角边的平方和等于斜边的平方.二、情境引入探究1:上述定理,反过来,还成立吗?如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?下列的五组数分别是一个三角形的三边长a,b,c:①6,8,10;②5,12,13;③7,24,25;1. 这三组数都满足 a 2+b 2=c 2吗?22210100643686==+=+ 2221316914425125==+=+ 2222562557649247==+=+2.分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗? 可以构成直角三角形;总结:勾股定理:直角三角形两直角边的平方和等于斜边的平方.逆命题:如果三角形的三边长a 、b 、c 满足那么这个三角形是直角三角形。
拓展:如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆定理.在∆ABC 中, a ,b ,c 为三边长,其中 c 为最大边,若a2 +b2=c2, 则∆ABC 为直角三角形;若a2 +b2>c2, 则∆ABC 为锐角三角形;若a2 +b2<c2, 则∆ABC 为钝角三角形.练习1:在已知下列三组长度的线段中,不能构成直角三角形的是( C )2.如果线段a ,b ,c 能组成三角形,则它们的比可能是( B )A.3:4:7B.5:12:13C.1:2:4 C.1:3:53.将直角三角形的三边的长度扩大同样的倍数,则得到的三角形是( A )A.直角三角形B.可能是锐角三角形C.可能是锐角三角形D.不可能是直角三角形归纳:满足a 2+b 2=c 2的三个正整数, 称为勾股数。
九年级数学上册 1.2直角三角形(1)课件 北师大版

b b
c
大正方形的面积可以表示为 也可以表示为 4•ab/2+(b- a)2
c2
;
a
c b
∵ c2= 4•ab/2 +(b-a)2 c2 =2ab+b2-2ab+a2 c2 =a2+b2 ∴a2+b2=c2
a
c
c a
c
四年一度的国际数学家大会于2002年8 月20日在北京召开,大会会标如图,它是由 四个相同的直角三角形与中间的小正方形拼 成的一个大正方形.
如果一个定理的逆命题经过证明是真命 题,那么它是一个定理,这两个定理称为互逆 定理,其中一个定理称另一个定理的逆定理. 你还能举出一些例子吗?
想一想:互逆命题与互逆定理有何关系?
随堂练习
1.说出下列命题的逆命题,并判断每 对命题的真假: (1).四边形是多边形;
(2).两直线平行,同旁内角互补;
如果直角三角形两直角边分别为a、 b,斜边为c,那么a2+b2=c2.即直角三 角形两直角边的平方和等于斜边的平 方.勾股定理在西方文献中又称为毕达 哥拉斯定理(pythagoras theorem).
a b c 勾 弦
股
a b c c
a
s1 (a b)(a b) (a 2ab b )
勾股定理: 直角三角形两条直角边的平 方和等于斜边的平方。 命题: 如果一个三角形两边的平方和 等于第三边的平方,那么这个三角形是 直角三角形。
独立作业
2
1.在△ABC中,已知,AB=13cm, BC=10cm,BC边上的中线AD=12cm , 求证:AB=AC
A
B
D
C
两个命题的条件和结论有什么 BC中, ∠ C=900, AD是BC边上的中线,DE⊥AB, 垂足为E,
2019-2020年(秋)八年级数学上册1.2一定是直角三角形吗教案1新版北师大版 .doc

2019-2020年(秋)八年级数学上册1.2一定是直角三角形吗教案1新版北师大版1.掌握勾股定理的逆定理,并能进行简单应用;(难点)2.理解勾股数的定义,探索常用勾股数的规律.(重点)一、情境导入1.直角三角形中,三边长度之间满足什么样的关系?2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?二、合作探究探究点一:勾股定理的逆定理【类型一】判断三角形的形状判断满足下列条件的三角形是否是直角三角形.(1)在△ABC中,∠A=20°,∠B=70°;(2)在△ABC中,AC=7,AB=24,BC=25;(3)△ABC的三边长a、b、c满足(a+b)(a-b)=c2.解析:(1)已知两角可以求出另外一个角;(2)使用勾股定理的逆定理验证;(3)将式子变形即可使用勾股定理的逆定理验证.解:(1)在△ABC中,∵∠A=20°,∠B =70°,∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形;(2)∵AC2+AB2=72+242=625,BC2=252=625,∴AC2+AB2=BC2.根据勾股定理的逆定理可知,△ABC是直角三角形;(3)∵(a+b)(a-b)=c2,∴a2-b2=c2,即a2=b2+c2.根据勾股定理的逆定理可知,△ABC是直角三角形.方法总结:在运用勾股定理的逆定理时,要特别注意找到最大边,定理描述的最大边的平方等于另外两边的平方和.【类型二】判断线段之间的位置关系在正方形ABCD中,F是CD的中点,E为BC上一点,且CE=14CB,试判断AF与EF的位置关系,并说明理由.解析:观察图形并加以合理的推测,不难发现AF⊥EF.解:AF⊥EF.设正方形的边长为4a, 则EC=a,BE=3a,CF=DF=2a.在Rt△ABE中,由勾股定理得AE2=AB2+BE2=16a2+9a2=25a2.在Rt△CEF中,由勾股定理得EF2=CE2+CF2=a2+4a2=5a2.在Rt△ADF中,由勾股定理得AF2=AD2+DF2=16a2+4a2=20a2.在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为斜边.∴∠AFE=90°,即AF⊥EF.方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理:如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.。
[推荐学习]九年级数学上册 1.2.2直角三角形导学案 北师大版
![[推荐学习]九年级数学上册 1.2.2直角三角形导学案 北师大版](https://img.taocdn.com/s3/m/d6e6cd4927d3240c8447efc5.png)
2、下列长度的三条线段能构成直角三角形的是()
①8、15、17②4、5、6、③7.5、4、8.5④24、25、7⑤5、8、10
A、①②④B、②④⑤C、①③⑤D、①③④
课下训练:
1、以下命题的逆命题属于假命题的是()
A、两底角相等的两个三角形是等腰三角形。
随时纠错
三、小结反馈
学而不思则罔,本节课我的反思:
课后反思
§1.2.2直角三角形
课题
§1.2.2直角三角形
课型
新授课
课时
5
教师
教学目标
进一步掌握推理证明的方法,发展演绎推理能力;
重点
了解勾股定理及其逆定理的证明方法;
难点
结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。
教法
合作探究
学法
合作交流
时间
2010年9月1日
一、预习导航
5、写出下列命题的逆命题,并判断每对命题的真假:
A、五边形是多边形。
B、两直线平行,同位角相等。
C、如果两个角是对顶角,那么它们相等。
D、如果AB=0,那么A=0,B=0。
6、公园中景点A、B间相距50M,景点A、C间相距40M,景点B、C间相距30M,由这三个景点构成的三角形一定是直角三角形吗?为什么?
三角形中相等的角所对的边相等。
像上述每组命题我们称为互逆命题,即一个命的条件和结论分别是另一个命题的__________和__________。
2、“想一想”,回答下列问题:
(1)写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题。它们都是真命题吗?
2019-2020年贵州专用(秋)九年级数学上册1.2第2课时矩形的判定教案2新版北师大版 .doc

教
学目标
1.理解并掌握矩形的判定定理,能有理有据的推理证明,精练准确地书写表达。
2.能熟练应用矩形的性质、判定等知识进行有关证明和计算.
重点
掌握并会运用矩形的判定
难点
运用矩形的判定进行简单的推理 与计算。
一、旧知回顾
答案: 四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,
所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。
四、课堂检测:
1.下列说法正确的是()
A.有一组对角是直角的四边形一定是矩形
B.有一组邻角是直角的四边形一定是矩形
(5)对角线相等且互相垂直的四边形是矩形()
(6)对角线相等且互相平分的四边形是矩形()
4.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使 四边形ABCD是矩形.你添加的条件是.(写出一种即可)
备注(教师复备栏)
1、想一想:矩形有哪些性质?在这些性质中那些是平行四边形所没有的?列表进行比较.
平行四边形
矩形
边
对边平行且相等
对边平行且相等
角
对角相等,邻角互补
四个角都是直角
对角线
对角线互相平分
对角线相等且互相平分
2、矩形对称性:
二、合作探究
仿照平行四边形的判定猜想,你能猜出矩形的判定有哪些吗?(分别从边、角、 对角线几个方面考虑。)
C.对角线互相平分的四边形是矩形
D.对角互.平行四边形B.矩形C.菱形D.正方形
3.下列判定矩形的说法是否正确
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年九年级数学上册《1.2 直角三角形(一)》教案2 北师大版 一、学生知识状况分析 直角三角形全等的条件和勾股定理及其逆定理在前面已由学生通过一些直观的方法进行了探索,所以学生对这些结论已经有所了解,对于它们,教科书努力将证明的思路展现出来.例如以前我们曾用割补法验证过勾股定理,而此处对勾股定理的证明应以我们认定的几条公理和由此推出的定理为依据进行,虽然证明的方法有多种,但对学生来说,这些都有难度,因此教科书将其两种证明方法放在“读一读’’中,供有兴趣的学生阅读,不要求所有学生掌握,其逆定理的证明方法对学生来说也是有一定难度的.
二、教学任务分析 本节课的教学目标是: 1.知识目标: (1)经历和了解勾股定理及其逆定理的证明方法,进一步理解证明的必要性. (2)结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立. 2.能力目标: (1)进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维. (2)进一步掌握推理证明的方法,发展演绎推理的能力. 3.情感与价值观要求 ①在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. ②积极参与数学活动,对数学命题的获得产生好奇心和求知欲. 4.教学重点、难点 重点 ①了解勾股定理及其逆定理的证明方法. ②结合具体例子了解逆命题的概念,识别两个互逆命题,知道原命题成立,其逆命题不一定成立. 难点 ①勾股定理及其逆定理的证明方法. ②对不是“如果……那么……”形式的逆命题的叙述.
三、教学过程分析 本节课设计了七个教学环节:第一环节:创设情境,引入新课;第二环节:讲述新课;第三环节:议一议;第四环节:想一想;第五环节:.随堂练习;第六环节:课时小结;第七环节:课后作业。
第一环节:创设情境,引入新课 通过问题1,让学生在解决问题的同时,回顾直角三角形的一般性质。 [问题1]一个直角三角形房梁如图所示,其中BC⊥AC, ∠BAC=30°,AB=10 cm,CB1⊥AB,B1C⊥AC1,垂足分别是B1、C1,那么BC的长是多少? B1C1呢? 解:在Rt△ABC中,∠CAB=30°,AB=10 cm, ∴BC=12 AB=12 ×10=5 cm. ∵CB1⊥AB,∴∠B+∠BCB1=90° 又∵∠A+∠B=90° ∴∠BCB1 =∠A=30° 在Rt△ACB1中,BB1=12 BC=12 ×5= 52 cm=2.5 cm. ∴AB1=AB=BB1=10—2.5=7.5(cm). ∴在Rt△C1AB1中,∠A=30° ∴B1C1 =12 AB1=12 × 7.5=3.75(cm). 解决这个问题,主要利用了上节课已经证明的“30°角的直角三角形的性质”.由此提问:“一般的直角三角形具有什么样的性质呢?”从而引入勾股定理及其证明。 教材中曾利用数方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗? 请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法. 第二环节:讲述新课 阅读完毕后,针对“读一读”中使用的两种证明方法,着重讨论第一种,第二种方法请有兴趣的同学课后阅读. 1.勾股定理及其逆定理的证明. 已知:如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c. 求证:a2+b2=c2. 证明:延长CB至D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE(如图),则△ABC≌△BED.
1C1BCA
B∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等). ∴四边形ACDE是直角梯形. ∴S梯形ACDE=12 (a+b)(a+b) = 12 (a+b)2. ∴∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°, AB=BE.
∴S△ABE=12 c2 ∵S梯形ACDE=S△ABE+S△ABC+S△BED, ∴12 (a+b) 2= 12 c2 + 12 ab + 12 ab, 即12 a2 + ab + 12 b2=12 c2 + ab, ∴a2+b2=c2 两干多年来,人们对勾股定理进行了大量的研究,给出了多达数百种的证明方法.如果学生有兴趣,鼓励他们查阅有关资料,了解勾股定理的其他证明方法. 教师用多媒体显示勾股定理内容,用课件演示勾股定理的条件和结论,并强调.具体如下:勾股定理:直角三角形两直角边的平方和等于斜边的平方. 反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论.你能证明此结论吗? 这对同学们来说也是具有一定难度的.于是师生共同来完成. 已知:如图:在△ABC中,AB2+AC2=BC2 求证:△ABC是直角三角形. 分析:要从边的关系,推出∠A=90°是不容易的,如果能借助于△ABC与一个直角三角形全等,而得到∠A与对应角(构造的三角形的直角)相等,可证. 证明:作Rt△A′B′C′,使∠A′=90°,A′B′=AB,A′C′、AC(如图), 则A′B′2+A′C′2.(勾股定理). ∵AB2+AC2=BC2,A′B′=AB,A′C′ ∴BC2=B′C′2 ∴BC=B′C′ ∴△ABC≌△A′B′C′(SSS) ∴∠A=∠A′=90°(全等三角形的对应角相等).
CABcb
E
DCAB
a
CAB
'''CAB因此,△ABC是直角三角形. 教师用多媒体显示定理内容: 定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 2.互逆命题和互逆定理. 观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗? 通过观察,学生会发现: 上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件. 这样的情况,在前面也曾遇到过.例如“两直线平行,内错角相等”,交换条件和结论,就得到“内错角相等,两直线平行”.又如“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半”.交换此定理的条件和结论就可得“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”。 第三环节:议一议: 活动内容:观察下面三组命题:学生以分组讨论形式进行,最后在教师的引导下得出命题与逆命题的区别与联系。 活动目的:让学生畅所欲言,体会逆命题与命题之间的区别与联系,要能够清晰地分别出一个命题的题设和结论,能够将一个命题写出“如果……;那么……”的形式,以及能够写出一个命题的逆命题。 活动效果与注意事项:活动中,教师应注意给予适度的引导,学生若出现语言上不严谨时,要先让这个疑问交给学生来剖析,然后再总结。活动时可以先让学生观察下面三组命题: 如果两个角是对顶角,那么它们相等. 如果两个角相等,那么它们是对顶角. 如果小明患了肺炎,那么他一定发烧. 如果小明发烧,那么他一定患了肺炎. 三角形中相等的边所对的角相等. 三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论也有类似的关系吗?与同伴交流. 不难发现,每组第二个命题的条件是第一个命题的结论,第二个命题的结论是第一个命题的条件. 在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题,相对于逆命题来说,另一个就为原命题. 再来看“议一议”中的三组命题,它们就称为互逆命题,如果称每组的第一个命题为原命题,另一个则为逆命题.请同学们判断i每组原命题的真假.逆命题呢? 在第一组中,原命题是真命题,而逆命题是假命题. 在第二组中,原命题是真命题,而逆命题是假命题. 在第三组中,原命题和逆命题都是真命题. 由此我们可以发现:原命题是真命题,而逆命题不一定是真命题.
第四环节:想一想 要写出原命题的逆命题,需先弄清楚原命题的条件和结论,然后把结论变换成条件,条件变换成结论,就得到了逆命题. 请学生写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题吗?它们都是真命题吗? 从而引导学生思考:原命题是真命题吗?逆命题一定是真命题吗? 并通过具体的实例说明。 如果有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理. 其中逆命题成为原命题(即原定理)的逆定理. 能举例说出我们已学过的互逆定理? 如我们刚证过的勾股定理及其逆定理,“两直线平行,内错角相等”与“内错角相等,两直线平行”.“全等三角形对应边相等”和“三边对应相等的三角形全等”、“等边对等角”和“等角对等边”等.
第五环节:随堂练习 说出下列命题的逆命题,并判断每对命题的真假; (1)四边形是多边形; (2)两直线平行,内旁内角互补; (3)如果ab=0,那么a=0, b=0 [分析]互逆命题和互逆定理的概念,学生接受起来应不会有什么困难,尤其是对以“如果……那么……”形式给出的命题,写出其逆命题较为容易,但对于那些不是以这种形式给出的命题,叙述其逆命题有一定困难.可先分析命题的条件和结论,然后写出逆命题. 解:(1)多边形是四边形.原命题是真命题,而逆命题是假命题. (2)同旁内角互补,两直线平行.原命题与逆命题同为正. (3)如果a=0,6=0,那么ab=0.原命题是假命题,而逆命题是真命题.
第六环节:课时小结 这节课我们了解了勾股定理及逆定理的证明方法,并结合数学和生活中的例子了解逆命题的概念,会