(高考数学复习讲练12)正弦、余弦定理

合集下载

余弦定理和正弦定理-高考数学复习

余弦定理和正弦定理-高考数学复习




解析:根据正弦定理


,∵
sin
sin
sin
sin 2 A = sin 2 B + sin 2
C ,∴ a 2= b 2+ c 2,∴ A 是直角, B + C =90°,∴2 sin B cos C =2
sin B cos (90°- B )=2 sin
2B=
sin A =1,∴ sin B =


c 2= a 2+ b 2-2 ab cos C

高中总复习·数学
定理
变形
正弦定理
余弦定理
高中总复习·数学
2. 在△ ABC 中,已知 a , b 和 A 时解的情况
A 为锐角
A 为钝角或直角
图形
关系式
a = b sin A
解的个数
1
b sin A < a <
b
2
a≥b
a>b
1
1
高中总复习·数学
弦定理得
2 + 2 −2
9+25−49
1
cos A =

=- ,因为 A 为△ ABC 的内
2
30
2

角,所以 A = .
3
高中总复习·数学
5. 在△ ABC 中, sin A =2 sin B cos C ,且 sin 2 A = sin 2 B + sin 2 C ,则
△ ABC 的形状是 等腰直角三角形 .
cos C + c cos A ; c = b cos A + a cos B.
高中总复习·数学
1. (多选)在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c ,下

正弦定理、余弦定理讲义

正弦定理、余弦定理讲义

此为三角函数最为基础的知识,在以后的多学科学习中都能用到,需要学生熟练掌握,并灵活运用。

解三角形【考点及要求】 1. 掌握正弦定理、余弦定理; 2. 并能初步应用正弦定理、余弦定理解决三角形中的有关问题. 【基础知识】在C B A c b a ABC ∠∠∠∆、、分别是、、中,所对的边,ABC R ∆为的外接圆半径,则有,1.正弦定理:R CcB b A a 2sin sin sin =∠=∠=∠; 2.余弦定理:bca cb A 2cos 222-+=A bc c b a cos 2222-+=⇔ ac b c aB 2cos 222-+=B ac c a b cos 2222-+=⇔ abc b a C 2cos 222-+=C ab b a c cos 2222-+=⇔ 3.常用公式:(1)π=++C B A ;(2)B ac A bc C ab S sin 21cos 21sin 21===知识点一:解直角三角形【典型例题讲练】例1 在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c .【变式训练】 1.在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c.知识点二:正、余弦定理的运用【典例精析】 例1、(2010辽宁文数)在ABC ∆中,a b c 、、分别为内角A B C 、、的对边,且2sin (2)sin (2)sin a A b c B c b C =+++. (Ⅰ)求A 的大小;(Ⅱ)若sin sin 1B C +=,试判断ABC ∆的形状.例2、(2010重庆文数)设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32a =42bc . (Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.例3、在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且CB cos cos =-ca b +2.(1)求角B 的大小; (2)若b=13,a+c=4,求△ABC 的面积.例4、在△ABC中,角A、B、C的对边分别为a、b、c,已知a+b=5,c=7,且4sin22BA+-cos2C=27.(1)求角C的大小;(2)求△ABC的面积.【变式训练】1.(2010天津文数)在∆ABC中,coscosAC B AB C=。

专题12 正余弦定理妙解三角形问题和最值问题(11大核心考点)-2024年高考数学二轮复习讲练测

专题12 正余弦定理妙解三角形问题和最值问题(11大核心考点)-2024年高考数学二轮复习讲练测
则 = .
5.(2021•浙江)在中,∠ = °, = ,是的中点, = ,则 = ;

∠ = .

6.(2022•甲卷)已知中,点在边上,∠ = °, = , = .当 取得最小值时,
,得 = 2或 =
∈ 0, ,得sin = 1
7
− 2(舍),
− cos 2
2
2
15
4
=
=

2sin⋅cos
3 15

4


3
3
= sin,所以 = 6cos.
在 △ 中,再由余弦定理得 cos =

所以 6 =
15

4
所以△ 的面积 = 1 sin = 1 × 3 × 2 ×
2
=
3

= 0, ∴ ∠ = , =
2
2
3
7
1+4−2
7
,解得AD为
9
1
+
16
3

2
− )=
=
3
,cos∠
3
129
12
4
3 3
,sin∠ =

43
43
3
1
, sin∠ = ,
2
2
7 3
+ ∠) = 2 43,

cos∠ = −cos∠ = −
cos∠ = cos(

(2)在△ 中,由正弦定理得sin = sin ⇒ sin2 = sin ⇒
16+2 −9
2×4×
,解得 = 21.
2 + 2 − 2
2⋅

正弦定理和余弦定理 高考数学真题详细解析 高考数学真题复习

正弦定理和余弦定理 高考数学真题详细解析 高考数学真题复习

4.6 正弦定理和余弦定理一、选择题1.在△ABC中,C=60°,AB=3,BC=2,那么A等于( ).A.135° B.105° C.45° D.75°解析由正弦定理知BCsin A=ABsin C,即2sin A=3sin 60°,所以sin A=22,又由题知,BC<AB,∴A=45°.答案 C2.已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为( ).A.60° B.90° C.120° D.150°解析由(a+b-c)(a+b+c)=ab,得(a+b)2-c2=ab,∴c2=a2+b2+ab=a2+b2-2ab cos C,∴cos C=-12,∴C=120°.答案 C3.在△ABC中,角A、B、C的对边分别为a、b、c,且a=λ,b=3λ(λ>0),A=45°,则满足此条件的三角形个数是( )A.0 B.1C.2 D.无数个解析:直接根据正弦定理可得asin A=bsin B,可得sin B=b sin Aa=3λsin 45°λ=62>1,没有意义,故满足条件的三角形的个数为0.答案:A4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B 等于( ).A .-12 B.12C .-1D .1 解析 根据正弦定理,由a cos A =b sin B ,得sin A cos A =sin 2B ,∴sin A cosA +cos 2B =sin 2B +cos 2B =1.答案 D5. 在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )B. 2C. 12D. 12- 解析 2122cos 2222222=+-≥-+=b a c c ab c b a C ,故选C. 答案 C6.在△ABC 中,sin 2 A ≤sin 2 B +sin 2 C -sin B sin C ,则A 的取值范围是( ).A.⎝ ⎛⎦⎥⎤0,π6B.⎣⎢⎡⎭⎪⎫π6,πC.⎝ ⎛⎦⎥⎤0,π3D.⎣⎢⎡⎭⎪⎫π3,π 解析 由已知及正弦定理有a 2≤b 2+c 2-bc ,而由余弦定理可知a 2=b 2+c 2-2bc cos A ,于是可得b 2+c 2-2bc cos A ≤b 2+c 2-bc ,可得cos A ≥12,注意到在△ABC 中,0<A <π,故A ∈⎝⎛⎦⎥⎤0,π3. 答案 C7.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ).A.43 B .8-4 3 C .1 D.23解析 依题意得⎩⎨⎧ a +b 2-c 2=4a 2+b 2-c 2=2ab cos 60°=ab ,两式相减得ab =43,选A. 答案 A二、填空题8.如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.解析 在△ABC 中,∵AB =AC =2,BC =23,∴cos C =32,∴sin C =12;在△ADC 中,由正弦定理得,AD sin C =AC sin ∠ADC , ∴AD =2sin 45°×12= 2. 答案 2 9. 在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,角C =________.解析:根据正弦定理,asin A =csin C, 由3a =2c sin A ,得asin A =c32, ∴sin C =32,而角C 是锐角.∴角C =π3.答案:π310.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA ∶sinB ∶sinC 为______.答案 6∶5∶411.若AB =2,AC =2BC ,则S △ABC 的最大值________.解析 (数形结合法)因为AB =2(定长),可以令AB 所在的直线为x 轴,其中垂线为y 轴建立直角坐标系,则A (-1,0),B (1,0),设C (x ,y ),由AC =2BC , 得 x +2+y 2= 2 x -2+y 2,化简得(x -3)2+y 2=8,即C 在以(3,0)为圆心,22为半径的圆上运动,所以S △ABC =12·|AB |·|y C |=|y C |≤22,故答案为2 2. 答案 2 212.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +a b =6cos C ,则tan C tan A+tan C tan B的值是________. 解析 法一 取a =b =1,则cos C =13,由余弦定理得c 2=a 2+b 2-2ab cos C =43,∴c =233,在如图所示的等腰三角形ABC 中,可得tan A =tan B =2,又sin C =223,tan C =22,∴tan C tan A +tan C tan B=4. 法二 由b a +a b =6cos C ,得a 2+b 2ab =6·a 2+b 2-c 22ab, 即a 2+b 2=32c 2,∴tan C tan A +tan C tan B =tan C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B = sin 2C cos C sin A sin B =2c 2a 2+b 2-c 2=4. 答案 4三、解答题13.叙述并证明余弦定理.解析 余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C , 法一 如图(1),图(1) a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →)=AC →2-2AC →·AB →+AB →2=AC →2-2|AC →|·|AB →|cos A +AB →2=b 2-2bc cos A +c 2,即a 2=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .法二图(2)已知△ABC 中A ,B ,C 所对边分别为a ,b ,c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系,如图(2)则C (b cos A ,b sin A ),B (c,0),∴a 2=|BC |2=(b cos A -c )2+(b sin A )2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .14.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .解析:由余弦定理b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 2π3 =a 2+c 2+ac =(a +c )2-ac .又∵a +c =4,b =13,∴ac =3.联立⎩⎨⎧ a +c =4,ac =3,解得a =1或a =3.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -a b. (1)求sin C sin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长. 解析 (1)由正弦定理,设asin A =bsin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B, 所以cos A -2cos C cos B =2sin C -sin A sin B. 即(cos A -2cos C )sin B =(2sin C -sin A )cos B ,化简可得sin(A +B )=2sin(B +C ).又A +B +C =π,所以sin C =2sin A ,因此sin C sin A =2. (2)由sin C sin A =2得c =2a .由余弦定理及cos B=1 4得b2=a2+c2-2ac cos B=a2+4a2-4a2×14=4a2.所以b=2a.又a+b+c=5.从而a=1,因此b=2.。

高三一轮复习精题组正弦定理、余弦定理及解三角形(有详细答案)

高三一轮复习精题组正弦定理、余弦定理及解三角形(有详细答案)

§4.6 正弦定理、余弦定理及解三角形1. 正弦、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3. 在△ABC 中,已知a 、b 和A 时,解的情况如下:4. 实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等. (3)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (4)坡度:坡面与水平面所成的二面角的正切值.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)在△ABC 中,A >B 必有sin A >sin B .( √ )(2)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是(3,2).( √ ) (3)若△ABC 中,a cos B =b cos A ,则△ABC 是等腰三角形.( √ ) (4)在△ABC 中,tan A =a 2,tan B =b 2,那么△ABC 是等腰三角形.( × )(5)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × )2. (2013·湖南)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( )A.π12B.π6C.π4D.π3答案 D解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B ,∴sin A =32. 又A 为锐角,∴A =π3.3. (2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sinA ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,所以sin A =1,由0<A <π,得A =π2,所以△ABC 为直角三角形.4. 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.5. 一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为______ km. 答案 30 2解析 如图所示,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°, 在△AMB 中,由正弦定理得60sin 45°=BM sin 30°,解得BM =30 2 (km).题型一 正、余弦定理的简单应用例1 (1)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150°(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C ,则sin B +sin C 的最大值为( )A .0B .1C.12D. 2思维启迪 (1)由sin C =23sin B 利用正弦定理得b 、c 的关系,再利用余弦定理求A . (2)要求sin B +sin C 的最大值,显然要将角B ,C 统一成一个角,故需先求角A ,而题目给出了边角之间的关系,可对其进行化边处理,然后结合余弦定理求角A . 答案 (1)A (2)B解析 (1)∵sin C =23sin B ,由正弦定理得c =23b , ∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.(2)已知2a sin A =(2b +c )sin B +(2c +b )sin C , 根据正弦定理,得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,又A 为三角形的内角,∴A =120°.故sin B +sin C =sin B +sin(60°-B )=32cos B +12sin B =sin(60°+B ), 故当B =30°时,sin B +sin C 取得最大值1.思维升华 (1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. (2)解题中注意三角形内角和定理的应用及角的范围限制.(1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于( )A.725B .-725C .±725D.2425(2)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 答案 (1)A (2)π6解析 (1)由正弦定理b sin B =csin C ,将8b =5c 及C =2B 代入得bsin B =85b sin 2B ,化简得1sin B =852sin B cos B ,则cos B =45,所以cos C =cos 2B =2cos 2B -1=2×(45)2-1=725,故选A.(2)∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 正弦定理、余弦定理的综合应用例2 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sinC -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪 利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.思维升华 有关三角形面积问题的求解方法: (1)灵活运用正、余弦定理实现边角转化.(2)合理运用三角函数公式,如同角三角函数的基本关系、二倍角公式等.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形. 题型三 解三角形的实际应用例3 某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.思维启迪 本题中所涉及的路程在不断变化,但舰艇和渔轮相遇时所用时间相等,先设出所用时间t ,找出等量关系,然后解三角形.解 如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°,所以212t 2=102+92t 2+2×10×9t ×12,即360t 2-90t -100=0,解得t =23或t =-512(舍去).所以舰艇靠近渔轮所需的时间为23 h .此时AB =14,BC =6.在△ABC 中,根据正弦定理得BC sin ∠CAB =ABsin 120°,所以sin ∠CAB =6×3214=3314,即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去). 即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需23h 才能靠近渔轮.思维升华 求解测量问题的关键是把测量目标纳入到一个可解三角形中,三角形可解,则至少要知道这个三角形的一条边长.解题中注意各个角的含义,根据这些角把需要的三角形的内角表示出来,注意不要把角的含义弄错,不要把这些角与要求解的三角形的内角之间的关系弄错.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°.由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°.在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ,由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ),解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.代数式化简或三角运算不当致误典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.易错分析 (1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形; (2)代数运算中两边同除一个可能为0的式子,导致漏解; (3)结论表述不规范. 规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .[4分]方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .[8分]在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.[12分] 方法二 由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.[12分]温馨提醒 (1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子然后判断;注意不要轻易两边同除以一个式子.(2)在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.方法与技巧1. 应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2. 正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明. 3. 合理利用换元法、代入法解决实际问题. 失误与防范1. 在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2. 利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. 在△ABC ,已知∠A =45°,AB =2,BC =2,则∠C 等于( )A .30°B .60°C .120°D .30°或150°答案 A解析 在△ABC 中,AB sin C =BC sin A ,∴2sin C =2sin 45°,∴sin C =12,又AB <BC ,∴∠C <∠A ,故∠C =30°.2. △ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb<cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形答案 A解析 依题意得sin Csin B <cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形.3. (2012·湖南)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394答案 B解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 4. (2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cosA =12b ,且a >b ,则∠B 等于( )A.π6B.π3C.2π3D.5π6答案 A解析 由条件得a b sin B cos C +c b sin B cos A =12,依正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12,又a >b ,且B ∈(0,π),因此B =π6.5. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b 2=c (b +2c ),若a =6,cos A=78,则△ABC 的面积等于 ( )A.17B.15C.152D .3答案 C解析 ∵b 2=c (b +2c ),∴b 2-bc -2c 2=0, 即(b +c )·(b -2c )=0,∴b =2c .又a =6,cos A =b 2+c 2-a 22bc =78,解得c =2,b =4.∴S △ABC =12bc sin A =12×4×2×1-(78)2=152.二、填空题6. (2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sinB ,则角C =________. 答案2π3解析 由已知条件和正弦定理得:3a =5b ,且b +c =2a , 则a =5b 3,c =2a -b =7b 3cos C =a 2+b 2-c 22ab =-12,又0<C <π,因此角C =2π3.7. 在△ABC 中,若b =5,∠B =π4,tan A =2,则a =________.答案 210解析 由tan A =2得sin A =2cos A . 又sin 2A +cos 2A =1得sin A =255. ∵b =5,∠B =π4,根据正弦定理,有a sin A =bsin B ,∴a =b sin A sin B =2522=210.8. 如图,设A ,B 两点在河的两岸,一测量者在点A 的同侧的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为________. 答案 50 2 m 解析 由正弦定理得AB sin ∠ACB =ACsin B,所以AB =AC ·sin ∠ACBsin B =50×2212=50 2.三、解答题9. (2013·北京)在△ABC 中,a =3,b =26,∠B =2∠A .(1)求cos A 的值; (2)求c 的值.解 (1)在△ABC 中,由正弦定理 a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A,∴cos A =63. (2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾.∴c =3舍去.故c 的值为5.10.(2013·江西)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos C +(cos A -3sin A )cos B =0. (1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0 即有sin A sin B -3sin A cos B =0, 因为sin A ≠0,所以sin B -3cos B =0, 即3cos B =sin B . 因为0<B <π, 所以sin B >0, 所以cos B >0, 所以tan B =3, 即B =π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 因为a +c =1,cos B =12,所以b 2=(a +c )2-3ac ≥(a +c )2-3⎝⎛⎭⎫a +c 22=14(a +c )2=14, ∴b ≥12.又a +c >b ,∴b <1,∴12≤b <1.B 组 专项能力提升 (时间:25分钟,满分:43分)1. △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba等于( )A .2 3B .2 2C. 3D. 2答案 D解析 ∵a sin A sin B +b cos 2A =2a , ∴sin A sin A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b a =sin Bsin A= 2.2. 有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为( )A .1B .2sin 10°C .2cos 10°D .cos 20°答案 C解析 如图,∠ABC =20°,AB =1,∠ADC =10°, ∴∠ABD =160°.在△ABD 中,由正弦定理得AD sin 160°=ABsin 10°,∴AD =AB ·sin 160°sin 10°=sin 20°sin 10°=2cos 10°.3. (2013·浙江)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =________. 答案63解析 因为sin ∠BAM =13,所以cos ∠BAM =223.如图,在△ABM 中,利用正弦定理,得BM sin ∠BAM =AM sin B ,所以BM AM =sin ∠BAM sin B =13sin B =13cos ∠BAC .在Rt △ACM 中,有CMAM =sin ∠CAM =sin(∠BAC -∠BAM ).由题意知BM =CM ,所以13cos ∠BAC=sin(∠BAC -∠BAM ).化简,得22sin ∠BAC cos ∠BAC -cos 2∠BAC =1. 所以22tan ∠BAC -1tan 2∠BAC +1=1,解得tan ∠BAC = 2.再结合sin 2∠BAC +cos 2∠BAC =1,∠BAC 为锐角可解得sin ∠BAC =63.4. (2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.(1)证明 由b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ,应用正弦定理,得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A , sin B ⎝⎛⎭⎫22sin C +22cos C -sin C⎝⎛⎭⎫22sin B +22cos B =22, 整理得sin B cos C -cos B sin C =1, 即sin(B -C )=1.由于0<B ,C <34π,从而B -C =π2.(2)解 B +C =π-A =3π4,因此B =5π8,C =π8.由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.5. 已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x+2sin x cos x -3在x =A 处取得最大值. (1)求f (x )的值域及周期; (2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列, 所以2B =A +C ,又A +B +C =π, 所以B =π3,即A +C =2π3.因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π.又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2]. (2)因为f (x )在x =A 处取得最大值, 所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π,故当2A -π3=π2时,f (x )取到最大值,所以A =512π,所以C =π4.由正弦定理,知3sin π3=csinπ4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34.。

(经典)正弦定理、余弦定理知识点总结及最全证明

(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角包等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用丁立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:① a = 2RsinA , b =, csinO;③ a : b : c= _______________________________2.余弦定理(1)余弦定理:三角形中任何一边的平■方等——王彦文宵铜峡一中丁其他两边的平■方的和减去这两边与它们的火角的余弦的积的两倍.即a2=, b2=,c?=.若令C= 90°, WJ c2=,即为勾股定理.(2)余弦定理的变形:cosA =, cosB=, cosC^.若C为锐角,则cosC>0,即a2 + b2 ; 若C为钝角,贝U cosC<0,即a2+ b2.故由a2+ b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角,余弦定理亦可以写成sin2A= sin2B+ sin2C—2sinBsinCcosA,类似地,sin2B= ________________ ; sin2C= _________ _S 意式中隐含条件A+ B+ C= TT .3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用定理,可能有L如在△ ABC中,已知a, b和A时,解的情况如表:②sin A=2R' sinB=A为锐角A为钝角或直角图形关系式a= bsinA bsinA<a< b a为a>b解的个数①②③④(3)已知三边,用理.有解时,只有一解.(4)已知两边及火角,用理, 必有一解.4.三角形中的常用公式或变式⑴三角形面积公式& =:其中R, r分别为三角形外接圆、内切圆半径.(2)A+ B+ C=兀,WJ A=,A5 = , 从而sinA = tanAtanBtanC (3)a+ c sinA+ sinCcosA = , tanA =<(3)互化sin2C+ sin2A—2sinCsinAcosB sin2A+sin2B— 2sinAsinBcosC3. (1)正弦(2)正弦一解、两解或无解①一解②二解③一解④一解⑶余弦⑷余弦1 1 1 abc 14. (1)2absinC 2bcsinA 2acsinB 4R 2 (a+ b+ c)r在△ ABC中,A>B 是sinA>sinB 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C.兀B+ C (2)代(B+ Q 2— Fsin(B+ C) — cos(B+ C)2 (1)b* 1 2+ c2— 2bccosA c2 + a2— 2cacosB a2 + b2—2abcosC a2 + b2b2+ c2—a2c2+ a2—b2a2+ b2—c2(2)2bc2ca2ab—tan(B+ C) co岩si号«C tan 2在△ ABC中,已知b= 6, c= 10, B= 30°,则解此三角形的结果有()A.无解B. 一解C.两解D. 一解或两解解:由正弦定理知sinC=半=5, 乂由b 6c>b>csinB知,C有两解.也可依已知条件,画出△ ABC,由图知有两解.故选 C.(2012陕西)在^ABC中,角A, B, C所对的边…一…Tt i—一,分力U为a, b, c.右a= 2, B= c= 2寸3,贝U b =.解:由余弦定理知b2= a2 + c2—2accoSB=22 + (2^3)2— 2X 2X^/3X c%= 4, b= 2.故填2.(2013陕西)®AABC的内角A, B, C所对的边分别为a, b, c,若bcosC+ ccosB= asinA,则^ABC 的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解:由已知和正弦定理可得sinBcosC+ sinCcosB= sinA sinA,即sin(B+ Q= sinAsinA, 亦即sinA= sinAsinA.因为0<A<TT,所以sinA= 1, 所以A=2.所以三角形为直角三角形.故选B.在^ABC中,角A, B, C所对的边分别为a, b, c,若 a =寸2, b=2, sinB+ cosB=寸2,则角 A解:sinB+ cosB= ^2,,•寸2sin B+4 =寸2,即sin B+4 = 1._____ __ _兀兀_兀乂.. B€ (0,冗)... B+; = ;, B=~.4 2 4a b asinBsinA= b根据正弦正理、皿=sinB,可侍12'. a<b, . . Av B... A=g.故填&类型一正弦定理的应用△ ABC的内角A, B, C的对边分别为a, b, c,已知A— C= 90 , a+ c=寸2b,求C.解:由a+ c=寸2b及正弦定理可得sinA+sinO 2sinB乂由丁A— C= 90 , B= 180 — (A+C),故cosC + sinC = sinA + sinC=戒sin(A + Q =戒sin(90 + 2Q =匝sin2(45 + Q.,•哀sin(45 + C) = 2 戒sin(45 + C)cos(45 + C),* 一1即cos(45 + C) = 2.乂 .。

高考数学余弦(正弦)定理在解题中的妙用

高考数学余弦(正弦)定理在解题中的妙用

三余弦(正弦)定理的妙用三余弦定理(又叫最小角定理或爪子定理)(1)定理:设点A 为平面α上一点,过A 点的斜线在平面α上的射影为BO ,BC 为平面α上的任意直线,那么ABC ∠,OBC ∠,OBA ∠三角的余弦关系为:OBA OBC ABC ∠⋅∠=∠cos cos cos即斜线与平面一条直线夹角β的余弦值等于斜线与平面所成角α的余弦值乘以射影与平面内直线夹角θ的余弦值。

θαβcos cos cos ⋅=(为了便于记忆,我们约定:β为斜线角,α为线面角,θ为射影角)(2)定理证明:如上图,OAB ∆、OBC ∆、ABC ∆均为直角三角形,AB BC =βcos ,AB BO =αcos ,BOBC =θcos ,易知θαβcos cos cos ⋅=,得证。

(3)定理说明:这三个角中,角β是最大的,其余弦值最小,等于另外两个角的余弦值之积。

斜线与平面所成角α是斜线与平面内所有直线所成的角中最小的角。

三正弦定理(最大角定理):(1)定理:设二面角N AB M --的度数为γ,在平面M 上有一条射线AC ,它和棱AB 所成的角为β,和平面N 所成的角为α,则γβαsin sin sin ⋅=(为了便于记忆,我们约定:β为线棱角,α为线面角,γ为二面角)(2)定理证明:如图,⊥CO 平面N ,AB OB ⊥,AB BC ⊥,OBC ∆、OAC ∆、ABC ∆均为直角三角形,BC OC =γsin ,ACBC =βsin ,ACOC =αsin ,易得:γβαsin sin sin ⋅=。

(3)定理说明:由γβαsin sin sin ⋅=且1sin ≤β知:γαsin sin ≤,γα≤,所以二面角的半平面M 内的任意一条直线与另一个半平面N 所成的线面角不大于二面角,即二面角是线面角中最大的角。

知识应用:例1.(2016年4月浙江省数学学考试题第16题)如图,在侧棱垂直于底面的三棱柱111C B A ABC -中,P 是棱BC 上的动点。

(完整版)正弦定理和余弦定理典型例题(最新整理)

(完整版)正弦定理和余弦定理典型例题(最新整理)

【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)

根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化教学辅导教案
学科:数学 任课教师:叶雷 授课时间:2011 年 月 日(星期 ) 16 : 00 ~ 18 : 00 姓名 阳丰泽
年级
性别
教学课题 正弦、余弦定理
教学 目标 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

2.掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角
形问题。

重点 难点 1.正弦定理的探索和证明及其基本应用;已知两边和其中一边的对角解三角形时判断解的个数。

2.余弦定理的发现和证明过程及其基本应用;勾股定理在余弦定理的发现和证明过程中的作用。

课前检查
作业完成情况:优□ 良□ 中□ 差□ 建议_______________________________
第 次课
第 讲 正弦、余弦定理
知识点一:正弦定理
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图,在Rt ∆ABC 中,设BC=a ,AC=b ,AB=c , 根据锐角三角函数中正弦函数的定义,sin a A c
=,
sin b B c
=,又sin 1c C c
==
,则
sin sin sin a b c c A
B
C
=
=
=, 从而在直角三角
形ABC 中,
sin sin sin a b c A
B
C
=
=。

【思考】那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:
如图,(1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则
sin sin a b A
B =
, 同理可得
sin sin b c B
C
=
,从而sin sin sin a b c A
B
C
=
=。

(2)当∆ABC 是钝角三角形时,以上关系式仍然成立。

(由学生课后自己推导)

为钝角三角形时,如图,作
边上的高线


,则:
在中, ,即,
在中, ,即,
∴,即,同理可证, ∴。

知识点二:余弦定理
运用正弦定理能解怎样的三角形?
①已知三角形的任意两角及其一边, ②已知三角形的任意两边与其中一边的对角, 问题1:如果已知三角形的两边及其夹角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形。

从量化的角度来看,如何从已知的两边和它们的夹角求三角形的另一边和两个角? 问题2:如何从已知两边和它们的夹角求三角形的另一边?
即:在∆ABC 中,设BC=a,AC=b,AB=c ,已知a,b 和∠C ,求边c ?
联系已经学过的知识和方法,可用什么途径来解决这个问题?
用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究。

2
()()2c
c c a b a b a a b b a b ==--=--
2
2
2a b
a b
=+-
从而 2222cos c a b ab C =+-,
同理可证 2222cos a b c bc A =+- , 2222cos b a c ac B =+-.
余弦定理:
三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即:2222cos a b c bc A =+- , 2222cos b a c ac B =+-,2222cos c a b ab C =+-. 余弦定理的变形公式:。

【例1】已知在
中,


,解三角形.
思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边,然后用三角形内角和求出角
,最后用正弦定理求出边.
解析:, ∴,
∴ ,又,
∴.总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;
2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解
答方式.
【变式】在中,已知,,,求、.
解:,
根据正弦定理,∴.
【例2】在,求:和,.
思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角,然后用三角形内角和求出角,最后用正弦定理求出边.
解析:由正弦定理得:,∴,
(方法一)∵,∴或,
当时,,(舍去);
当时,,∴.
(方法二)∵,,∴,
∴即为锐角,∴,,∴.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。

2. 在利用正弦定理求角时,因为,所以要依据题意准确确定角的范围,再
求出角.
3.一般依据大边对大角或三角形内角和进行角的取舍.
【变式】在中,,,,求和.
【答案】∵,∴,
∵,∴或
∴当时,,;
∴当时,,;
所以,或.
【例3】已知中,、、,求中的最大角。

思路点拨:首先依据大边对大角确定要求的角,然后用余弦定理求解.
解析:∵三边中最大,∴其所对角最大,
根据余弦定理:,
∵,∴,故中的最大角是.
总结升华:1.中,若知道三边的长度或三边的关系式,求角的大小,一般用余弦定理;
2.用余弦定理时,要注意公式中的边角位置关系.
【变式】在中,若,求角.
【答案】∵,∴
∵,∴。

【例4】在中,已知,,,求及.
思路点拨:画出示意图,由其中的边角位置关系可以先用余弦定理求边,然后继续用余弦定理或正弦定理求角.
解析:⑴由余弦定理得:=
==,∴
⑵求可以利用余弦定理,也可以利用正弦定理:
(法一:余弦定理)
∵,∴
(法二:正弦定理)
∵,又∵,,
∴<,即<<∴
总结升华:画出示意图,数形结合,正确选用正弦、余弦定理,可以使解答更快、更好.
【变式】在中,已知角所对的三边长分别为,若,,,求角和。

【答案】根据余弦定理可得:
∵,∴;
∴由正弦定理得:。

1.在△ABC中,a=18,b=24,∠A=45°,此三角形解的情况为( )
A. 一个解
B. 二个解
C. 无解
D. 无法确定
2.在△ABC中,若,则∠A的度数是( )
A. 30°
B. 45°
C. 60°
D. 75°
3.ΔABC中,若a2=b2+c2+bc,则∠A=( )
A. 60°
B. 45°
C. 120°
D. 30°
4.边长为5、7、8的三角形的最大角与最小角之和为( )
A. 90°
B. 120°
C. 135°
D. 150°
5.在△ABC中,已知,,B=45°.求A、C及c.
6.在中,若,,,求.
7.在中,若,求.
课后反思:
(1)定理的表示形式:
sin sin a
b
A
B
=
sin c
C
=
=
()0sin sin sin a b c
k k A B C
++=>++;
或sin a k A =,sin b k B =,sin c k C =(0)k >
(2)正弦定理的应用范围:
①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

(3)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; (4)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。

参考答案:
1.B
2.A
3.C
4.B
5.解析:解法1:由正弦定理得:, ∴∠A=60°或120°;
当∠A=60°时,∠C=75° ,;
当∠A=120°时,∠C=15°,.
解法2:设c=x,由余弦定理
将已知条件代入,整理:,解之:
当时,
从而∠A=60°,∠C=75°;当时,同理可求得:∠A=120°,∠C=15°.
6.∵,∴,
∵,∴或∴当时,;
当时,,所以或.
7.∵,∴由余弦定理的推论得:,
∵,∴.
课堂检测听课及知识掌握情况反馈_________________________________________________________. 测试题(累计不超过20分钟)_______道;成绩_______;
教学需:加快□;保持□;放慢□;增加内容□
课后巩固作业_____题; 巩固复习____________________ ; 预习布置_____________________签字教学组长签字:学习管理师:
老师课后赏识评价老师最欣赏的地方:老师想知道的事情:老师的建议:。

相关文档
最新文档